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Abstract. First-order logic modulo the theory of integer arithmetic is
the basis for reasoning in many areas, including deductive software ver-
ification and software model checking. While satisfiability checking for
ground formulae in this logic is well understood, it is still an open ques-
tion how the general case of quantified formulae can be handled in an
efficient and systematic way. As a possible answer, we introduce a sequent
calculus that combines ideas from free-variable constraint tableaux with
the Omega quantifier elimination procedure. The calculus is complete for
theorems of first-order logic (without functions, but with arbitrary unin-
terpreted predicates), can decide Presburger arithmetic, and is complete
for a substantial fragment of the combination of both.

1 Introduction

One of the main challenges in automated theorem proving is to combine rea-
soning about full first-order logic (FOL), including quantifiers, with reasoning
about theories like the integers. At the time, there are efficient provers for han-
dling formulae in first-order logic, as well as SMT-solvers that can efficiently
handle ground problems modulo many theories, but the support for the combi-
nation of both is typically weak. In this paper, we develop a novel calculus for
reasoning about first-order logic modulo linear integer arithmetic that is com-
plete for both the first-order part and the theory part, and that can handle a
substantial fragment of the combination of both. Because the calculus is close
to the DPLL(T) architecture, techniques and optimisations used in SMT-solvers
are readily applicable when working on ground problems, but can be combined
with free-variable techniques to treat quantifiers more systematically.

We start from two existing approaches: free-variable tableaux with incremen-
tal closure, following the work by Martin Giese [1], and the Omega quantifier
elimination procedure [2] for deciding Presburger arithmetic (PA) [3]. From the
former method, our calculus inherits the concept of generating constraints that
describe valuations of free variables for which a formula is satisfied. The lat-
ter method provides the basic rules for dealing with linear integer arithmetic,



168 Introduction

and the concept of recursive application of a calculus in order to handle nested
and alternating quantifiers. The resulting calculus accepts arbitrary formulae
of PA enriched with arbitrary uninterpreted predicates as input. Uninterpreted
functions are not directly supported, but can be treated by a translation to
uninterpreted predicates and functionality and totality axioms.

Our calculus operates on constrained sequents Γ ` ∆ ⇓ C, which consist of
two sets Γ ,∆ of formulae (the antecedent and the succedent) and one further for-
mula C (the constraint). In this paper, C will always be a formula of PA. The se-
mantics of a constrained sequent is the same as of the implication C ⇒ (Γ ` ∆),
i.e., we call the sequent valid if the constraint C implies the ordinary sequent
Γ ` ∆ (and the ordinary sequent holds iff the formula

∧
Γ →

∨
∆ holds). In

this sense, we can say that the constraint C is an approximation of the sequent
Γ ` ∆. The sequent ∀x.(x

.
≥ 0 → p(x)) ` p(c) ⇓ c

.
≥ 0 is valid, for instance,

as are the sequents ∀x.(x
.
≥ 0 → p(x)) ` p(c) ⇓ c

.
= 3 and Γ ` ∆ ⇓ false.

In practice, the constraints of sequents will be unknown during the construc-
tion of a proof. Reasoning about constrained sequents thus consists of two or
more phases: starting with a problem Γ ` ∆ ⇓ ? with unknown constraint, a
proof procedure will first apply analytic rules to the antecedent and succedent
and build a proof tree, similarly as in a normal Gentzen-style sequent calcu-
lus. At some point when it seems appropriate, the procedure will start to close
branches by synthesising sufficient constraints, which are subsequently propa-
gated downwards from the leaves to the root of the tree. If the constraint that
reaches the root is found to be valid, the validity of the input problem Γ ` ∆
has been shown; otherwise, the procedure will continue to expand the proof tree
and later update the resulting constraints.

analytic reasoning
about input formula

x





∗....

Γ ′′ ` ∆′′ ⇓ C

Γ ′ ` ∆′ ⇓ C ′

· · ·





y

propagation
of constraints

In the special case that the input problem Γ ` ∆ does not contain uninterpreted
predicates (i.e., corresponds to a PA formula), it is always possible to find proofs
such that the resulting constraint is equivalent to Γ ` ∆ (we will call such
proofs exhaustive). This makes it possible to use the calculus as a quantifier
elimination procedure for PA.

Our main contributions are: the introduction of the calculus, completeness
results for a number of fragments (including FOL and PA), a complete and
terminating proof strategy for the PA fragment, and the result that fair proof
construction is complete for formulae that are provable at all. We describe two
important refinements of the calculus.

The paper is organised as follows: After giving basic definitions in Sect. 2, we
introduce our calculus in three steps: Sect. 3 gives a version for pure first-order
logic, Sect. 4 a minimalist version for first-order logic modulo integer arithmetic,
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together with completeness results, and Sect. 5 an equivalent but more refined
calculus. Sect. 6 contains the result that fair proof strategies are complete. Two
optimisations for the calculus are described in Sect. 7 and 8. Information about
the prototypical implementation of the calculus and initial experimental results
are given in Sect. 9. Finally, Sect. 10 summarises related work and Sect. 11
concludes.

2 Preliminaries

We assume that the reader is familiar with classical first-order logic and Gentzen-
style sequent calculi, see [4] for an introduction. Assuming that x ∈ X ranges
over an infinite set of variables, c ∈ A over an infinite set of constants, p ∈ P
over a set of uninterpreted predicates with fixed arity, and α ∈

�
over integers,

the syntactic categories of terms t and formulae φ are defined by:

t ::= α || x || c || αt+ · · · + αt

φ ::= φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ || t
.
= 0 || t

.
≥ 0 || t

.
≤ 0 || α | t || p(t, . . . , t)

For reasons of simplicity, we only allow 0 as right-hand side of equations and
inequalities, although we deviate from this convention in some places for sake of
clarity. The explicit divisibility operator α | t is added for presentation purposes
only and does not add any expressiveness (divisibility can also be expressed
with an existentially quantified equation). Further, we use the abbreviations
true, false for the equations 0

.
= 0, 1

.
= 0 and φ→ ψ as abbreviation for ¬φ∨ψ.

Simultaneous substitution of terms t1, . . . , tn for variables x1, . . . , xn is de-
noted by [x1/t1, . . . , xn/tn]φ, whereby we assume that variable capture is avoided
by renaming bound variables when necessary. As short-hand notations, we some-
times also substitute terms for constants (as in [c/t]φ), quantify over constants
(as in ∀c.φ), or quantify over sets of constants (as in ∀U.φ).

Semantics. The only universe considered for evaluation are the integers
�

(an
exception is Sect. 3, where we treat normal first-order logic). A variable as-
signment β : X →

�
is a mapping from variables to integers, a constant as-

signment δ : A →
�

a mapping from constants to integers, and an interpre-
tation I : P → P(

� ∗) a mapping from predicates to sets of
�
-tuples. The

evaluation function val I,β,δ for terms and formulae is then defined as is common
and gives the arithmetic operations their normal meaning, for instance:

valI,β,δ(α1t1 + · · ·αntn) =
n∑

i=1

αi · valI,β,δ(ti)

valI,β,δ(α | t) = tt iff there is a ∈
�

with α · a = val I,β,δ(t)

valI,β,δ(p(t1, . . . , tn)) = tt iff (val I,β,δ(t1), . . . , val I,β,δ(tn)) ∈ I(p)

We call a formula φ valid if val I,β,δ(φ) is true for all I, β, δ.
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Sequents. If Γ ,∆ are finite sets of formulae and C is a formula, all of which do not
contain free variables, then Γ ` ∆ is an (ordinary) sequent and Γ ` ∆ ⇓ C
is a (constrained) sequent. We sometimes identify sequents with the formulae
∧
Γ →

∨
∆ (resp.,

∧
Γ ∧ C →

∨
∆). A calculus rule is a binary relation between

finite sets of constrained sequents (the premisses) and constrained sequents (the
conclusion). A sequent calculus rule is called sound, iff, for all instances

Γ1 ` ∆1 ⇓ C1 · · · Γn ` ∆n ⇓ Cn
Γ ` ∆ ⇓ C

it holds that: if all premisses Γ1 ` ∆1 ⇓ C1, . . . , Γn ` ∆n ⇓ Cn are valid,
then Γ ` ∆ ⇓ C is valid. Proof trees are defined as is common as trees growing
upwards in which each node is labelled with a constrained sequent, and in which
each node that is not a leaf is related with the nodes directly above through an
instance of a calculus rule. A proof is closed if it is finite, and if all leaves are
justified by a rule instance without premisses.

Simplification. We denote elementary simplification steps on terms and atomic
formulae in a proof with simp, without showing more details about the applied
transformation (in an implementation, simp might be a part of the datastruc-
tures for formulae). simp normalises terms to the form α1t1 + · · · + αntn, in
which α1, . . . , αn are non-zero integers and t1, . . . , tn are pairwise distinct vari-
ables, constants, or 1 (possibly 0 as the empty sum). Further, terms are put into
a canonical form by sorting summands according to a well-founded ordering <r:

– on variables, constants and integers, <r is an arbitrary well-ordering such
that variables are bigger than constants, constants are bigger than integers,
and: 0 <r 1 <r −1 <r 2 <r −2 <r 3 <r · · · .

– on terms with coefficients, <r is defined by αt <r α
′t′ if and only if t <r t

′

or t = t′ and α <r α
′.

– on linear combinations, <r is defined by α1t1 + · · · + αntn <r α
′
1t

′
1 + · · · +

α′
kt

′
k if and only if {{α1t1, . . . , αntn}} <r {{α

′
1t

′
1, . . . , α

′
nt

′
n}} (in the multiset

extension of <r, cf. [5]).

Atomic formulae t
.
= 0, t

.
≥ 0, t

.
≤ 0 are normalised by simp such that the coef-

ficients of non-constant terms in t are coprime (do not have non-trivial factors
in common), and such that the leading coefficient is non-negative. This also de-
tects that equations like 2y − 6c+ 1

.
= 0 are unsolvable and equivalent to false,

and that an inequality like 2y − 6c+ 1
.
≤ 0 can be simplified and rounded to

y − 3c+ 1
.
≤ 0 thanks to the discreteness of the integers. All inequalities in the

succedent are moved to the antecedent. A divisibility judgement α | t is nor-
malised like an equation αx+ t

.
= 0, and it is ensured that α and the leading

coefficient of t are positive.

3 A Constraint Sequent Calculus for First-Order Logic

We first introduce a very restricted calculus for pure first-order logic, in order to
illustrate how the framework of constrained sequents is related to normal free-
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Γ ` φ,∆ ⇓ C Γ ` ψ,∆ ⇓ D

Γ ` φ ∧ ψ,∆ ⇓ C ∧D
and-right

Γ, φ ` ∆ ⇓ C Γ,ψ ` ∆ ⇓ D

Γ, φ ∨ ψ ` ∆ ⇓ C ∧D
or-left

Γ, φ, ψ ` ∆ ⇓ C

Γ, φ ∧ ψ ` ∆ ⇓ C
and-left

Γ ` φ, ψ,∆ ⇓ C

Γ ` φ ∨ ψ,∆ ⇓ C
or-right

Γ ` φ,∆ ⇓ C

Γ,¬φ ` ∆ ⇓ C
not-left

Γ, φ ` ∆ ⇓ C

Γ ` ¬φ,∆ ⇓ C
not-right

Γ ` [x/c]φ, ∃x.φ,∆ ⇓ [x/c]C

Γ ` ∃x.φ,∆ ⇓ ∃x.C
ex-right

Γ, [x/c]φ, ∀x.φ ` ∆ ⇓ [x/c]C

Γ, ∀x.φ ` ∆ ⇓ ∃x.C
all-left

Γ ` [x/c]φ,∆ ⇓ [x/c]C

Γ ` ∀x.φ,∆ ⇓ ∀x.C
all-right

Γ, [x/c]φ ` ∆ ⇓ [x/c]C

Γ, ∃x.φ ` ∆ ⇓ ∀x.C
ex-left

Fig. 1. The rules for first-order predicate logic (without equality). In all rules, c is
a constant that does not occur in the conclusion: in contrast to the usage of Skolem
functions and free variables in tableaux, the same kinds of symbols (constants) are
used to handle both existential and universal quantifiers. Arbitrary renaming of bound
variables is allowed in the constraints when necessary to avoid variable capture.

variable tableau calculi. This section is exceptional in that we do not assume
evaluation of formulae over the universe

�
of integers, and that we allow equa-

tions s
.
= t whose right-hand side is not 0. The rules from Fig. 1, together with

the following closure rule, form the calculus PredC :

∗
Γ, p(s1, . . . , sn) ` p(t1, . . . , tn),∆ ⇓

∧

i si
.
= ti

pred-close

Instead of unifying complementary literals, a conjunction of equations about the
predicate arguments is generated and propagated as a constraint.

Example 1. We show a proof for the sequent ∀x.∃y.p(x, y) ` ∃z.p(a, z). In or-
der to instantiate existential and universal quantifiers, fresh constants c, d, e are
introduced. The constraints on the right-hand side are practically filled in af-
ter applying pred-close. Because ∃x.∀y.∃z.(x

.
= a ∧ y

.
= z) is valid, also the

validity of the original problem is proven.

∗
. . . , p(c, d) ` . . . , p(a, e) ⇓ c

.
= a ∧ d

.
= e

pred-close

. . . , p(c, d) ` ∃z.p(a, z) ⇓ ∃z.(c
.
= a ∧ d

.
= z)

ex-right

. . . ,∃y.p(c, y) ` ∃z.p(a, z) ⇓ ∀y.∃z.(c
.
= a ∧ y

.
= z)

ex-left

∀x.∃y.p(x, y) ` ∃z.p(a, z) ⇓ ∃x.∀y.∃z.(x
.
= a ∧ y

.
= z)

all-left

It is easy to see that a constraint C produced by a proof can only consist of
equations over variables and constants, conjunctions, and quantifiers (because
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these are the only constructs that are introduced in constraints by the rules
of PredC). The validity of constraints/formulae of this kind is decidable and
corresponds to simultaneous unification, which makes the calculus effective.

Lemma 2 (Soundness). If a sequent Γ ` ∆ ⇓ C is provable in PredC , thenProof on
page 190 it is valid (holds in all first-order structures).

Lemma 3 (Completeness). Suppose φ is closed, valid (holds in all first-orderProof on
page 190 structures), and does not contain constants. Then there is a valid constraint C

such that ` φ ⇓ C is provable in PredC .

It can be observed that PredC is also proof confluent, which strengthens
Lem. 3. In order to continue (“complement”) a partial proof, it can be both
necessary to expand branches further and to update constraints anywhere in the
proof:

Lemma 4 (Proof confluence). Suppose that φ is valid. Any (partial) PredC-Proof on
page 195 proof with root ` φ ⇓ ? that does not contain applications of pred-close

can be complemented to a closed proof tree with root ` φ ⇓ C for some valid
constraint C.

4 Adding Integer Arithmetic

Relatively few changes to the calculus PredC from the previous section are
necessary to reason about problems in integer arithmetic. In this section, we
describe a minimalist approach in which all integer reasoning happens during
the constraint solving and investigate fragments on which the resulting method
is complete. Later in the paper, the calculus is refined and optimised. From now
on and in contrast to the previous section, assume that formulae and terms are
evaluated over first-order structures with the universe

�
as described in Sect. 2.

In contrast to the previous section, to handle integer arithmetic disjunctive
constraints also need to be considered. We thus split the rule pred-close into
two new rules, one of which (pred-unify) generates unification conditions for
complementary pairs, while the other one (close) allows to synthesise a con-
straint from arbitrary formulae in a sequent:

Γ, p(s1, . . . , sn) ` p(t1, . . . , tn),
∧

i si − ti
.
= 0,∆ ⇓ C

Γ, p(s1, . . . , sn) ` p(t1, . . . , tn),∆ ⇓ C
pred-unify

∗
Γ, φ1, . . . , φn ` ψ1, . . . , ψm,∆ ⇓ ¬φ1 ∨ · · · ∨ ¬φn ∨ ψ1 ∨ · · · ∨ ψm

close

(φ1, . . . , φn, ψ1, . . . , ψm do not contain uninterpreted predicates)

Besides these two rules, PresPredCS contains all rules given in Fig. 1. It is obvious
that any proof in PredC can be translated to a proof in PresPredCS by replac-
ing applications of pred-close with applications of pred-unify, followed by
close, which means that PresPredCS is complete for first-order logic.
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Because uninterpreted predicates are excluded in close, the constraint re-
sulting from a proof is always a formula in Presburger arithmetic and can in
principle be handled using any decision procedure for PA (e.g., [6, 2]). We come
back to this issue later in the paper and assume for the time being that some
procedure is available for deciding the validity of constraints.

As an implication of a more general result (Lem. 17), it can be observed
that PresPredCS is proof-confluent: if φ is provable, then every partial proof of
` φ ⇓ ? can be extended to a closed proof of a sequent ` φ ⇓ C with valid

constraint C.

Example 5. We show a proof for the following sequent:

∀x.p(2x),∀x.¬p(2x+ 1) ` ∀y.(p(y) → p(y + 10))

This is done by first building the “main proof” (upwards) to a point where close
can be applied. The constraints C1, . . . , C4 are then filled in and propagated
downwards:

∗
. . . ` . . . , 2d− c− 10

.
= 0, c− 2e− 1

.
= 0 ⇓ C1

close

p(2d), . . . , p(c) ` p(c+ 10), p(2e+ 1) ⇓ C1
pred-unify × 2

. . . , p(2d),∀x.¬p(2x+ 1), p(c) ` p(c+ 10) ⇓ C2

all-left,not-left

∀x.p(2x),∀x.¬p(2x+ 1), p(c) ` p(c+ 10) ⇓ C3
all-left

∀x.p(2x),∀x.¬p(2x+ 1) ` ¬p(c) ∨ p(c+ 10) ⇓ C3

or-right,not-right

∀x.p(2x),∀x.¬p(2x+ 1) ` ∀y.(p(y) → p(y + 10)) ⇓ C4
all-right

The constraints are:

C1 = 2d− c− 10
.
= 0 ∨ c− 2e− 1

.
= 0

C2 = ∃y.[e/y]C1 = ∃y.(2d− c− 10
.
= 0 ∨ c− 2y − 1

.
= 0)

C3 = ∃x.[d/x]C2 = ∃x.∃y.(2x− c− 10
.
= 0 ∨ c− 2y − 1

.
= 0)

≡ 2 | (c+ 10) ∨ 2 | (c− 1)
C4 = ∀x.[c/x]C3 = ∀x.(2 | (x+ 10) ∨ 2 | (x− 1))

≡ true

Because C4 is valid, we have proven the validity of the original formula. The
simplification of constraints is explained in more detail later.

Completeness on fragments. Two fragments on which PresPredCS is complete
are the classes of purely universal and of purely existential formulae. We call
positions in the antecedent/succedent of a sequent positive if they are underneath
an odd/even number of negations. All other positions are called negative.

Lemma 6. If Γ ` ∆ is a valid sequent in which ∃ only occurs in negative and Proof on
page 195∀ only in positive positions, then there is a valid PA constraint C such that

Γ ` ∆ ⇓ C has a proof in the calculus PresPredCS .

Lemma 7. If Γ ` ∆ is a valid sequent (without constants) in which ∃ only Proof on
page 196occurs in positive and ∀ only in negative positions, then there is a valid PA

constraint C such that Γ ` ∆ ⇓ C has a proof in the calculus PresPredCS .
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Comparison with ME(LIA). We can also show that the calculus PresPredCS is
complete on the fragment of first-order logic modulo linear integer arithmetic
that can be handled by Model Evolution modulo linear integer arithmetic [7].
Ignoring minor syntactic issues and the fact that ME(LIA) works on clauses,
ME(LIA) is a sound and complete calculus for proving the unsatisfiability of
formulae of the shape ∃ā.(φ ∧ ψ), where:

– ā = (a1, . . . , am) is a vector of existentially quantified variables,
– φ is a formula of Presburger arithmetic over ā that only has finitely many

solutions, and
– ψ is an arbitrary formula over ā in which ∃ only occurs in negative and ∀

only in positive positions.

Lemma 8. If ∃ā.(φ∧ψ) as above is an unsatisfiable formula that does not con-Proof on
page 197 tain constants or free variables, then there is a valid constraint C such that the

sequent ∃ā.(φ ∧ ψ) ` ⇓ C has a proof in PresPredCS .

5 Built-In Handling of Presburger Arithmetic

Although the calculus from the previous section is in principle usable, it prac-
tically has a number of shortcomings: the handling of arithmetic in constraints
provides little guidance for the construction of proofs, so that large constraints
are produced in a very indeterministic manner that cannot be solved efficiently.
Moreover, constraints are even needed to handle ground problems, for which
branch-local reasoning should be sufficient. The main goal when refining the
calculus is, therefore, to reduce the usage of constraints as far as possible.

In this section, we define built-in rules for handling linear integer arithmetic
that can be interleaved with the rules from the previous section. The rules make
it possible to handle ground problems branch-locally: proof trees for ground
problems can be constructed depth-first (non-iteratively). Together with the
refinement in Sect. 7, it can be achieved that the only constraints that can result
from a subproof in case of ground problems are true or false. More generally,
branch-local reasoning is possible for innermost ∀-quantifiers in positive and ∃
in negative positions. The arithmetic rules also yield a decision procedure for
Presburger arithmetic that can be used to decide constraints (Sect. 5.3).

The rules in detail. The calculus PresPredC consists of the rules given in Fig. 2,
together with all rules from the calculus PresPredCS and the simplification rule
simp. We introduce new rules ex-right-d, all-left-d that instantiate quanti-
fied formulae destructively, because formulae that do not contain uninterpreted
predicates never have to be instantiated twice (also see Lem. 17 below).

The equality handling follows the calculus given in [8] and can solve arbitrary
equations in the antecedent, in the sense that the equations are rewritten until
the leading coefficients are all 1 and the leading terms of equations occur in
exactly one place. Speaking in terms of matrices, red is the rule for performing
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Γ ` [x/c]φ,∆ ⇓ [x/c]C

Γ ` ∃x.φ,∆ ⇓ ∃x.C
ex-right-d

Γ, [x/c]φ ` ∆ ⇓ [x/c]C

Γ, ∀x.φ ` ∆ ⇓ ∃x.C
all-left-d

(c a constant that does not occur in the conclusion,
φ does not contain uninterpreted predicates)

Γ, t
.
= 0 ` φ[s+ α · t], ∆ ⇓ C

Γ, t
.
= 0 ` φ[s], ∆ ⇓ C

red

Γ, α(u+ c′) + t
.
= 0, c− u− c′

.
= 0 ` ∆ ⇓ [x/c′]C

Γ, αc+ t
.
= 0 ` ∆ ⇓ ∀x.C

col-red

(c′ a constant that does not occur in the conclusion or in u)

Γ, α(u+ c′) + t
.
= 0, c− u− c′

.
= 0 ` ∆ ⇓ [x/c′]C

Γ, αc+ t
.
= 0 ` ∆ ⇓ [x/c− u]C

col-red-subst

(c′ a constant that does not occur in the conclusion or in u)

Γ, ∃x.αx+ t
.
= 0 ` ∆ ⇓ C

Γ, α | t ` ∆ ⇓ C
div-left

(x an arbitrary variable)

Γ, (α | t+ 1) ∨ · · · ∨ (α | t+ α− 1) ` ∆ ⇓ C

Γ ` α | t,∆ ⇓ C
div-right

(α > 0)

Γ, αc− t
.
= 0 ` ∆ ⇓ C

Γ, αc− t
.
= 0 ` ∆ ⇓ [x/t]C ′ ∨ α - t

div-close

(c does not occur in t or in C ′, C′ a PA formula such that C ⇔ [x/αc]C ′)

Γ ` t
.
≤ 0, ∆ ⇓ C Γ ` t

.
≥ 0, ∆ ⇓ D

Γ ` t
.
= 0, ∆ ⇓ C ∧D

split-eq

Γ, t
.
= 0 ` ∆ ⇓ C

Γ, t
.
≤ 0, t

.
≥ 0 ` ∆ ⇓ C

anti-symm

Γ, αc+ s
.
≥ 0, βc+ t

.
≤ 0, βs− αt

.
≥ 0 ` ∆ ⇓ C

Γ, αc+ s
.
≥ 0, βc+ t

.
≤ 0 ` ∆ ⇓ C

fm-elim

(α > 0, β > 0)

Γ,

V

i,j
αibj − aiβj − (αi − 1)(βj − 1)

.
≥ 0

∨
W

i

Wmi

k=0

„

αic− ai − k
.
= 0 ∧

V

i
αic− ai

.
≥ 0 ∧

V

j
βjc− bj

.
≤ 0

« ` ∆ ⇓ C

Γ, {αic− ai

.
≥ 0}i, {βjc− bj

.
≤ 0}j ` ∆ ⇓ C

omega-elim

(αi > 0, βj > 0)

Fig. 2. The rules for linear integer equations, inequalities, and divisibility judgements.
In the rule red, we write φ[s] in the succedent to denote that the term s occurs in an
arbitrary formula in the sequent, which can in particular also be in the antecedent. mi

in omega-elim as on page 176.
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row operations, while col-red(-subst) is responsible for column operations.
We define a suitable strategy for guiding the rules below.

The rules div-right and div-left translate divisibility statements to equa-
tions, while div-close synthesises divisibility statements from equations. The
formula C ′ in div-close can be found through pseudo-division (multiplying
equations, inequalities or divisibility statements in C with non-zero factors). For
C = (c+ d

.
= 0) and α = 3, for instance, we would choose C ′ = (x+ 3d

.
= 0).

Inequalities are handled based on the Omega test [2], which is an extension of
the Fourier-Motzkin variable elimination method (cf. [9]) for integer problems.
The central rule is omega-elim for replacing a conjunction of inequalities with
a disjunction over simpler cases. The literal mi in the rule is defined by:

m = max
j
βj , mi =

⌊
mαi − αi −m

m

⌋

In case there are no upper bounds, we define m = mi = −1. omega-elim is
directly based on the main theorem [2] underlying the Omega test, which is the
following (we use the notation from [10] where also a proof is provided).

Theorem 9 (Pugh, 1992). Suppose L(x) =
∧

i ai ≤ αix is a conjunction of
lower bounds and U(x) =

∧

j βjx ≤ bi is a conjunction of upper bounds, in which
all αi and βj are positive integers and ai, bj are arbitrary terms that do not
contain x. Then:

∃x.L(x) ∧ U(x) ⇐⇒
∧

i,j(αi − 1)(βj − 1) ≤ αibj − aiβj
∨

∨

i

∨mi

k=0 ∃x.
(
αix = ai + k ∧ L(x) ∧ U(x)

)

Appealing to a geometric interpretation, the first disjunct on the right-hand side
is called the “dark shadow,” whereas the existentially quantified disjuncts are
called “splinters.” In case all of the αis or all of the βjs are 1, the equivalence
boils down to the normal Fourier-Motzkin rule:

∃x.L(x) ∧ U(x) ⇐⇒
∧

i,j

aiβj ≤ αibj

The application of omega-elim is only meaningful if c does not occur in formu-
lae other than inequalities. Note, that if there are no lower or no upper bounds,
the rule will replace inequalities whose leading term is c with true.

Because we avoid the application of omega-elim in certain common situa-
tions (for instance, whenever the constant c occurs as argument of uninterpreted
predicates), we also introduce a rule fm-elim for normal Fourier-Motzkin elim-
ination. fm-elim can be applied with higher priority than omega-elim and is
often able to close proofs faster than omega-elim, reducing the need to resort
to the more complex rule. Further, we define two rules to convert between equa-
tions and inequalities. While the rule split-eq is strictly necessary for certain
problems, anti-symm is introduced only for reasons of efficiency.

Lemma 10 (Soundness). If a sequent Γ ` ∆ ⇓ C is provable in PresPredC ,Proof on
page 201 then it is valid.
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5.1 Exhaustive Proofs

The existence of a closed proof for a sequent Γ ` ∆ ⇓ C guarantees that the
implication C ⇒ (Γ ` ∆) holds (this is the soundness of the calculus, Lem. 10).
In the special case that the sequent Γ ` ∆ does not contain uninterpreted pred-
icates, it is possible to distinguish particular closed proofs that also guarantee
the opposite implication (Γ ` ∆) ⇒ C, and thus (Γ ` ∆) ⇔ C. While this can
be achieved in a trivial way by always applying close such that all formulae
in a sequent are selected, it is sufficient to impose a weaker condition on proof
trees that leads to smaller constraints and also makes it possible to eliminate
quantifiers (Sect. 5.3). To this end, it is necessary to remember whether a con-
stant was introduced by an existential rule (like ex-right) or a universal rule
(like all-right), and whether other existential rules were applied in between.

Assume that a PresPredC-proof is given. We annotate the sequents in the
proof with sets U of “universal” constants that the calculus attempts to elim-
inate. More formally, the proof is called exhaustive iff there is a mapping from
proof nodes (constrained sequents) to sets U of constants subject to the following
conditions:

1. The rules and-*, or-*, not-*, pred-unify, red, div-*, split-eq, anti-
symm, fm-elim, and simp keep or reduce the set: if the conclusion is anno-
tated with U , the premisses are annotated with arbitrary subsets of U .

2. The rules ex-right(-d), all-left(-d) erase the set: the premiss is anno-
tated with ∅.

3. The rules ex-left and all-right may add the introduced constant c to
the set: if the conclusion is annotated with U , then the premiss is annotated
with a subset of U ∪ {c}.

4. The rule col-red is only applied if the conclusion is annotated with U such
that c ∈ U . In this case, the premiss is annotated with a subset of U ∪ {c′}.

5. The rule col-red-subst is only applied if the conclusion is annotated with
U such that c 6∈ U , and if u does not contain any constants from U . In this
case, the premiss is annotated with a subset of U .

6. The rule omega-elim is only applied if the conclusion is annotated with U
such that c ∈ U and if c does not occur in Γ or ∆. In this case, the premisses
are annotated with an arbitrary subset of U .

7. The rule div-close is only applied if the conclusion is annotated with U
such that c ∈ U . In this case, the premiss is annotated with a subset of U .

8. The rule close is always applied such that all formulae without uninter-
preted predicates are selected, apart from (possibly) those equations in the
succedent that contain constants from U that exclusively occur in equations
in the succedent.

Lemma 11 (Constraint completeness). Suppose that a PresPredC-proof is Proof on
page 202closed and exhaustive. For each sequent Γ ` ∆ ⇓ C in the tree that is annotated

with a set U , let Γp, ∆p denote the sets of PA formulae contained in Γ , ∆. The
following implication holds for each sequent:

∀U. (Γp ` ∆p) ⇒ ∀U. C (1)



178 Built-In Handling of Presburger Arithmetic

Example 12. The formula ¬∃x.∃y.(2x− c− 10
.
= 0 ∨ 2y − c+ 1

.
= 0) from Ex-

ample 5 is simplified by constructing a proof. To see that the proof is exhaustive,
the sequent with constraint D5 is annotated with ∅, the sequent with D1 with
{e}, the sequent with D3 with {d}, and all other sequents with the set {d, e}.

∗
c− 2d+ 10

.
= 0 ` ⇓ D1

close

2d− c− 10
.
= 0 ` ⇓ D2

div-close

∗
c− 2e− 1

.
= 0 ` ⇓ D3

close

2e− c+ 1
.
= 0 ` ⇓ D4

div-close

2d− c− 10
.
= 0 ∨ 2e− c+ 1

.
= 0 ` ⇓ D2 ∧D4

or-left

∃x.∃y.(2x− c− 10
.
= 0 ∨ 2y − c+ 1

.
= 0) ` ⇓ D5

ex-left × 2

The constraints resulting from the proof are:

D1 = c− 2d+ 10 6
.
= 0

D2 = [2d/c+ 10]D1 ∨ 2 - (c+ 10) = c− (c+ 10) + 10 6
.
= 0 ∨ 2 - (c+ 10)

≡ 2 - (c+ 10)
D3 = c− 2e− 1 6

.
= 0

D4 = [2e/c− 1]D3 ∨ 2 - (c− 1) = c− (c− 1) − 1 6
.
= 0 ∨ 2 - (c− 1)

≡ 2 - (c− 1)
D5 = ∃x.[d/x]∃y.[e/y](D2 ∧D4) = ∃x.∃y.(2 - (c+ 10) ∧ 2 - (c− 1))

≡ 2 - (c+ 10) ∧ 2 - (c− 1)

Because the proof is exhaustive, we know that the original formula is equivalent
to 2 - (c+ 10) ∧ 2 - (c− 1).

Example 13. The constraint ∀x.(2 | (x+ 10) ∨ 2 | (x− 1)) from Example 5 is
simplified to true by constructing the following proof:

∗
c+ 2d′ + 1

.
= 0, d− d′ + 5

.
= 0, false ` ⇓ true

close

c+ 2d′ + 1
.
= 0, d− d′ + 5

.
= 0,∃y.false ` ⇓ true

ex-left

c+ 2d′ + 1
.
= 0, d− d′ + 5

.
= 0,∃y.2y − 2d′ − 1

.
= 0 ` ⇓ true

simp

c+ 2d′ + 1
.
= 0, d− d′ + 5

.
= 0,∃y.2y + c

.
= 0 ` ⇓ true

red

2(−5 + d′) + c+ 11
.
= 0, d− (−5) − d′

.
= 0,∃y.2y + c

.
= 0 ` ⇓ true

simp × 2

2d+ c+ 11
.
= 0,∃y.2y + c

.
= 0 ` ⇓ true

col-red

∃x.2x+ c+ 11
.
= 0,∃y.2y + c

.
= 0 ` ⇓ true

ex-left

2 | (c+ 11), 2 | c ` ⇓ true
div-left × 2

` 2 | (c+ 10), 2 | (c− 1) ⇓ true
div-right × 2, simp

` ∀x.(2 | (x+ 10) ∨ 2 | (x− 1)) ⇓ true
all-right,or-right

5.2 The Construction of Exhaustive Proofs for PA Problems

We define a strategy to apply the PresPredC-rules to a sequent Γ ` ∆ ⇓ ? of
PA formulae with unknown constraint. The strategy is guaranteed to terminate
and to produce a closed and exhaustive proof, and it is deterministic in the
sense that no search is required, every ordering of rule applications (that is
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consistent with given priorities) leads to an exhaustive proof. In order to guide
the proof construction, the strategy maintains a set U of constants (which is
initially empty) and a term ordering <r (as in Sect. 2) that are updated when
new constants are introduced or existing constants need to be reordered. The
ordering <r is always chosen such that the constants in U are bigger than all
constants that are not in U . Both U and <r are branch-local: different branches
in a proof tree can be built using different Us and <rs.

We define the strategy by listing the rules that it applies to a proof goal with
descending priority. This means that step 2 will only be carried out if step 1 is
impossible, etc.

1. apply simp (if possible).

2. apply red if an α exists such that s+ α · t <r s
(and if s 6= t or φ[s] is not an equation in the antecedent).

3. if the antecedent contains an equation αc+ t
.
= 0 with α > 1, then:

– if c 6∈ U , apply col-red-subst. The fresh constant c′ is inserted in the
term ordering <r such that it becomes minimal, and u is chosen such
that (αu+ t) = min<r

{αu′ + t | u′ a term}.

– if c ∈ U and t contains at least one further constant from U whose
coefficient is not a multiple of α, apply col-red. The fresh constant c′

is added to U and is inserted in the term ordering<r such that it becomes
smaller than all other constants in U , but bigger than all constants not
in U . u is again chosen such that (αu+ t) = min<r

{αu′+ t | u′ a term}.

4. if the antecedent contains an equation αc+ t
.
= 0 with c ∈ U , apply div-

close, remove c from U , and update <r such that c becomes minimal.
(This is also possible for α = 1)

5. if possible, apply any of the following rules:

– anti-symm.

– fm-elim, unless the result is subsumed by an existing inequality in the
antecedent.

– any of the rules and-*, or-*, not-*.

6. if possible, apply any of the following rules:

– split-eq: if an equation exists in the succedent that contains a con-
stant c ∈ U , and c occurs as leading term of an inequality in the an-
tecedent.

– omega-elim: if inequalities {αic− ai
.
≥ 0}i, {βjc− bj

.
≤ 0}j occur in

the antecedent and c ∈ U , and if c does not occur in any other formula.

– all-right, ex-left: add the fresh constant c to U and insert it into <r
such that it becomes maximal.

– ex-right-d, all-left-d: set U to the empty set ∅ and insert c arbi-
trarily into <r.

– div-left, div-right.

7. apply close and select exactly those formulae that do not contain constants
from U or uninterpreted predicates.
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The steps 1–4 of the strategy work by eliminating all U -constants that occur
in equations in the antecedent. Similarly as in [8], in the antecedent only equa-
tions will be left whose leading coefficient is 1 and whose leading term does not
occur in other places in the sequent anymore. The steps 5–6 handle inequalities
by first applying the Fourier-Motzkin rule exhaustively, and by eliminating con-
stants using the Omega rule whenever possible. Also quantifiers, propositional
connectives and divisibility judgements are treated in step 5–6. A proof that is
constructed using this procedure is shown in Example 12.

Lemma 14 (Termination and exhaustiveness). If a sequent Γ ` ∆ ⇓ ?Proof on
page 203 does not contain uninterpreted predicates, the strategy from above terminates

and produces a closed exhaustive proof.

5.3 Deciding Presburger Arithmetic by Recursive Proving

The anticipated way to decide constraints in proofs is to eliminate quantifiers
already during the constraint propagation, i.e., at the points where the rules ex-
right(-d), all-left(-d), all-right, ex-left or col-red are applied. When
building a proof incrementally, early elimination enables a prover to identify
those parts of a proof that still have an unsatisfiable constraint and thus need
to be expanded further. Besides, when using the procedure from the previous
section together with early elimination, it is clear that only ground constraints
occur in proofs, which implies that the approach decides PA.

The calculus PresPredC itself can be used to eliminate quantifiers. This is
possible because we can observe that the strategy from the previous section is
always able to eliminate one level of universal quantifiers:

Lemma 15 (Quantifier elimination). Suppose a formula φ does not containProof on
page 207 uninterpreted predicates and only universal quantifiers (∀ in positive positions,

∃ in negative positions). The strategy from the previous section produces a proof
with root ` φ ⇓ C in which C does not contain quantifiers (more precisely, if
C contains a quantified subformula Qx.ψ, then x does not occur in ψ).

This means that, in order to eliminate universal quantifiers from a formula φ,
we can construct an exhaustive proof with root ` φ ⇓ C and extract the con-
straint C. Similarly, existential quantifiers can be eliminated by constructing a
proof for φ ` ⇓ C (also see Example 12).

6 Fair Construction of Proofs

We now compare the calculus PresPredC with the more restricted calculus
PresPredCS from Sect. 4. Because the former calculus is a superset of the latter, it
is a trivial observation that any sequent provable in PresPredCS is also provable
in PresPredC . It is also possible to show that PresPredC cannot prove more
sequents than PresPredCS , which means that the two calculi are equivalent.
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Lemma 16. Suppose that a PresPredC-proof for the sequent Γ ` ∆ ⇓ C ex-Proof on
page 208 ists. For some constraint D with C ⇒ D, there is a PresPredCS -proof of the

sequent Γ ` ∆ ⇓ D.

Proofs in PresPredC can be found by a backtracking-free fair application
strategy. Rules that are specific to integer arithmetic (Fig. 2) are mostly irrele-
vant for this result: such rules do not hinder the construction of proofs, but their
application is not necessary either. Practically, the rules can help to find shorter
proofs and reduce the size of constraints involved, however.

To define the notion “fair” formally, it has to be observed that formulae in a
PresPredC-proof can be rewritten by applying red or simp. When this happens,
it is possible to identify a unique successor of the modified formula in the premiss
of the rule application (vice versa, a formula can have multiple predecessors
because distinct formulae could become equal when applying a rule).

A fair PresPredC-proof is a possibly infinite PresPredC-proof for a sequent
Γ ` ∆ ⇓ ? in which all constraints are ?, such that on all branches the following
conditions hold:

– Fair treatment of formulae with uninterpreted predicates: whenever at some
point on the branch one of the rules in Fig. 1 is applicable to a formula that
contains uninterpreted predicates, the rule is applied to the formula or to
a successor of the formula at some later point on the branch. (This implies
that all-left and ex-right are applied infinitely often to each universally
quantified formula with uninterpreted predicates).

– Fair unification of complementary literals: if there is a sequent on the branch
of the shape Γ, p(t̄) ` p(s̄),∆ ⇓ ?, the rule pred-unify is applied at least
once on the branch to the pair p(t̄), p(s̄) or to successors of these formulae.

– Exhaustiveness: all nodes of the proof can be annotated with sets U as
described in Sect. 5.1.

We say that a constraint C is generated by a fair proof of Γ ` ∆ ⇓ ? if a (finite)
proof for Γ ` ∆ ⇓ C can be obtained by chopping off all branches of the fair
proof at some point, applying close in some way to the leaves and propagating
the resulting constraints through the proof tree.

Lemma 17 (Fair construction). Suppose that a PresPredCS -proof for the se- Proof on
page 211quent Γ ` ∆ ⇓ C exists. Every fair PresPredC-proof of Γ ` ∆ ⇓ ? whose root

is annotated with the set U generates a constraint D with ∀U.C ⇒ ∀U.D.

Intuitively, this means that every fair proof Q of a provable sequent Γ ` ∆ ⇓ ?
contains a finite proof Q′ of the sequent Γ ` ∆ ⇓ C for some valid constraint C
(applications of close have be added to close Q′, of course). Moreover, because
of Lem. 11, it can be observed that every closed exhaustive proof of Γ ` ∆ ⇓ ?
that contains Q′ as an initial part has a valid constraint. This implies the com-
pleteness of proof construction with fair rule, formula, and branch selection.
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7 Weakening to Eliminate Irrelevant Formulae

The calculus PresPredC allows to ignore unneeded formulae when the rule close
is applied, which is used in Sect. 5.1 and 5.2 by selecting only those formulae that
do not contain U -constants. Leaving out the formulae that contain U -constants
is important for two reasons: it is required for the quantifier elimination lemma
(Lem. 15), but it also helps to keep constraints as small as possible. Concerning
the latter argument, the precision of the U -criterion can be improved by elimi-
nating irrelevant formulae as early as possible instead of waiting until close is
applied. Since the conditions for exhaustive proofs in Sect. 5.1 require that the
set U is reset to ∅ whenever the rules ex-right(-d) and all-left(-d) occur,
it can otherwise happen that formulae that were at some point identified as
unnecessary can later in the proof again be considered relevant.

The classical weakening rule for a sequent calculus can directly be carried
over to constrained sequents and is sound:

Γ ` ∆ ⇓ C

Γ, Γ ′ ` ∆′,∆ ⇓ C
weaken

The application of this rule has to be restricted, however, so that Lem. 11 (con-
straint completeness) is preserved. In the style of the conditions given in Sect. 5.1,
we can assume that the conclusion and the premiss of an application of weaken
are both annotated with a set U of constants (in principle, one could also choose
different sets for the premiss and the conclusion, but this would not lead to
any interesting generalisations at this point). A sufficient condition to preserve
Lem. 11 is:

∀U. (Γp, Γ
′
p ` ∆′

p,∆p) ⇒ ∀U. (Γp ` ∆p)

Two possible criteria that both ensure this implication are:

– Elimination of antecedent equations: Γ ′ = {c+ t
.
= 0},∆′ = ∅, where c ∈ U

is a constant that does not occur in Γ , ∆.
– Elimination of a group of satisfiable literals: in certain cases, a group of

inequalities, inequations and divisibility judgements can simultaneously be
eliminated:

Γ ′ = {ti
.
≥ 0}i ∪ {t′j

.
≤ 0}j , ∆′ = {sk

.
= 0}k ∪ {αl | ul}l

This is possible if the invalidity of the literals is ensured through a con-
stant c ∈ U such that:
• no formula in Γ , ∆ contains c;
• Γ ′ contains only lower or only upper bounds on c, i.e., c occurs in each
ti with a positive coefficient and in each t′j with a negative coefficient,
or vice versa;

• c occurs in each sk with a non-zero coefficient;
• c occurs in each ul of a divisibility judgement αl | ul with the non-zero

coefficient βl, and:
∑

l

| gcd(αl, βl)|

|αl|
< 1 (2)
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To understand the last requirement, note that the integers (values of c) that
satisfy a judgement α | (βc+ t), provided that there are any, are periodical
with the following period:

| lcm(α, β)|

|β|
=

|α|

| gcd(α, β)|

The inequality (2) ensures that there are values for c such that none of the
divisibility judgements holds (equivalently, there are infinitely many such
values).

8 Refined Constraint Propagation

All calculi that we have defined so far have a severe disadvantage compared to
normal FOL calculi: there is no notion of “non-unifiability,” because the rule
pred-unify can be applied in a very unrestricted manner to arbitrary pairs of
literals that start with the same predicate symbol. This can lead to constraints
that contain redundant information and to unnecessary proof splitting. For in-
stance, in the following proof the rule pred-unify is applicable and introduces
a conjunction that can lead to a splitting of the branch:

p(c, c) ` c− d
.
= 0 ∧ c− e

.
= 0, p(d, e) ⇓ ?

p(c, c) ` p(d, e) ⇓ ?
pred-unify

∃x.p(x, x) ` ∀x, y.p(x, y) ⇓ ?
ex-left,all-right

· · ·

The conjunction c− d
.
= 0 ∧ c− e

.
= 0 describes a special case, however, and can

be falsified by choosing suitable values for the universally quantified symbols c,
d, e. It is therefore not helpful to select this formula when applying close.

It is not possible to exclude equations involving (only) constants that stem
from universal quantifiers altogether. Intuitively, our logic lacks a Herbrand the-
orem that would enable us to restrict our attention to Herbrand structures, in
which different constants would be interpreted with themselves and thus always
have distinct values.

Example 18. A proof in which also seemingly “non-unifiable” equations are es-
sential is the following:

` a
.
= 0, b

.
= 0 ⇓ ?

` a
.
= 0 ∨ b

.
= 0 ⇓ ?

` a
.
= 0 ∧ b− 1

.
= 0, a 6

.
= 0 ∧ b

.
= 0 ⇓ ?

` a
.
= 0 ∧ b− 1

.
= 0 ∨ a 6

.
= 0 ∧ b

.
= 0 ⇓ ?

` (a
.
= 0 ∨ b

.
= 0) ∧ (a

.
= 0 ∧ b− 1

.
= 0 ∨ a 6

.
= 0 ∧ b

.
= 0) ⇓ ?

` ∃y.(a
.
= 0 ∨ y

.
= 0) ∧ (a

.
= 0 ∧ y − 1

.
= 0 ∨ a 6

.
= 0 ∧ y

.
= 0) ⇓ ?

` ∀x.∃y.(x
.
= 0 ∨ y

.
= 0) ∧ (x

.
= 0 ∧ y − 1

.
= 0 ∨ x 6

.
= 0 ∧ y

.
= 0) ⇓ ?

It can be observed that the formula in the root of the proof is valid. Although the
constant a comes from the universal quantifier ∀x, none of the formulae a

.
= 0

and a
.
= 0 ∧ b

.
= 0 can be left out when applying close without invalidating the

constraint resulting from the proof.
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In this section, we define a global criterion that tells which formulae can be
ignored when applying close. This is done by distinguishing those constants in
a proof that are introduced by universal quantifiers and that do not occur in
illegal positions (we will call such constants free). Because there is no necessity
to apply rules other than close to PA formulae (according to the notion of a
fair proof in Sect. 6), the application of the rule pred-unify can be skipped as
well if it can be predicted that the generated conjunction is irrelevant.

As a prerequisite, we need to replace the rule div-close with a modified
version div-close’ that enables us to order the constants in a proof in a more
fine-grained way:

Γ, αc′ − t
.
= 0, c− c′

.
= 0 ` ∆ ⇓ C

Γ,αc− t
.
= 0 ` ∆ ⇓ [x/t]C ′ ∨ α - t

div-close’

where c′ does not occur in the conclusion and C ′ is a PA formula such that
C ⇔ [x/αc′]C ′. The rule can essentially be used in the same way as div-close
and is not in conflict with any other part of the article. The rule has not been
introduced earlier mainly because it would have made the previous sections
unnecessarily complicated (but it is, in fact, the rule that is used in the imple-
mentation of the calculus).

Everywhere in this section, assume that P is an open PresPredC-proof in
which close is never applied. For reasons of presentation, we further assume
that the constants that are introduced in P by the rules all-left, all-right,
etc. are all pairwise distinct (and also different from “global” constants that are
not explicitly introduced by any rule), which can be achieved by renaming.

The proof P induces a strict partial order ≺P on the set of all constants
occurring in P , based on the order of introduction: we define c ≺P d to hold iff
c is a global constant and d is not, or if the rule application that introduces c
is on the path from the root of P to the rule application that introduces d (d is
introduced “after” c).

Given ≺P , we say that a formula φ is shielded by a constant c if φ is equivalent
to a formula αc+ t

.
= 0 ∧ ψ such that α 6= 0 and d ≺P c for all constants d that

occur in t. We say that φ is shielded by a set of constants M if φ is shielded
by some constant c ∈M . This definition is chosen such that the formula ∀c.ψ is
equivalent to false if ψ is a finite disjunction of formulae that are shielded by c,
and similarly for sets M . The maximality condition ensures that shieldedness is
preserved by quantification over bigger constants.

We say that Q is a set of free constants for the proof P if there is a super-
set Qc ⊇ Q of constants such that the following conditions are satisfied:

– all constants in Q are universal in P , i.e., are introduced by the rules all-
right, ex-left, or col-red;

– whenever col-red-subst is applied and the term c− u contains a constant
from Qc, then also c′ ∈ Qc;

– whenever div-close’ is applied, the term t does not contain any constants
from Qc.
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Given such sets Q, Qc, we now consider two ways to close the proof P by
applying close to each of the goals. The resulting closed proofs are called P1,
P2, and we demand that they have the following property: whenever close is
applied in P1, then (i) the disjunction C of selected PA formulae does not contain
any constants from Qc, and (ii) the disjunction of PA formulae selected in P2 by
the corresponding application of close is equivalent to C ∨

∨n
i=1 φi such that

each formula φi is shielded by Q and only contains constants that occur in the
considered proof goal.

Lemma 19 (Shielded Constraints). Let C1 be the constraint of any proof Proof on
page 216node in P1 and C2 the constraint of the corresponding node in P2. Then (i) C1

does not contain any constants from Qc, and (ii) C2 is equivalent to C1 ∨
∨n
i=1 φi

where each formula φi is closed, shielded by Q, and only contains constants that
are global or introduced on the path from the proof root to the location of C2.

It is an implication of the lemma that the constraints that arrive at the roots
of P1 and P2 are equivalent. This means that the additional formulae that are
selected in P2 when applying close, compared to P1, did not contribute to the
constraint and could have been left out right away. In case close is applied in
P2 in the most liberal way (in each goal, all PA formulae are selected), this tells
which of the formulae are irrelevant for the proof.

Example 20. We show how the criterion rules out non-unifiable pairs of literals:

f(a, 2), f(b, 3) ` f(b, c), . . . ⇓ ? f(a, 2), f(b, 3) ` c
.
≥ 0, . . . ⇓ ?

f(a, 2), f(b, 3) ` f(b, c) ∧ c
.
≥ 0, . . . ⇓ ?

and-right

f(a, 2), f(b, 3) ` ∃z.(f(y, z) ∧ z
.
≥ 0) ⇓ ?

ex-right

f(a, 2) ∧ f(b, 3) ` ∃z.(f(y, z) ∧ z
.
≥ 0) ⇓ ?

and-left

` f(a, 2) ∧ f(b, 3) → ∃z.(f(y, z) ∧ z
.
≥ 0) ⇓ ?

or-right,not-right

` ∀x, y.(f(x, 2) ∧ f(y, 3) → ∃z.(f(y, z) ∧ z
.
≥ 0) ⇓ ?

all-right × 2

In the left goal, the rule pred-unify can be applied to the pairs f(a, 2), f(b, c)
and f(b, 3), f(b, c). Because the constants Q = Qc = {a, b} are free, the first pair
can be ignored as it would generate the formula b− a

.
= 0 ∧ c− 2

.
= 0 that is

shielded by b in the first equation.
In the proof in Example 18, the formula a 6

.
= 0 ∧ b

.
= 0 is only shielded by

the constant b that comes from an existential quantifier. This means that if the
formula is to be selected for close, neither can a be a free constant, and thus
none of the formulae a

.
= 0 and a

.
= 0 ∧ b

.
= 0 is shielded either.

There are several ways to generalise the approach described in this section:

– It is possible to vary the definition of “shielded formulae,” e.g., to also con-
sider formulae that are shielded through inequalities.

– The ordering ≺P on constants can be defined less total, again liberalising
the notion of shielded formulae: if a sequence of quantifiers of the same
kind is instantiated, there is no need to order the introduced constants. In
Example 20, this would apply to the constants a, b.



186 Implementation and Initial Experimental Results

– Sets Q of free constants can be localised, it is not necessary to use the same
sets for a whole proof. It can be the case that the conditions for freeness
are generally true in a proof, but are violated in a small subproof. In this
situation, it might be possible to use a smaller set Q for this particular
subproof. In the right subproof of the next example, for instance, c is not
free because it occurs in the unshielded formula d− c

.
= 0. Because c does

not occur in the constraint true of the subproof as a whole anymore, however,
this is irrelevant for the rest of the proof. Consequently, it might be possible
to avoid the unification of p(c) and p(e) in the left subproof.

p(c) ` p(e) ⇓ ?

∗
p(c) ` d− c

.
= 0, p(d),∃x.p(x) ⇓ d− c

.
= 0

p(c) ` p(d),∃x.p(x) ⇓ d− c
.
= 0

p(c) ` ∃x.p(x) ⇓ true
· · ·

9 Implementation and Initial Experimental Results

We have implemented the calculus defined in this paper (essentially in the ver-
sion of Sect. 5) in the theorem prover Princess, which is available for download.1

At the time of writing this section, all features introduced in the paper are im-
plemented, apart from the optimisation of Sect. 8. In certain situations, Princess
additionally uses analytic cuts [11] and formula simplification [12] to avoid re-
dundancy in proofs. Constraints are simplified using the approach of Sect. 5.3,
which means that no separate decision procedure for Presburger arithmetic is
necessary. Princess is written in the Scala programming language [13] and runs
on a Java virtual machine.

Most available benchmarks for SMT-solvers require uninterpreted functions
or further theories like arrays that have to be handled using appropriate encod-
ings in our calculus. Although we plan to add preprocessors for these theories
to Princess, implementations of such encodings are not available yet (and also
require further research in some cases). Our experimental results up to now are,
therefore, restricted to the categories QF LIA (quantifier-free linear integer arith-
metic) and QF IDL (quantifier-free integer difference logic) of the SMT library
[14], see Fig. 3.

Although Princess is not primarily designed for the problems in the tested
categories (in contrast to SMT-solvers), the results are reasonably good. Unsur-
prisingly, Princess performs better for problems that focus on arithmetic (like
CIRC) than for problems that are essentially combinatoric (like queens bench),
for which more advanced techniques developed for SAT- and SMT-solvers are
necessary. This fact might also explain the poor results for the nec-smt directo-
ries. In the SMT competition in 2007,2 Princess would have solved 109 out of 203
selected problems in QF LIA and 85 out of 203 problems in QF IDL. For 2008, the

1 http://www.cs.chalmers.se/~philipp/princess
2 http://www.smtcomp.org/
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QF LIA

Directory solved/total Directory solved/total

Averest 10/ 19 nec-smt/small 17/ 35
CIRC 33/ 51 nec-smt/med 3/ 364
RTCL 2/ 2 nec-smt/large 0/2381
check 5/ 5 rings 53/ 293
mathsat 55/121 wisa 4/ 5

QF IDL

Averest 195/252 planning 5/ 45
cellar 0/ 14 qlock 0/ 72
check 3/ 3 queens bench 53/ 297
diamonds 18/ 36 RTCL 30/ 33
DTP 0/ 60 sal 27/ 50
mathsat 96/146 sep 17/ 17
parity 34/248

Fig. 3. Princess statistics for the categories QF LIA and QF IDL of the SMT library [14]
(Dual Core AMD Opteron 270 with 2GHz, 1.5GB of heapspace, timeout of 1000s).
Detailed results are available at http://www.cs.chalmers.se/~philipp/princess.

result drops to only 10 out of 205 problems in QF LIA and 5 out of 203 in QF IDL,
presumably because of the poor performance for combinatoric problems and the
lack of lemma learning (QF LIA is in 2008 dominated by nec-smt problems).

10 Related Work

Model evolution modulo linear integer arithmetic [7] is a recently proposed vari-
ant of the Model Evolution calculus that is similar to our calculus in that it
supports PA enhanced with uninterpreted predicates (and without functions) as
input language, and that its architecture resembles tableau calculi. Model Evo-
lution does not use rigid free variables that are shared among different branches
in the way tableaux do, however, which means that also constraints can be
kept branch-local. Further differences are that ME(LIA) works on clauses, only
supports a restricted form of existential quantification, and has a more explicit
representation of candidate models.

SMT-solvers based on the DPLL(T) architecture [15] can handle ground
problems modulo integer arithmetic (and many other theories) efficiently, but
only offer heuristic quantifier handling. Because of the similarity between DPLL
and sequent calculi, the work presented in this paper can be seen as an alternative
approach to handling quantifiers that should also be applicable to DPLL(T).

Our approach has similarities with the framework in [16] for integrating the-
ories into tableau calculi by distinguishing between a foreground reasoner (han-
dling FOL) and a background reasoner (handling the theory). According to
this nomenclature, the rules in Fig. 2 implement the (partial) background rea-
soner. Because our theory rules operate destructively on sequents, we integrate
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background and foreground reasoning more closely than proposed in [16]. The
biggest difference between our approach and [16] is that no theory unification is
performed in our calculus, it is only necessary to check the validity of constraints.

An approach to embed algebraic constraints in tableau calculi is described
in [17], where quantifier elimination tasks in real arithmetic (possibly involving
more than one proof goal) are carried out by an external procedure, in a manner
comparable to the simultaneous solving of constraints from multiple proof goals
described here. Uninterpreted functions or predicates are not handled.

There are a number of approaches to include theories into resolution-based
calculi. [18] works with constraints that are solved in a theory, but requires to
enumerate the solutions of constraints (whereas it is enough to check the validity
of constraints in our work). In [19], while it is enough to check satisfiability of
constraints, no uninterpreted functions or predicates are supported. A recent
calculus to handle rational arithmetic is given in [20], and is similar to our work
in that it has built-in rules to solve systems of equations and inequalities (based
on Fourier-Motzkin). The calculus is complete under restrictions that effectively
prevent quantification over rationals. It remains to be investigated how this
fragment is related to the fragments discussed here.

11 Conclusions and Future Work

We have presented a novel calculus to reason about problems in first-order logic
modulo linear integer arithmetic. As main results, we have shown that the cal-
culus is complete for first-order logic, can decide PA, is at least as complete
as the calculus ME(LIA), and allows fair construction of proofs. We have also
described refinements of the calculus and given experimental results.

Apart from continuing the implementation and further benchmarks, there are
a number of concepts that require more research, among others: the encoding
and handling of functions and further theories; the integration of lemma learning;
the integration of connectivity conditions to make proof search more directed;
the elimination of cuts in proofs. We also plan to extend our calculus to support
nonlinear arithmetic (following the work in [8]), and possibly rational arithmetic.
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A Proofs

Lemma 2 (Soundness of PredC)

All rules of the calculus PredC are sound in the sense introduced in Sect. 2
(but considering evaluation over arbitrary first-order structures (U, I) with an
arbitrary non-empty universe U). Some of the cases are:

– and-right: Assume Γ ` φ ∧ ψ,∆ ⇓ C ∧D is invalid, i.e., for some struc-
ture (U, I) and some constant assignment δ we have val (U,I),δ(C ∧D) = tt
but val (U,I),δ(Γ ` φ ∧ ψ,∆) = ff . This implies:
• val (U,I),δ(C) = tt and val (U,I),δ(D) = tt ,
• val (U,I),δ(φ) = ff or val (U,I),δ(ψ) = ff .

Then val (U,I),δ(Γ ` φ,∆ ⇓ C) = ff or val (U,I),δ(Γ ` ψ,∆ ⇓ D) = ff and
one of the premisses has to be invalid.

– or-right: Assume that Γ ` φ ∨ ψ,∆ ⇓ C is invalid, i.e., for some struc-
ture (U, I) and some constant assignment δ we have val (U,I),δ(C) = tt but
val (U,I),δ(Γ ` φ ∨ ψ,∆) = ff . This implies:
• val (U,I),δ(φ) = ff and val (U,I),δ(ψ) = ff .

Then also val (U,I),δ(Γ ` φ, ψ,∆ ⇓ C) = ff and the premiss is invalid.
– all-right: Assume that Γ ` ∀x.φ,∆ ⇓ ∀x.C is invalid, i.e., for some struc-

ture (U, I) and some constant assignment δ we have val (U,I),δ(∀x.C) = tt but
val (U,I),δ(Γ ` ∀x.φ,∆) = ff . Because c is a fresh constant, this implies that
there is an assignment δ′ that agrees with δ on all constants but c such
that val (U,I),δ′([x/c]φ) = ff . For this δ′, also val (U,I),δ′([x/c]C) = tt holds.
Then val (U,I),δ′(Γ ` [x/c]φ,∆ ⇓ [x/c]C) = ff and therefore the premiss is
invalid.

– ex-right: Assume that Γ ` ∃x.φ,∆ ⇓ ∃x.C is invalid, i.e., for some struc-
ture (U, I) and some constant assignment δ we have val (U,I),δ(∃x.C) = tt
but val (U,I),δ(Γ ` ∃x.φ,∆) = ff . Because c is a fresh constant, this im-
plies that there is an assignment δ′ that agrees with δ on all constants
but c such that val (U,I),δ′([x/c]C) = tt and val (U,I),δ′([x/c]φ) = ff . Then
val (U,I),δ′(Γ ` [x/c]φ,∃x.φ,∆ ⇓ [x/c]C) = ff and the premiss is invalid.

The conjecture follows by a simple induction on the size of proofs.

Lemma 3 (Completeness of PredC)

We assume that ` φ ⇓ C is unprovable for all valid formulae C and deduce
that φ is not valid. The main difficulty with the approach is to use the knowledge

“All constraints that can be derived during a proof attempt are invalid”

to identify a saturated proof branch from which a countermodel can be con-
structed using the normal Hintikka-construction [4]. We bridge this gap by in-
troducing a notion of “most general constraints” (mgc), which are basically
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constraints that are the disjunction of all closing constraints that can be derived
from a proof. Because saturated proofs are usually infinite, also mgc can be in-
finitary. Importantly, we can show that the mgc is valid iff there is a valid closing
constraint. From the fact that the mgc is invalid (if a formula is unprovable), we
can derive a saturated proof branch that we turn into a countermodel.

To derive most general constraints, we modify the closure rules of PredC and
allow to introduce constraints with disjunctions. The calculus PredCJ consists of
the same rules as PredC apart from pred-close, which is replaced with the
two following rules:

Γ, p(s1, . . . , sn) ` p(t1, . . . , tn),∆ ⇓ C

Γ, p(s1, . . . , sn) ` p(t1, . . . , tn),∆ ⇓ C ∨
∧

i si
.
= ti

disj-close

∗
Γ ` ∆ ⇓ false

false-close

We call a (possibly infinite) proof tree in PredCJ fair if

– all structural/propositional rules and skolemisation are eventually applied
whenever they are applicable,

– the rule disj-close is applied infinitely often to each complementary pair
on each branch,

– the rule all-left/ex-right is applied infinitely often to every univer-
sally/existentially quantified formula in the antecedent/succedent on each
branch,

– the rule false-close is only applied if no other rule is applicable.

The constraints generated by fair proof trees are called most general con-
straints. Such constraints can be infinitary and contain infinitely many quanti-
fiers, disjunctions (due to infinite branches in a proof tree) or conjunctions (due
to infinitely many branches in a proof tree). We consider infinitary formulae as
infinite trees, in which conjunctions and disjunctions are always seen as binary
connectives. Because no function symbols are involved, terms are always single
variables or constants, and literals occurring in the formulae are always finite.
We use game semantics (cf. [21]) to give meaning to infinitary formulae.

Infinitary Formulae

Starting with a fixed non-empty domain U , initial variable/constant assign-
ments β, δ and at the root of a formula, two players (the verifier and the falsifier)
play against each other:

– the verifier tries to show that the formula is true. When arriving at ∨ or ∃x,
the verifier has to choose the subformula to continue with, or the value that
x is to be given.

– the falsifier tries to show that the formula is false. When arriving at ∧ or ∀x,
the falsifier has to choose the subformula to continue with, or the the value
that x is to be given.
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The verifier wins if the game ends and arrives at a literal that evaluates to tt .
The falsifier wins if the game does not terminate,3 or if it ends at a literal that
evaluates to ff . A formula is true (in a certain structure) if the verifier has a
(deterministic) winning strategy, i.e., the verifier can win whatever the falsifier
does, and false otherwise. By the theorem of Gale-Stewart [22], in the second
case the falsifier has a (deterministic) winning strategy. A formula is valid if the
verifier has winning strategies for each domain U and assignments β, δ.

It is well-known that the above game semantics coincides with Tarski seman-
tics for finite formulae.

Properties of Most-General Constraints

The important property of the most-general constraint obtained from a fair
PredCJ -proof is that it subsumes all constraints that the original calculus PredC

could possibly have generated. By possibly generated constraints we mean all
constraints that can be obtained from the PredCJ -proof by turning the proof into
a PredC-proof:

– remove all applications of false-close and disj-close,
– chop off all infinite branches at some point to make the proof tree finite, and
– apply pred-close in some way to all open branches.

The constraint C that arrives at the root Γ ` ∆ ⇓ C of the resulting proof is
called possible generated.

Lemma 21. The most-general constraint of a fair PredCJ -proof is valid iff the
proof possibly generates a valid constraint.

Assume that all possibly generated constraints of a fair PredCJ -proof are invalid.
By the lemma, this means that the mgc of this proof is invalid: for some particular
domain, the falsifier has a winning strategy for the mgc. We can then discover
the right branch in the proof tree and simultaneously construct a countermodel
based on the above domain by playing a game (that the falsifier wins).

Proof (Lem. 21).
“⇐=:” Assume that a fair PredCJ -proof possibly generates a valid constraint.

We fix a domain U , variable/constant assignments β, δ, and a winning strat-
egy S1 for the verifier for this valid constraint (note, that S1 is only responsible
for nodes ∃x). We can derive a winning strategy S2 for the verifier for the mgc:

– Initially, S1 and S2 behave in the same way when arriving at a node ∃x.
When arriving at ∨ in the mgc, which has to be introduced by disj-close,
S2 chooses the left branch (and not the conjunction

∧

i si
.
= ti).

– Once the game has reached a point where the rule pred-close was applied
to produce a conjunction φ in the possibly generated constraint, S2 changes
its behaviour:

3 Note, that this implies that true∧ true∧· · · is false, which is the intended semantics.
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• when arriving at a node ∃x, the value of x is chosen arbitrarily;
• when arriving at ∨, which has to be introduced by disj-close, S2

chooses the left branch if it leads to the conjunction φ, otherwise the
right branch.

Because of fairness, disj-close is eventually applied to every complementary
pair on every branch, so that S2 is guaranteed to win after a finite number of
steps.

“=⇒:” Assume that the mgc is valid. Further, assume that all variables that
are bound in the mgc are pairwise distinct, and that for each variable x the
symbol fx denotes a function symbol whose arity equals the number of variables
that are bound above the location where x is bound. Finally, let U be the domain
of the free term algebra over the vocabulary consisting of the functions fx (we
possibly have to add further functions that do not belong to any variables to
ensure that U is non-empty).

We fix U as the domain of evaluation (and arbitrary assignments β, δ) as
well as a winning verifier strategy S. For each branch b in the proof tree, we
construct a falsifier strategy Tb:

– When arriving at a quantifier ∀x, the falsifier chooses fx(β(y1), . . . , β(yk))
as the value of x, where β(y1), . . . , β(yk) are the values given to variables
bound above ∀x.

– When arriving at ∧ that was introduced by and-right or or-left, the
falsifier follows the branch b.

– When arriving at other ∧, the falsifier chooses an arbitrary branch.

Because S is a winning strategy, the verifier wins against each of the strategies Tb
in a finite number of steps, which means that S picks one particular application of
disj-close on each branch. Because S is deterministic and the strategies Tb only
differ in the treatment of ∧, no two selected disj-close applications are located
on the same branch. This implies that the selected disj-close applications can
be replaced with pred-close to turn the fair PredCJ -proof into a PredC-proof
(removing all other applications of disj-close and false-close).

The constraint of the resulting PredC-proof is valid: because U is the domain
of a term algebra, the values chosen by the verifier for the existentially quantified
variables describe a simultaneous unifier of the equations produced by pred-
close.

Selection of the right branch

We will now show how the reasoning of the previous pages can be used to detect
the right saturated branch in a proof tree and to construct a countermodel of
the formulae on this branch. To this end, assume that all possibly generated
constraints of a fair PredCJ -proof are invalid. By Lem. 21, this means that the
mgc of this proof is invalid: for some particular domain, the falsifier has a win-
ning strategy for the mgc (note, that the mgc only contains equations between
variables as atoms). Wlog, we may assume that the domain is countable and
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consists of the elements a1, a2, . . . (this follows by the same argument as in the
proof of Lem. 21: if no such countable domain would exist, we could construct a
countable term algebra for which the verifier has a winning strategy and conclude
the validity of the mgc).

Assume that the constants that the rules ex-right, all-left introduce in
the PredCJ -proof are all pairwise distinct. We now discover the right branch in
the proof tree and simultaneously construct a countermodel based on the above
domain by playing a game. The falsifier will use its winning strategy, whereas
we assume that the verifier behaves as follows:

– When arriving at ∨ in the mgc, which has to be introduced by disj-close,
the verifier chooses the left branch (and not the conjunction

∧

i si
.
= ti);

– when arriving at quantifiers ∃x in the mgc, i.e., at a quantified formula ∃x.φ
(succedent) or ∀x.φ (antecedent) in the proof that is instantiated by ex-
right or all-left, the verifier chooses a domain element ai as value of
x. The value ai is taken when the formula ∃x.φ or ∀x.φ is visited the i-
time in the game, which means that all domain elements are systematically
enumerated for each formula ∃x.φ or ∀x.φ.

The path chosen by the game corresponds to one branch S0, S1, . . . (a se-
quence of sequents) in the proof tree.

Countermodel Construction. In order to construct a countermodel, we first define
the notion of persistent formulae on the selected branch. By

Lit(φ1, . . . , φn ` ψ1, . . . , ψm ⇓ ?) := {¬φ1, . . . ,¬φn, ψ1, . . . , ψm}

we denote the set of literals represented by a sequent. The set of persistent
formulae of a sequence of sequents is then defined as

PF := PF (S0, S1, . . .) :=
⋃

i

⋂

j≥i

Lit(Sj)

For predicate calculus, there are two kinds of formulae that can be persistent:
existentially quantified formulae (which have to be instantiated multiple times
and never disappear from a branch) and literals (to which no further rules apart
from closure rules can be applied).

It is now simple to find a countermodel of all persistent atoms:

– We choose the same domain as for the game that was played in the previous
section.

– We interpret constants with the values that were chosen by the verifier and
the falsifier during the game. Because we assumed that the constants that
are introduced by ex-right, all-left are pairwise distinct, this yields a
consistent valuation.

– We evaluate all persistent literals p(t̄) with ff and all persistent literals ¬p(t̄)
with ff as well (i.e., p(t̄) with tt). This is consistent, because whenever pos-
sibly conflicting literals p(t̄) and ¬p(s̄) are both persistent, we know that
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disj-close has been applied to the pair and that the formula
∧

i si
.
= ti

evaluates to ff for the chosen valuation of constants (otherwise, the verifier
could have won the game, which contradicts the assumption that the falsifier
has a winning strategy).

To show that the chosen structure is a countermodel of all formulae on
the proof branch, we perform the usual Hintikka-style induction on the size
of formulae. The quantifier cases are the most interesting ones:

– ∀x.φ in the succedent: we know that all-right has been applied to the
formula, and that [x/c]φ evaluates to ff for some constant c. Then also the
quantified formula evaluates to ff .

– ∃x.φ in the succedent: ex-right has been applied infinitely often to the
formula, and by the choice of the verifier the values of the introduced con-
stants c1, c2, . . . enumerate all domain elements. Because all formulae [x/c1]φ,
[x/c2]φ, . . . are known to evaluate to ff , also ∃x.φ evaluates to ff .

If we have found a countermodel for all sequents on a proof branch, then also
the root of the proof tree is invalid:

Lemma 22. If all possibly generated constraints of a fair PredCJ -proof for the
sequent Γ ` ∆ ⇓ ? are invalid, then the root Γ ` ∆ of the proof is invalid.

This implies Lem. 3.
To see that also Lem. 4 holds, observe that every partial proof of ` φ ⇓ ?

(as described in the lemma) can be extended to a fair PredCJ -proof. By Lem. 22
and because φ is valid, this implies that some possibly generated constraint is
valid as well. Because atoms are always persistent in PredCJ , this constraint is
also generated by a finite extension of the original PredC-proof.

Lemma 6 (Universal Completeness of PresPred C

S
)

Exhaustive application of all rules apart from all-left, ex-right and close
terminates. Subsequently, apply close on each goal as liberally as possible,
selecting all PA formulae in the goal (the literals containing uninterpreted predi-
cates have to be left out). If the resulting constraint C (for the whole proof tree)
is not valid, a countermodel can be constructed as follows:

– Because C is not valid, there has to be an assignment δ of the constants
introduced when applying ex-left, all-right such that the constraint
extracted from one of the proof goals evaluates to ff . Denote this proof goal
by Γ ′ ` ∆′ ⇓ D.

– Because pred-unify has been applied exhaustively in the proof, for any
complementary pair p(t̄) ∈ Γ ′, p(s̄) ∈ ∆′ the argument vectors evaluate to
different integer vectors given the constant assignment δ. This means that
a consistent interpretation I of the predicates can be constructed from
Γ ′ ` ∆′ ⇓ D.

– Using the normal Hintikka construction, it can be shown that I is a coun-
termodel of the original sequent Γ ` ∆.
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Lemma 7 (Existential Completeness of PresPred C

S
)

To prove this, we first need a further lemma:

Lemma 23 (Constant Substitution in Proofs). Suppose Γ ` ∆ is a se-
quent, σ = [c1/α1, . . . , cn/αn] a substitution that replaces constants with integer
literals, and C a constraint, such that σ(Γ ) ` σ(∆) ⇓ C has a proof in the cal-
culus PresPredCS . Then there is a constraint D such that (i) Γ ` ∆ ⇓ D has a
proof in PresPredCS , and (ii) the implication C ⇒ σ(D) holds.

Proof. By induction on the size of the proof of σ(Γ ) ` σ(∆) ⇓ C. We can first
observe that the existence of a proof for Γ ` ∆ ⇓ C implies the existence of
proofs for Γ, Γ ′ ` ∆′,∆ ⇓ C. Some of the cases are then:

– The last rule applied in the proof is close:

∗
σ(Γ, φ1, . . . , φn) ` σ(ψ1, . . . , ψm,∆) ⇓ σ(¬φ1∨· · ·∨¬φn ∨ ψ1∨· · ·∨ψm)

c.

The non-ground proof can then simply be constructed as:

∗
Γ, φ1, . . . , φn ` ψ1, . . . , ψm,∆ ⇓ ¬φ1 ∨ · · · ∨ ¬φn ∨ ψ1 ∨ · · · ∨ ψm

close

– The last rule applied in the proof is not-right:
....

σ(Γ ), σ(φ) ` σ(∆\σ−1({σ(¬φ)})) ⇓ C

σ(Γ ) ` σ(¬φ), σ(∆) ⇓ C
not-right

Using the induction hypothesis, for a suitable constraint D there is a proof of
Γ, φ ` ∆\σ−1({σ(¬φ)}) ⇓ D, therefore also of Γ, φ ` ∆ ⇓ D, which can
be continued as follows:

....
Γ, φ ` ∆ ⇓ D

Γ ` ¬φ,∆ ⇓ D
not-right

– The last rule applied in the proof is ex-right:
....

σ(Γ ) ` σ([x/c]φ), σ(∃x.φ), σ(∆) ⇓ [x/c]C

σ(Γ ) ` σ(∃x.φ), σ(∆) ⇓ ∃x.C
ex-right

Again, for some constraint D such that [x/c]C ⇒ σ(D) there is a proof of
Γ ` [x/c]φ,∃x.φ,∆ ⇓ D, and by renaming we can establish c 6∈ {c1, . . . , cn}.
The proof can be continued as

....
Γ ` [x/c]φ,∃x.φ,∆ ⇓ D

Γ ` ∃x.φ,∆ ⇓ ∃x.[c/x]D
ex-right

and the implication ∃x.C ⇒ ∃x.[c/x]σ(D) ⇔ σ(∃x.[c/x]D) holds.
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Proof (Lem. 7). As the first step, we consider a calculus PresPredCG that co-
incides with PresPredCS , only that the rules all-left, ex-right are replaced
with “ground versions” (α ranges over integer literals):

Γ ` [x/α]φ,∃x.φ,∆ ⇓ C

Γ ` ∃x.φ,∆ ⇓ C
ex-right-g

Γ, [x/α]φ,∀x.φ ` ∆ ⇓ C

Γ,∀x.φ ` ∆ ⇓ C
all-left-g

The valid sequent Γ ` ∆ from the lemma has a proof with valid constraint in
PresPredCG: otherwise, construct a (possibly infinite) proof tree in which every
quantified formulae on every branch has been instantiated with every integer
literal. Using the normal Hintikka construction, a countermodel of Γ ` ∆ can
be found.

By induction on the size of the PresPredCG-proof, we can transform the proof
into a PresPredCS -proof. Most steps in the proof are left untouched, the only
changes are applied to ex-right-g, all-left-g. For the first case (the latter
case is similar), suppose the ground proof ends with:

Γ ` [x/α]φ,∃x.φ,∆ ⇓ C

Γ ` ∃x.φ,∆ ⇓ C
ex-right-g

where C is valid. We replace the application of ex-right-g with ex-right:

Γ ` [x/c]φ,∃x.φ,∆ ⇓ ?

Γ ` ∃x.φ,∆ ⇓ ?
ex-right

Because Γ ` [x/α]φ,∃x.φ,∆ ⇓ C has a proof in PresPredCS , by Lem. 23 there
is a proof of Γ ` [x/c]φ,∃x.φ,∆ ⇓ D for a suitable D such that C ⇒ [c/α]D,
i.e., [c/α]D is valid. This means that also ∃x.[c/x]D is valid and the translated
proof is:

Γ ` [x/c]φ,∃x.φ,∆ ⇓ D

Γ ` ∃x.φ,∆ ⇓ ∃x.[c/x]D
ex-right

Lemma 8 (Completeness on the ME(LIA) fragment)

By constructing a PresPredCS -proof for each solution of φ (with the help of
Lem. 7), which can then be combined into a single proof. We first need a further
lemma that allows us to restructure proofs:

Lemma 24. Suppose a PresPredCS -proof exists for the sequent Γ ` ∆ ⇓ C,
and Γ ` ∆ contains a formula φ to which one of the rules and-*, or-*,
not-*, ex-left, all-right is applicable. For some D with C ⇒ D there is a
PresPredCS -proof of Γ ` ∆ ⇓ D in which the first rule application is performed
on φ. The depth of the new proof (the length of the longest branch) is at most 1
bigger than the depth of the original proof, and the first rule application of the
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original proof is the first or the second rule application on all branches in the
new proof. Further, if the original proof does not contain any rule applications
to PA formulae apart from close, then the new proof does not contain any such
applications apart from (possibly) the first rule application and close.

Proof. Call the original proof P . The main difficulty in the proof of the lemma
comes from the fact that sequents consist of sets of formulae (not of multisets),
which means that multiple occurrences of a formula are implicitly contracted to
only one occurrence. We therefore prove the lemma in two steps: we first show
it under the assumption that antecedents and succedents in fact are multisets;
as second step, it is then shown that a proof with multiset sequents can be
transformed to a proof with ordinary constrained sequents.

Step 1 (proofs with multiset sequents). If P does not contain any rule application
to φ, we simply add one as first rule application in the new proof and are finished
(note, that the constraint of the proof stays equivalent). Otherwise, we show that
applications of and-*, or-*, not-*, ex-left, all-right to φ can be shifted
towards the root in P . By an inductive argument on the size of P , assume that
the second rule application on all branches of P is an application to φ, whereas
the first rule application is done to a different formula. Note, that whenever the
constraint of an inner proof node is weakened, also the constraint of the whole
proof becomes weaker or does not change. The cases to be considered are:

– φ starts with ¬, with ∧ and is in the antecedent, or with ∨ and is in the
succedent. In all cases, we can simply permute the first and the second rule
application in P . Because the rules that can be applied to φ do not affect
the constraint, the overall constraint stays the same.

– φ starts with ∨ and is in the antecedent, or with ∧ and is in the succedent.
Again, we can permute the first and the second rule application in P , but
have to argue that the constraint stays equivalent or becomes weaker. The
most interesting situation is the one where the first rule application in P is
all-left or ex-right, e.g.:

Γ ` . . . , φ1,∆ ⇓ [x/c]C Γ ` . . . , φ2,∆ ⇓ [x/c]D

Γ ` ∃x.ψ, [x/c]ψ, φ1 ∧ φ2,∆ ⇓ [x/c](C ∧D)
and-right

Γ ` ∃x.ψ, φ1 ∧ φ2,∆ ⇓ ∃x.(C ∧D)
ex-right

is transformed into:

Γ ` . . . , [x/c]ψ,∆ ⇓ [x/c]C

Γ ` ∃x.ψ, φ1,∆ ⇓ ∃x.C
ex-r.

Γ ` . . . , [x/c]ψ,∆ ⇓ [x/c]D

Γ ` ∃x.ψ, φ2,∆ ⇓ ∃x.D
ex-r.

Γ ` ∃x.ψ, φ1 ∧ φ2,∆ ⇓ ∃x.C ∧ ∃x.D
and-r.

Because of ∃x.(C ∧D) ⇒ ∃x.C ∧ ∃x.D, the resulting constraint does not
becomes stronger.

– φ starts with ∃ and is in the antecedent, or with ∀ and is in the succedent.
Again, we can permute the first and the second rule application in P . The
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most interesting situation is the one where the first rule application in P is
all-left or ex-right, e.g.:

Γ ` ∃x.ψ, [x/c]ψ, [y/d]φ′,∆ ⇓ [y/d][x/c]C

Γ ` ∃x.ψ, [x/c]ψ,∀y.φ′,∆ ⇓ ∀y.[x/c]C
all-right

Γ ` ∃x.ψ,∀y.φ′,∆ ⇓ ∃x.∀y.C
ex-right

is transformed into:

Γ ` ∃x.ψ, [x/c]ψ, [y/d]φ′,∆ ⇓ [y/d][x/c]C

Γ ` ∃x.ψ, [y/d]φ′,∆ ⇓ ∃x.[y/d]C
ex-right

Γ ` ∃x.ψ,∀y.φ′,∆ ⇓ ∀y.∃x.C
all-right

Because of ∃x.∀y.C ⇒ ∀y.∃x.C, the resulting constraint does not become
stronger.

Step 2 (elimination of multiple occurrences of a formula). By induction on the
size of a proof Q of a multiset sequent Γ ` φ, φ,∆ ⇓ C with two (or more)
occurrences of a formula φ in the succedent (or, analogously, in the antecedent),
we show that: there is a proof Q′ of the sequent Γ ` φ,∆ ⇓ D that is not
bigger that Q, such that C ⇒ D. If Q does not contain any rule applications to
PA formulae apart from close, then neither does Q′.

Wlog., we can assume that the first rule application in Q is done to one of
the occurrences of φ (otherwise, consider the maximal subtrees of Q with this
property, which are strictly smaller than Q and can be handled by the induction
hypothesis. Outside of the maximal subtrees, no rules are applied to φ and the
two occurrences can be replaced with only one occurrence right away). There
are the following cases:

– φ starts with ¬, with ∧ and is in the antecedent, or with ∨ and is in the
succedent. By Step 1, we can transform Q into a proof Q2 in which the
second rule application on all branches is done to the second occurrence of
φ (the depth of Q2 is at most 1 bigger than that of Q). E.g.:

Γ ` φ1, φ2, φ1, φ2,∆ ⇓ C

Γ ` φ1, φ2, φ1 ∨ φ2,∆ ⇓ C
or-right

Γ ` φ1 ∨ φ2, φ1 ∨ φ2,∆ ⇓ C
or-right

The induction hypothesis allows to replace the subproof for the sequent
Γ ` φ1, φ2, φ1, φ2,∆ ⇓ C with a proof of Γ ` φ1, φ2,∆ ⇓ D with C ⇒ D
that is not bigger. Simultaneously, one of the formulae φ1∨φ2 and one of the
or-right applications can be eliminated. (Similarly for the other cases.)

– φ starts with ∨ and is in the antecedent, or with ∧ and is in the succedent.
By Step 1, we can transform Q into a proof Q2 in which the second rule
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application on all branches is done to the second occurrence of φ. E.g.:

A B
Γ ` φ1 ∧ φ2, φ1 ∧ φ2,∆ ⇓ C ∧D ∧ E ∧ F

Γ ` φ1, φ1,∆ ⇓ C Γ ` φ1, φ2,∆ ⇓ D

Γ ` φ1, φ1 ∧ φ2,∆ ⇓ C ∧D

A

Γ ` φ2, φ1,∆ ⇓ E Γ ` φ2, φ2,∆ ⇓ F

Γ ` φ2, φ1 ∧ φ2,∆ ⇓ E ∧ F

B

As before, the subproofs for Γ ` φ1, φ1,∆ ⇓ C and Γ ` φ2, φ2,∆ ⇓ F
can be replaced with proofs of Γ ` φ1,∆ ⇓ C ′ and Γ ` φ2,∆ ⇓ F ′ with
C ⇒ C ′ and F ⇒ F ′. Simultaneously, one of the formulae φ1∧φ2 and one of
the and-right applications can be eliminated. The resulting constraint is
C ′ ∧ F ′ and has the property C ∧D ∧ E ∧ F ⇒ C ′ ∧ F ′. (Similarly for the
other case.)

– φ starts with ∃ and is in the antecedent, or with ∀ and is in the succedent.
By Step 1, we can transform Q into a proof Q2 in which the second rule
application on all branches is done to the second occurrence of φ. E.g.:

Γ ` [x/c]φ′, [x/d]φ′,∆ ⇓ [y/d][x/c]C

Γ ` [x/c]φ′,∀x.φ′,∆ ⇓ ∀y.[x/c]C
all-right

Γ ` ∀x.φ′,∀x.φ′,∆ ⇓ ∀x.∀y.C
all-right

We can transform the subproof of Γ ` [x/c]φ′, [x/d]φ′,∆ ⇓ [y/d][x/c]C into
a proof of Γ ` [x/c]φ′, [x/c]φ′,∆ ⇓ [y/c][x/c]C by replacing d everywhere in
the proof with c. Subsequently, the subproof can be transformed into a proof
of Γ ` [x/c]φ′,∆ ⇓ D with [y/c][x/c]C ⇒ D by the induction hypothesis.
Simultaneously, one of the formulae ∀x.φ′ and one of the all-right appli-
cations can be eliminated. Finally, it can be observed that the implication
∀x.∀y.C ⇒ ∀x.[y/x]C ⇒ ∀c.D holds.

– φ starts with ∀ and is in the antecedent, or with ∃ and is in the succedent, or is
an equation, an inequality, a divisibility judgement or an atom p(t̄). Because
such formulae are not eliminated by any rule application, the two occurrences
of φ can directly be replaced with only one occurrence everywhere in the
proof.

Proof (Lem. 8). Suppose ā = (a1, . . . , an) are the quantified variables, c1, . . . , cn
are fresh constants and σ = [a1/c1, . . . , an/cn]. Let σ1, . . . , σm be substitutions
of c1, . . . , cn with integer literals that describe all solutions of σ(φ). By Lem. 7,
there are PresPredCS -proofs of the sequents (σi(σ(ψ)) ` ⇓ Ci)i=1..m for
appropriate valid constraints C1, . . . , Cm. By Lem. 23, this implies that there
are also m proofs of (σ(ψ) ` ⇓ Di)i=1..m such that σi(Di) is valid for each i.

Then there is also a single PresPredCS -proof σ(ψ) ` ⇓ D such that σi(D)
is valid for each i: with the help of Lem. 24, we can normalise each PresPredCS -
proof (σ(ψ) ` ⇓ Di)i=1..m to a proof where the first steps are applications of
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and-*, or-*, not-*:

Γ1 ` ∆1 ⇓ Di,1 · · · Γk ` ∆k ⇓ Di,k

....
σ(ψ) ` ⇓ Di

such that all formulae in Γ1,∆1, . . . , Γk,∆k are atoms or formulae that start with
a universal quantifier. This means that we can assume that each of the proofs
(σ(ψ) ` ⇓ Di)i=1..m contains a subproof for each sequent (Γj ` ∆j)j=1..k,
and that Di = Di,1 ∧ · · · ∧Di,k. These subproofs can be put together to create
one general proof for each of (Γj ` ∆j)j=1..k, because every (closed) goal of

a PresPredCS -proof of Γj ` ∆j contains Γj ` ∆j as a sub-sequent (put the
proofs together by starting with one proof, copy the second proof to all goals
of the first proof, etc). When close is applied such that as many formulae as
possible are selected in every goal, then for the constraint of the big proof for
Γj ` ∆j ⇓ Ej the implication D1,j ∨ · · · ∨ Dm,j ⇒ Ej holds. Finally, the big
proofs can be assembled further to obtain the anticipated proof of σ(ψ) ` ⇓ D:

....
Γ1 ` ∆1 ⇓ E1 · · ·

....
Γk ` ∆k ⇓ Ek

....
σ(ψ) ` ⇓ E1 ∧ · · · ∧ Ek

Because σi(Di) is valid for each i and Di = Di,1 ∧ · · · ∧ Di,k, for each i the
formula σi(D) = σi(E1 ∧ · · · ∧ Ek) is valid as well.

Finally, we can prove ∃ā.(φ ∧ ψ) as follows:

∗....
σ(φ), σ(ψ) ` ⇓ ¬σ(φ) ∨D

σ(φ ∧ ψ) ` ⇓ ¬σ(φ) ∨D
or-left

∃ā.(φ ∧ ψ) ` ⇓ ∃ā.(¬φ ∨ [c1/a1, . . . , cn/an]D)
ex-left∗

This proves the lemma, because ∃ā.(¬φ∨ [c1/a1, . . . , cn/an]D) is a valid formula
in Presburger Arithmetic.

Lemma 10 (Soundness of PresPredC)

It is enough to check that all rules of the calculus are sound, which is trivial for
most of the rules (also see Lem. 2). The interesting case is the rule omega-elim.
Assume that the lower sequent does not hold, i.e., C holds and the sequent

Γ, {αic− ai
.
≥ 0}i, {βjc− bj

.
≤ 0}j ` ∆

is violated. This implies that the inequalities {αic−ai
.
≥ 0}i, {βjc−bj

.
≤ 0}j hold.

From the proof for Thm. 9 that is given in [10] we can conclude that then either
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the dark shadow conjunction
∧

i,j αibj − aiβj − (αi − 1)(βj − 1)
.
≥ 0 holds, or

otherwise one of the splinters αic− ai − k
.
= 0 ∧

∧

i αic− ai
.
≥ 0 ∧

∧

j βjc− bj
.
≤ 0

has to be satisfied (note, that this is more than what is guaranteed by the actual
Thm. 9, where the splinters are existentially quantified).

Lemma 11 (Constraint completeness in exhaustive proofs)

The conditions on page 177 ensure that (1) is preserved by all rule applications:
if (1) holds for all premisses of a rule application, then it also holds for the
conclusion. With the help of a simple induction, this entails that (1) holds for
all proof nodes. In detail:

1. It is easy to see that and-*, or-*, not-*, pred-unify, red, div-left,
div-right, and simp preserve (1). Observe that if U ′ ⊆ U , then:

∀U ′. (Γp ` ∆p) ⇒ ∀U ′. C entails ∀U. (Γp ` ∆p) ⇒ ∀U. C

2. We only show the proof for ex-right-d. Let U be the annotation of the
conclusion, φ a PA formula and assume (Γp ` [x/c]φ,∆p) ⇒ [x/c]C. This
implies:

∀U. (Γp ` ∃x.φ,∆p) ⇔ ∀U. ∃x. (Γp ` φ,∆p) ⇒ ∀U. ∃x.C

3. We show the proof for all-right. If φ is a PA formula, then:

∀U. (Γp ` ∀x.φ,∆p) ⇔ ∀(U ∪ {c}). (Γp ` [x/c]φ,∆p)

⇒ ∀(U ∪ {c}). [x/c]C ⇔ ∀U. ∀x.C

Similarly, if φ contains uninterpreted predicates:

∀U. (Γp ` ∆p) ⇔ ∀(U ∪ {c}). (Γp ` ∆p)

⇒ ∀(U ∪ {c}). [x/c]C ⇔ ∀U. ∀x.C

4. For col-red:

∀U.
(
Γp, αc+ t

.
= 0 ` ∆p

)

⇔ ∀U.
(
Γp,∃c

′.(α(u+ c′) + t
.
= 0 ∧ c− u− c′

.
= 0) ` ∆p

)

⇔ ∀(U ∪ {c′}).
(
Γp, α(u+ c′) + t

.
= 0, c− u− c′

.
= 0 ` ∆p

)

⇒ ∀(U ∪ {c′}). [x/c′]C

⇔ ∀U. ∀x.C

5. Let U be the annotation of the conclusion and assume:

∀U. (Γp, α(u+ c′) + t
.
= 0, c− u− c′

.
= 0 ` ∆p) ⇒ ∀U. [x/c′]C
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Because c′ 6∈ U and c − u does not contain any constants from U , we can
substitute c− u for c′:

∀U. (Γp, α(u+ (c− u)) + t
.
= 0, c− u− (c− u)

.
= 0 ` ∆p) ⇒

∀U. [x/c− u]C

which entails:

∀U. (Γp, αc+ t
.
= 0 ` ∆p) ⇒ ∀U. [x/c− u]C

6. Follows directly from Thm. 9 and the fact that c ∈ U does not occur in Γ
and ∆.

7. Let U be the annotation of the conclusion (c ∈ U) and assume:

∀U. (Γp, αc− t
.
= 0 ` ∆p) ⇒ ∀U. C,

∀U. (Γp, αc− t
.
= 0 ` ∆p)

which directly entails (because c ∈ U does not occur in C ′ and C ⇔ [x/αc]C ′

holds):
∀U. [x/αc]C ′ ⇔ ∀U. ∀x. (C ′ ∨ α - x)

The last formula also holds if t is substituted for x:

∀U. ([x/t]C ′ ∨ α - t)

8. Assume val I,δ(∀U. ¬φ1 ∨ · · · ∨ ¬φn ∨ ψ1 ∨ · · · ∨ ψm) = ff for some interpre-
tation I and constant assignment δ. Let U2 ⊆ U be those U -constants that
only occur in equations of the succedent ψ1, . . . , ψm,∆. We then modify δ
appropriately, resulting in the assignment δ′:
– δ|U2

is chosen such that all U2-equations of the succedent evaluate to
ff . This is possible because U2-equations describe hyperplanes in

� |U2|,
and the intersection of the complements of (finitely many) hyperplanes
is non-empty.

Then: val I,δ′(Γp, φ1, . . . , φn ` ψ1, . . . , ψm,∆p) = ff : formulae that do not
contain U2-constants evaluate to tt (antecedent) or ff (succedent) by as-
sumption, and equations with U2-constants by construction.

Lemma 14 (Termination and exhaustiveness)

Termination has to be proven on different levels:

Loop 1–2. Terminates because <r is well-founded.
As a special case, note that if any rule application derives the formula false

(which is abbreviation for 1
.
= 0) in the antecedent, subsequent applications of

red will immediately replace all terms in the sequent with 0 and thereby cause
the algorithm to terminate.
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Loop 1–4. We prove termination similarly as in the appendix of [8], by consider-
ing the following mapping of sequents to triples (cU , cE , |U |) of two multisets over�

∪ {∞} and one natural number. We call a constant c dependent if it occurs
as the leading term of an equation c+ t

.
= 0 in the antecedent, and independent

otherwise.

– cU is the multiset of greatest common divisors of leading coefficients for
independent U -constants:












gcd(α1, . . . , αn) ∈
�

∪ {∞}

∣
∣
∣
∣
∣
∣
∣
∣

c ∈ U an independent constant,
α1c+ t1

.
= 0, . . . , αnc+ tn

.
= 0

all equations in the antecedent
whose leading term is c













in which we define gcd() = ∞.
– cE is the corresponding multiset for non-U -constants:













gcd(α1, . . . , αn) ∈
�

∪ {∞}

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

c 6∈ U an independent constant
in the sequent,

α1c+ t1
.
= 0, . . . , αnc+ tn

.
= 0

all equations in the antecedent
whose leading term is c













– |U | is the number of U -constants.

Such triples (cU , cE , |U |) are compared lexicographically. Multisets over
�

∪ {∞}
are compared using the well-founded ordering <m: for elements a1 ≤ · · · ≤ an,
b1 ≤ · · · ≤ bm, we define:

{{a1, . . . , an}} <m {{b1, . . . , bm}} iff

n < m or (n = m and (a1, . . . , an) <lex (b1, . . . , bm))

We prove termination of the loop 1–4 by showing that the triple (cU , cE , |U |)
for a sequent becomes strictly smaller each time step 3 or 4 is carried out, and
does not become bigger if step 2 occurs. We only consider sequents in which the
rule simp has been fully applied to all formulae (in other words, trailing applica-
tions of simp are conceptually considered as part of the other rule applications).

– red (step 2): U does not change in this step.
If the target formula is not an equation in the antecedent, the only relevant
effect might be that constants disappear from a sequent, which does not
increase the measure.
Thus, assume that the application turns the left-hand side of an antecedent
equation s

.
= 0 into s+ α · t <r s; after a possibly following application of

simp, the new equation is s′
.
= 0:

• if s′ = 0, then it must be the case that s = t, which contradicts the
assumption that φ[s] is not an equation in the antecedent.

• if s′ = 1, false has been derived and the strategy terminates abruptly.
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• if s and s′ have the same leading term c and leading coefficients β, β ′,
then β′ = β or β′ <r β. This implies that neither cU nor cE have become
<m-bigger.

• if s and s′ have different leading terms c, c′ and leading coefficients β,
β′, then c′ <r c and t

.
= 0 has the form γc+ w

.
= 0 where β is a multiple

of γ.
This implies that the cU - or cE-element for c has not changed (if c is
dependent, there is no element at all). The cU - or cE-element for c′ has
at least not become bigger (again, it is possible that c′ is dependent and
there is not element).

– col-red-subst (step 3): first, note that t contains constants (otherwise,
simp would be applicable), but does not contain U -constants (because c 6∈ U
and U -constants are <r-maximal). Because no U -constants are involved, cU
stays the same. Further, the leading term of the equation α(u+ c′) + t

.
= 0,

after a potential application of simp, is not c′: this could only be the case if
all coefficients in t were multiples of α, which means that simp would have
been applicable to αc+ t

.
= 0.

If the leading coefficient of the new equation α(u+ c′) + t
.
= 0 is 1, then the

cardinality of cE decreases (because an independent constant disappears)
and cE becomes <m-smaller.
Otherwise, there are three changes affecting cE :
• The constant c is independent before the rule application and dependent

afterwards, which means that one element of cE disappears. Because
red has been applied exhaustively before step 3, αc+ t

.
= 0 is the only

equation in the antecedent whose leading term is c and the removed
element is α.

• The new constant c′ is independent and does not occur as leading term
of any equation, which means that ∞ is added as a new element to cE .

• The cE-element belonging to the leading term d of the new equation
α(u+ c′) + t

.
= 0 (which was an independent constant before applying

col-red-subst because red was applied exhaustively) changes: suppose
γ is the cE-element belonging to d before the application of col-red-
subst. Because u is chosen such that:

(αu+ t) = min
<r

{αu′ + t | u′ a term}

the leading coefficient γ′ of α(u+ c′) + t
.
= 0, after a potential applica-

tion of simp, has to be greater than 1 but strictly smaller than α. Besides,
γ′ is also strictly smaller than γ, because red was applied exhaustively:
if γ <∞, there has to be an equation γd+ w

.
= 0 in the antecedent that

can be applied to reduce t.
Altogether, the new value of cE is:

c′E = cE\{{α, γ}} ∪ {{∞, γ′}}

and c′E <m cE because of 0 < γ′ < α and 0 < γ′ < γ.
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– col-red (step 3): shown in the same way as for col-red-subst, with the
difference that cU is considered instead of cE . The condition that t contains
further U -constants whose coefficient is not a multiple of α is needed to
ensure that c′ is not the leading term of the new equation α(u+ c′) + t

.
= 0.

– div-close (step 4):

• If α > 1, then c was a independent U -constant before applying div-
close, i.e., the cardinality of cU becomes smaller because c is removed
from U .

• If α = 1 and t contains further constants, then after an application of
simp to the equation αc+ t

.
= 0 the constant c is no longer the leading

term. Call the new leading term c′ and its coefficient α′. The constant c′

was independent before applying div-close. Because red was applied
exhaustively, the old cU - or cE-element for c′ is bigger than α′. This
implies that either cU becomes <m-smaller, or cU stays the same and cE
becomes <m-smaller.

• If α = 1 and t does not contain further constants, then neither cU nor
cE changes, but the cardinality of U decreases.

Loop 1–5. It can first be observed that there is little interaction between the rule
fm-elim and the rules of step 1–4 that treat equalities: step 5 is only reached
once the leading coefficient of all equations in the antecedent is 1, and once no
leading term of such an equation occurs in more than place in the sequent. This
implies that an application of fm-elim never enables further applications of the
rules in step 1–4. The application of fm-elim alone has to terminate because
for any finite set of inequalities there is only a finite number of Fourier-Motzkin-
inferences (respecting the ordering <r).

In order to show that the application of anti-symm, and-*, or-*, not-*
terminates, we use a pair of natural numbers as a measure for the complexity of
a sequent. Two such pairs are compared lexicographically:

– The number of propositional connectives ∧, ∨, ¬ in the sequent.

– The dimension d of the smallest affine space in � C that contains all (inte-
ger) solutions of the equations in the antecedent, where C is the set of all
constants occurring in a sequent.

Both fm-elim and the rules in step 1–4 do not apply to propositional connec-
tives and preserve the dimension d, while the other rules of step 5 decrease the
measure:

– anti-symm (step 5): again, this rule is only applied once the leading coeffi-
cient of all equations in the antecedent is 1, and once no leading term of such
an equation occurs in more than place in the sequent (in particular not in the
equation that is added by anti-symm). This implies that the dimension d
is decreased by 1 by the new equation.

– and-*, or-*, not-* (step 5): eliminates one propositional connective.
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Loop 1–6. Again, we use vectors of natural numbers that are compared lexico-
graphically as a measure for sequents:

– The number of divisibility judgements α | t in positive positions.

– The number of divisibility judgements α | t in negative positions.

– The number of quantifiers ∀, ∃ in the sequent.

– The dimension d of the smallest affine space in � C that contains all (inte-
ger) solutions of the equations in the antecedent, where C is the set of all
constants occurring in a sequent.

– The number of equations in positive positions.

None of the rules in step 1–5 increase any of these features (but possibly decrease
some of them), while the other rules of step 6 decrease the measure:

– split-eq (step 6): eliminates an equation in a positive position.

– omega-elim (step 6): an application of this rule will at first not have any
influence on the complexity of a sequent (but it introduces new propositional
connectives). The next rules applicable after omega-elim, however, are the
rules and-*, or-*, not-* of step 5 that split the introduced formula into
its disjuncts. For each of the disjuncts, the dimension d is reduced by 1:
the first of the disjuncts does no longer contain the constant c at all (the
set C becomes smaller), while the other disjuncts introduce a new equation
in a negative position so that the same argument as for the rule anti-symm
applies.

– all-*, ex-* (step 6): eliminates one quantifier.

– div-right (step 6): eliminates a divisibility judgement in a positive position
(and introduces new judgements in negative positions).

– div-left (step 6): eliminates a divisibility judgement in a negative position.

Exhaustiveness. To prove that the resulting proof is exhaustive, annotate the
proof tree with the sets U that are maintained by the strategy. The most involved
point is to see that close is applied in the right way. To this end, observe that
if close must not be applied according to the conditions in Sect. 5.1, then some
other rule with higher priority can be applied.

Lemma 15 (Quantifier elimination)

By induction on the size of a proof, show that if a sequent Γ ` ∆ ⇓ C of the
resulting exhaustive proof is annotated with U , then C does not contain any
U -constants. Note, in particular, that divisibility judgements α | t (which can
equivalently be expressed using existentially quantified equations) never reduce
the set U . Because the introduced constant is added to U when the rules all-
right, ex-left or col-red are applied, this proves the lemma.
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Lemma 16 (PresPredC

S
subsumes PresPredC)

We first need two further lemmas:

Lemma 25. Suppose a PresPredCS -proof exists for the sequent Γ ` ∆ ⇓ C.
For some D with C ⇒ D there is a proof of the sequent Γ ` ∆ ⇓ D in which
no rule apart from close is applied to formulae that do not contain uninterpreted
predicates (i.e., to PA formulae).

Proof. The prove is done by induction on the size of the original proof P of
Γ ` ∆ ⇓ C. We can assume that the first rule application in P is performed on
a PA formula φ, and that no other rule application in P (apart from close) in-
volves PA formulae. Furthermore, by Lem. 24, we can assume that uninterpreted
predicates occur in Γ ` ∆ only in formulae in the antecedent that start with
∀, in formulae in the succedent that start with ∃, or in literals p(t̄) (otherwise,
by Lem. 24 we can turn P into a proof in which the first rule application is
performed on a formula with unint. predicates of different shape and consider
the direct subproofs of this proof). There are the following cases:

– φ starts with ¬, with ∧ and is in the antecedent, or with ∨ and is in the
succedent. Because no rules apart from close are applied to the formulae
resulting from the first rule application in P , the application can simply be
left out without changing the overall constraint.

– φ starts with ∨ and is in the antecedent, or with ∧ and is in the succedent,
i.e., the first rule application splits P into two subproofs. E.g.:

....
Γ ` φ1,∆ ⇓ C

....
Γ ` φ2,∆ ⇓ D

Γ ` φ1 ∧ φ2,∆ ⇓ C ∧D
and-right

Because no further rules (apart from close) are applied to φ1 and φ2 (or
to any PA formulae), this means that there are proofs of Γ ` ∆ ⇓ C ′

and Γ ` ∆ ⇓ D′ such that C ⇒ C ′ ∨ φ1 and D ⇒ D′ ∨ φ2. Further, be-
cause of the assumption about the formulae in Γ , ∆, we know that Γ ` ∆
is a subsequent of each goal in both subproofs. This means that we can
copy the second subproof to each goal of the first subproof (possibly re-
naming constants so that no name clashes occur). If close is in each goal
applied as liberally as possible, the constraint of the resulting proof is at
least as weak as C ′ ∨D′. Finally, by adding φ1 ∧ φ2 to all succedents in
the proof, the constraint can be made as weak as C ′ ∨D′ ∨ φ1 ∧ φ2. Be-
cause of C ∧D ⇒ (C ′ ∨ φ1) ∧ (D′ ∨ φ2) ⇒ C ′ ∨D′ ∨ φ1 ∧ φ2, this concludes
the case.

– φ starts with ∃ and is in the antecedent, or with ∀ and is in the succedent.
E.g.:

....
Γ ` [x/c]φ′,∆ ⇓ [x/c]C

Γ ` ∀x.φ′,∆ ⇓ ∀x.C
all-right
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As before, this means that there is a proof of a sequent Γ ` ∆ ⇓ D such
that [x/c]C ⇒ D ∨ [x/c]φ′, whereby we can assume that c does not occur
in D. By adding ∀x.φ′ to all succedents of this proof, we obtain a proof of
Γ ` ∀x.φ′,∆ ⇓ E such that D ∨ ∀x.φ′ ⇒ E. Altogether, this means that
∀x.C ⇒ ∀x.(D ∨ φ′) ⇒ D ∨ ∀x.φ′ ⇒ E.

– φ starts with ∀ and is in the antecedent, or with ∃ and is in the succedent.
E.g.

....
Γ ` [x/c]φ′,∃x.φ′,∆ ⇓ [x/c]C

Γ ` ∃x.φ′,∆ ⇓ ∃x.C
ex-right

By leaving out [x/c]φ′ everywhere, we obtain a proof of Γ ` ∃x.φ′,∆ ⇓ D
such that [x/c]C ⇒ D ∨ [x/c]φ′, whereby we can assume that c does not
occur in D. If close is applied as liberally as possible in each goal, the
implication ∃x.φ′ ⇒ D holds, i.e., D ⇔ D ∨ ∃x.φ′. Altogether, this means
∃x.C ⇒ ∃x.(D ∨ φ′) ⇒ D ∨ ∃x.φ′ ⇒ D.

The following lemma will be used to justify application of the rules red and
simp:

Lemma 26. Suppose that Γp, ∆p are sets of PA formulae and s1, s2 are two
terms or two PA atoms (equations, inequalities, or divisibility judgements) such
that:

∧

Γp →
∨

∆p ⇒ s1 − s2
.
= 0 (in case of terms)

∧

Γp →
∨

∆p ⇒ (s1 ∧ s2) ∨ (¬s1 ∧ ¬s2) (in case of atoms)

Further, suppose a PresPredCS -proof exists for Γ, Γp ` φ[s1],∆p,∆ ⇓ C (we
write φ[s1] in the succedent to denote that the term or atom s1 can occur in an
arbitrary position in the sequent, in particular also in the antecedent) in which no
rule apart from close is applied to formulae that do not contain uninterpreted
predicates. For some D with C ⇒ D there is a proof of Γ, Γp ` φ[s2],∆p,∆ ⇓ D
that has the same depth as the original proof and that starts with the same rule
application, and in which no rule apart from close is applied to formulae that
do not contain uninterpreted predicates.

Proof. The prove is done by induction on the size of the original proof P of
Γ, Γp ` φ[s1],∆p,∆ ⇓ C. As in the proof of Lem. 24, we first show the main
conjecture using proof trees with multiset sequents, and then refer to Step 2 of
the proof of Lem. 24 to carry over the result to proofs with normal sequents.
Observe that none of the following transformation steps increases the depth of
a proof or introduces new rule applications (other than close) to PA formulae.

We can assume that the first rule application in P involves the formula φ[s1].
Otherwise, consider the maximal subproofs of P with this property. Outside of
the subproofs, φ[s1] can simply be replaced with φ[s2] and is unaffected by other
rule applications due to the usage of multiset sequents.
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If the first (and only) rule application in P is close and includes φ[s1], the
formula cannot contain uninterpreted predicates, and then neither does φ[s2].
This means that φ[s1] can be replaced with φ[s2] in this goal. close can be
applied such that both φ[s2] and the formulae Γp, ∆p are included. Because of
φ[s1] ⇒ (

∧
Γp →

∨
∆p) → φ[s2], the resulting constraint does not get stronger.

If the first application in P is done with a rule other than close, it is always
possible to do this application to φ[s2] instead of φ[s1] and to handle the direct
subproofs using the induction hypothesis (note, that φ[s1] and φ[s2] have the
same structure).

Proof (Lem. 16). By an induction on the size of the PresPredC-proof P . In
each step, it can be assume that the first rule application in P is done using
a rule that is not present in PresPredCS , and that all other rules applied in P
are PresPredCS -rules. By Lem. 25, we can furthermore assume that no inner rule
application (other than close) is done on PA formulae. The following cases are
possible, depending on the first rule applied:

– all-left-d, ex-right-d: replace the application with all-left or ex-
right, which does not make the resulting constraint stronger.

– red, simp: the rule application can be left out with the help of Lem. 26.
– div-left, div-right, anti-symm, fm-elim: because these rules replace PA

formulae with equivalent formulae, they can directly be left out without
strengthening constraints.

– col-red, e.g.:

....
Γ, α(u+ c′) + t

.
= 0, c− u− c′

.
= 0 ` ∆ ⇓ [x/c′]C ′

Γ, αc+ t
.
= 0 ` ∆ ⇓ ∀x.C ′ col-red

By leaving out the two equations in the antecedent, we can create a proof of
a sequent Γ ` ∆ ⇓ C ′′ with:

[x/c′]C ′ ⇒ C ′′ ∨ α(u+ c′) + t 6
.
= 0 ∨ c− u− c′ 6

.
= 0

whereby it can be assumed that c′ does not occur in C ′′. Then, by adding
αc+ t

.
= 0 to all antecedents, a proof of Γ, αc+ t

.
= 0 ` ∆ ⇓ D can be de-

rived such that C ′′ ∨ αc+ t 6
.
= 0 ⇒ D. Altogether, this means:

∀x.C ′ ⇒ ∀c′.[x/c′]C ′ ⇒ ∀c′.(C ′′ ∨ α(u+ c′) + t 6
.
= 0∨ c− u− c′ 6

.
= 0)

⇒ C ′′ ∨ αc+ t 6
.
= 0 ⇒ D

– col-red-subst: analogously.
– div-close, e.g.:

....
Γ, αc− t

.
= 0 ` ∆ ⇓ C ′

Γ, αc− t
.
= 0 ` ∆ ⇓ [x/t]C ′′ ∨ α - t

div-close



A Constraint Sequent Calculus for FOL with Linear Integer Arithmetic 211

If close is in the proof always applied as liberally as possible, such that also
the equation αc− t

.
= 0 is selected, then αc− t 6

.
= 0 ⇒ C ′, i.e., the equiva-

lence C ′ ⇔ C ′ ∨ αc− t 6
.
= 0 holds. Because of C ′ ⇔ [x/αc]C ′′, this means

C ′ ⇔ [x/t]C ′′ ∨ αc− t 6
.
= 0. Finally, because of αc− t

.
= 0 ⇒ α | t:

[x/t]C ′′ ∨ α - t ⇒ [x/t]C ′′ ∨ αc− t 6
.
= 0 ⇒ C ′

This means that the constraint of the proof does not become stronger if the
application of div-close is left out.

– split-eq, e.g.:

....
Γ ` t

.
≤ 0,∆ ⇓ C ′

....
Γ ` t

.
≥ 0,∆ ⇓ D′

Γ ` t
.
= 0,∆ ⇓ C ′ ∧D′

split-eq

We can modify the proof to get a similar one without the application of
split-eq:

....
Γ ` t

.
≤ 0,∆ ⇓ C ′

....
Γ ` t

.
≥ 0,∆ ⇓ D′

Γ ` t
.
≤ 0 ∧ t

.
≥ 0,∆ ⇓ C ′ ∧D′

and-right

By Lem. 25, this can be turned into a proof of Γ ` t
.
≤ 0 ∧ t

.
≥ 0,∆ ⇓ E in

which no rules other than close are applied to PA formulae, such that the
implication C ′ ∧D′ ⇒ E holds. Finally, t

.
≤ 0 ∧ t

.
≥ 0 can be replaced with

the (equivalent) equation t
.
= 0 everywhere in the proof, which leads to a

proof of Γ ` t
.
= 0,∆ ⇓ E′ with E′ ⇔ E.

– omega-elim, e.g.:

....
Γ, φ(c) ` ∆ ⇓ C

Γ, {αic− ai
.
≥ 0}i, {βjc− bj

.
≤ 0}j ` ∆ ⇓ C

omega-elim

The rule application can simply be left out because of:

∧

i

αic− ai
.
≥ 0 ∧

∧

j

βjc− bj
.
≤ 0 ⇒ φ(c)

This implication follows from the proof for Thm. 9 that is given in [10] (note,
that this is more than what is guaranteed by the actual Thm. 9, where the
splinters are existentially quantified).

Lemma 17 (Fair proof construction)

We call the PresPredCS -proof P and the fair PresPredC-proof Q. By Lem. 25,
we can assume that the only rule that is applied to PA formulae in P is close.
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For the following induction, we also make the assumption that the rule pred-
unify is in Q applied in the same fair manner as the rules in Fig. 1, i.e., it is
eventually applied infinitely often to all complementary predicate literals (or
their successors). Given any fair PresPredC-proof, it is possible to insert fur-
ther applications of pred-unify to achieve this property without changing the
constraints generated by the proof (the constraints stay equivalent). Namely,
assume that pred-unify is applied at some point in the proof:

....
Γ, p(s1, . . . , sn) ` p(t1, . . . , tn),

∧

i si − ti
.
= 0,∆ ⇓ C

Γ, p(s1, . . . , sn) ` p(t1, . . . , tn),∆ ⇓ C
pred-unify

Let Γp ⊆ Γ and ∆p ⊆ ∆ ∪ {
∧

i si − ti
.
= 0} be the sets of PA formulae in the

premiss that do not contain existential quantifiers (no ∃ for formulae in the
succedent, no ∀ for formulae in the antecedent). It is obviously the case that an
immediate second application of pred-unify is unnecessary because of:

∧

i

si − ti
.
= 0 ⇒

∧

Γp →
∨

∆p (3)

i.e., the conjunction introduced by a second application is subsumed by the
formulae already present in the sequent. By a simple induction on the size of a
PresPredC-proof, it can be shown that property (3) is preserved when applying
arbitrary PresPredC-rules (including red or simp to the complementary literals
p(s1, . . . , sn), p(t1, . . . , tn)).

We perform Noetherian induction on the set of all possible pairs (P,Q),
where P is a PresPredCS -proof for the sequent Γ ` ∆ ⇓ C in which the only
rule that is applied to PA formulae is close, and Q is a fair PresPredC-proof
of Γ ` ∆ ⇓ ? (fair also concerning pred-unify in the way described above).
The ordering is the lexicographic order on the pair (dP , n), where

– dP is the length of the longest branch in P (the depth of P ), and
– n is the maximum number of rule applications that happen on a branch

of Q before the first rule application in P is done on the branch. Because
of fairness, the first rule application in P is eventually performed on all
Q-branches, although possibly on successors of the involved formulae. By
König’s lemma, the maximum number of other rule applications before this
happens is finite. In case the first rule application in P is close, we define
n = 0.

The induction hypothesis is:

Suppose that the root of Q is annotated with U . Then Q generates a
constraint D with ∀U.C ⇒ ∀U.D.

There are a number of induction step cases. In all of them, we assume that
the constants introduced by ex-*, all-* are renamed when necessary to avoid
collisions. Further, we make use of the fact that also all subproofs of Q are fair
proofs (also concerning pred-unify).
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– The first rule application in P is close. We can then simply prune Q and
apply close to the same formulae as in P . In all of the following cases, it is
therefore assumed that P does not start with close (which implies, because
of fairness, that also Q does not start with close).

– P and Q start with the same rule application to the same formula(e). In case
the rule is ex-* or all-*, we can ensure through renaming that the same
constant is introduced. Then, we can apply the induction hypothesis to the
direct subtrees of P and Q. There are the following cases, depending on the
first rule applied:

• and-left, or-right, not-*, pred-unify: by the induction hypothesis,
we know ∀U ′.C ⇒ ∀U ′.D for the constraints C, D and annotation U ′ of
the subtree roots. Because of U ′ ⊆ U , this entails ∀U. C ⇒ ∀U. D.

• and-right, or-left: by the induction hypothesis, ∀U ′.C ′ ⇒ ∀U ′.D′

and ∀U ′′.C ′′ ⇒ ∀U ′′.D′′ for the constraints and annotations of the sub-
tree roots. Because of U ′ ⊆ U and U ′′ ⊆ U , this entails:

∀U. (C ′ ∧ C ′′) ⇒ ∀U. (D′ ∧D′′)

• all-left, ex-right: by the induction hypothesis, [x/c]C ′ ⇒ [x/c]D′ for
the constraints of the subtrees (which are annotated with the empty set),
which entails ∀U.∃x. C ′ ⇒ ∀U.∃x. D′.

• all-right, ex-left: we know that ∀U ′.[x/c]C ′ ⇒ ∀U ′.[x/c]D′ for the
constraints and annotations of the subtrees. Because of U ′ ⊆ U ∪ {c},
this entails: ∀U.∀x. C ′ ⇒ ∀U.∀x. D′.

In all of the following cases, we therefore assume that P and Q start with
different rule applications.

– The first rule application in Q is and-*, or-*, not-*, ex-left, all-right
to a formula φ. By Lem. 24, we can transform P into a proof P ′ of some
sequent Γ ` ∆ ⇓ D with C ⇒ D that starts with the same rule application
as Q. The depth of P ′ is at most one bigger than the depth of P , and the
first rule application of P is the second rule application on all branches in
P ′. Furthermore, the only rule in P ′ that is applied to PA formulae is close,
possibly apart from the first rule application in P ′. We can then apply the
induction hypothesis to the direct subtrees of P ′ and Q.

– The first rule application in Q is pred-unify, all-left or ex-right. This
rule application can be inserted as first rule application in P , adding the
resulting formula to all sequents, which leads to a proof P ′ whose depth is
one bigger than that of P and that has the same or a weaker constraint as
P . The first rule application of P is the second rule application in P ′. Then,
the induction hypothesis can be applied to the direct subtrees of P ′ and Q.

– The first rule application in Q is ex-right-d or all-left-d. E.g.:

....
Γ ` [x/c]φ,∆ ⇓ ?

Γ ` ∃x.φ,∆ ⇓ ?
ex-right-d
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Because the proof P (of the sequent Γ ` ∃x.φ,∆ ⇓ C) does not contain
any rule applications to ∃x.φ apart from close (the formula does not con-
tain uninterpreted predicates), this means that ∃x.φ can be left out every-
where in P , leading to a similar proof P ′ of a sequent Γ ` ∆ ⇓ C ′ with
C ⇒ C ′ ∨ ∃x.φ (as in the proof of Lem. 25). It is then possible to add the
formula [x/c]φ to all succedents in P ′, resulting in a proof P ′′ of a sequent
Γ ` [x/c]φ,∆ ⇓ C ′′ (if necessary, one has to ensure by renaming that c
does not occur in P ′). If close is applied as liberally as possible in P ′′, the
implication C ′ ∨ [x/c]φ⇒ C ′′ holds. Finally, a proof P ′′′ can be obtained
from P ′′ by inserting ex-right-d as first rule application:

....
Γ ` [x/c]φ,∆ ⇓ C ′′

Γ ` ∃x.φ,∆ ⇓ ∃c.C ′′ ex-right-d

The depth of P ′′′ is one bigger than the depth of P , and the first rule
application in P is the second rule application in P ′′′. Thus, applying the
induction hypothesis to the direct subproofs of P ′′′ and Q, we know that
C ′′ ⇒ D′ (the annotation of the root of the direct subproof of Q is the
empty set). This entails that:

C ⇒ C ′∨∃x.φ ⇒ ∃x.(C ′∨φ) ⇒ ∃c.(C ′∨[x/c]φ) ⇒ ∃c.C ′′ ⇒ ∃c.D′

and therefore ∀U.C ⇒ ∀U.∃c.D′.
– If the first rule application in Q is col-red, div-left, div-right, split-

eq, anti-symm, or fm-elim, the same technique as in the previous case can
be used.

– If the first rule application in Q is red or simp, we can insert the same
application as first step in P with the help of Lem. 26. Then, the induction
hypothesis can be applied to the direct subproofs of the proofs.

– If the first rule application in Q is col-red-subst, we can first turn P
into a proof P ′ of a sequent Γ, α(u+ c′) + t

.
= 0, c− u− c′

.
= 0 ` ∆ ⇓ C ′

by replacing the original equation αc+ t
.
= 0 (if necessary, it has to be en-

sured by bound renaming that c′ does not occur in P ). If close is ap-
plied as liberally as possible in P ′, it holds that C ⇒ C ′ ∨ αc+ t 6

.
= 0 and

α(u+ c′) + t 6
.
= 0 ∨ c− u− c′ 6

.
= 0 ⇒ C ′. We can then obtain a proof P ′′ of

Γ, αc+ t
.
= 0 ` ∆ ⇓ [c′/c− u]C ′ by adding col-red as first rule applica-

tion in P ′. Considering the constraints, we have:

[c′/c− u](α(u+ c′) + t 6
.
= 0 ∨ c− u− c′ 6

.
= 0)

⇒ αc+ t 6
.
= 0 ⇒ [c′/c− u]C ′

Because C and u do not contain c′, this altogether means that the implica-
tion C ⇒ [c′/c− u](C ′ ∨ αc+ t 6

.
= 0) ⇒ [c′/c− u]C ′ holds. Furthermore, ap-

plying the induction hypothesis to the direct subproofs of P ′′ and Q, we
know that ∀U ′.C ′ ⇒ ∀U ′.D′ holds for the constraints and annotations of
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the subproofs. Because c, c′ 6∈ U ′ and u does not contain any constants from
U , then also:

∀U ′. [c′/c− u]C ′ ⇒ ∀U ′. [c′/c− u]D′

Finally, because of U ′ ⊆ U :

∀U.C ⇒ ∀U. [c′/c− u]C ′ ⇒ ∀U. [c′/c− u]D′

– If the first rule application in Q is div-close, it is the case that c ∈ U
and we can simple insert div-close as first rule application in P , resulting
in a proof P ′. By the induction hypothesis, ∀U ′.C ⇒ ∀U ′.D for the con-
straints and annotation of the direct subproofs, and because of U ′ ⊆ U also
∀U.C ⇒ ∀U.D. Let D′ be a formula with D ⇔ [x/αc]D′ that does not con-
tain c. Then:

∀U.C ⇒ ∀U.D ⇒ ∀U.[x/αc]D′ ⇒ ∀U.∀x.(D′ ∨ α - x)

⇒ ∀U.([x/t]D′ ∨ α - t)

– The first rule application in Q is omega-elim, which means that c ∈ U :
....

Γ, φ(c) ` ∆ ⇓ C

Γ, {αic− ai
.
≥ 0}i, {βjc− bj

.
≤ 0}j ` ∆ ⇓ C

omega-elim

Because P does not contain any rule applications to the eliminated inequal-
ities (other than close), these formulae can be left out everywhere, leading
to a proof P ′ of the sequent Γ ` ∆ ⇓ C ′ with:

C ⇒ C ′ ∨ ¬
(∧

i

αic− ai
.
≥ 0 ∧

∧

j

βjc− bj
.
≤ 0
)

Because Γ , ∆ do not contain c, we can also assume that c does not occur
in C ′. Next, we can add the formula φ(c) to all antecedents, which yields a
proof P ′′ of Γ, φ(c) ` ∆ ⇓ C ′′. If close is applied as liberally as possible
in P ′′, the implication C ′ ∨ ¬φ(c) ⇒ C ′′ holds. Finally, omega-elim can be
inserted as first rule application in P ′′, which results in the proof P ′′′. The
induction hypothesis can be applied to the direct subproofs of P ′′′ and Q,
which means that ∀U ′.C ′′ ⇒ ∀U ′.D for the constraints and annotation of
the subproofs. Because of U ′ ⊆ U , then also ∀U.C ′′ ⇒ ∀U.D. Furthermore:

∀c.C ⇒ ∀c.
(

C ′ ∨ ¬
(∧

i

αic− ai
.
≥ 0 ∧

∧

j

βjc− bj
.
≤ 0
))

⇒ C ′ ∨ ¬∃c.
(∧

i

αic− ai
.
≥ 0 ∧

∧

j

βjc− bj
.
≤ 0
)

(∗)
⇒ C ′ ∨ ¬∃c.φ(c)

⇒ ∀c.(C ′ ∨ ¬φ(c))

⇒ ∀c.C ′′
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where (∗) makes use of Thm. 9. Altogether, this entails ∀U.C ⇒ ∀U.D.

Lemma 19 (Shielded Constraints)

We first need a further lemma:

Lemma 27. If x is a variable, φ1, . . . , φm are formulae in which x does not oc-
cur, and ψ0[x], . . . , ψm[x] are arbitrary formulae, then the following equivalence
holds:

∀x.
(

ψ0[x] ∨
m∨

i=1

(ψi[x] ∧ φi)
)

⇔
∨

S⊆{1,...,m}

( ∧

i∈S

φi ∧ ∀x.
(

ψ0[x] ∨
∨

i∈S

ψi[x]
))

Proof. By induction onm. The casem = 0 is clear, and the step casem→ m+ 1
as follows:

∀x.
(

ψ0[x] ∨
m+1∨

i=1

(ψi[x] ∧ φi)
)

⇔ ∀x.
(

(ψ0[x] ∨ ψm+1[x] ∧ φm+1) ∨
m∨

i=1

(ψi[x] ∧ φi)
)

(IH)
⇔

∨

S⊆{1,...,m}

( ∧

i∈S

φi ∧ ∀x.
(

ψ0[x] ∨ ψm+1[x] ∧ φm+1 ∨
∨

i∈S

ψi[x]
))

⇔
∨

S⊆{1,...,m}

(
∧

i∈S

φi ∧

(
∀x.(ψ0[x] ∨ ψm+1[x] ∨

∨

i∈S ψi[x])
∧ ∀x.(ψ0[x] ∨ φm+1 ∨

∨

i∈S ψi[x])

))

(∗)
⇔

∨

S⊆{1,...,m}

(
∧

i∈S

φi ∧

(
φm+1 ∧ ∀x.(ψ0[x] ∨ ψm+1[x] ∨

∨

i∈S ψi[x])
∨ ∀x.(ψ0[x] ∨

∨

i∈S ψi[x])

))

⇔
∨

S⊆{1,...,m+1}

( ∧

i∈S

φi ∧ ∀x.
(

ψ0[x] ∨
∨

i∈S

ψi[x]
))

(*) holds because of:

∀x.(a[x] ∨ b[x]) ∧ ∀x.(a[x] ∨ c)

⇔ ∀x.(a[x] ∨ b[x]) ∧ (c ∨ ∀x.a[x])

⇔ (∀x.(a[x] ∨ b[x]) ∧ c) ∨ (∀x.(a[x] ∨ b[x]) ∧ ∀x.a[x])

⇔ (∀x.(a[x] ∨ b[x]) ∧ c) ∨ ∀x.a[x]

Proof (Lem. 19). We show the conjecture by an induction over the subtrees
of P . In the proof leaves, the hypothesis coincides with the assumption how
close is applied in P1, P2. Otherwise, pick a subproof R (and the correspond-
ing subproofs R1, R2 of P1, P2) and assume that the hypothesis holds for the
direct subproofs of R. There are the following cases, depending on the constraint
transformation that is performed by the rule applied in the root of R:
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– The constraint is not changed (rules and-left, etc.): trivial
– Conjunction of constraints (rules and-right, etc.): Let D1, D2 be the con-

straints of the direct subproofs of R1. The constraints of the direct subproofs
of R2 are equivalent to D1 ∨

∨n1

i=1 φ
1
i and D2 ∨

∨n2

i=1 φ
2
i . Then the constraint

of R1 is D1 ∧D2 and the constraint of R2 is equivalent to:

(
D1 ∨

n1∨

i=1

φ1
i

)
∧
(
D2 ∨

n2∨

i=1

φ2
i

)

⇔ (D1 ∧D2) ∨
n1∨

i=1

(φ1
i ∧D

2) ∨
n2∨

i=1

(φ2
i ∧D

1) ∨
n1∨

i=1

n2∨

j=1

(φ1
i ∧ φ

2
j )

– The rule col-red-subst applies a substitution to a constraint: let [x/c′]D1

be the constraint of the direct subproof of R1 and [x/c− u]D1 the constraint
of R1. The constraint [x/c′]D2 of the direct subproof of R2 is then equivalent
to [x/c′]D1 ∨

∨n
i=1 φi, where each φi is shielded by Q, and the constraint of

R2 is equivalent to [x/c− u]D1 ∨
∨n
i=1[c

′/c− u]φi.

(i) [x/c′]D1 does not contain Qc-constants. If [x/c− u]D1 contains Qc-
constants, then also c− u does and x occurs free in D1. Because of
the definition of free constant sets, then also c′ ∈ Qc and then [x/c′]D1

contains Qc-constants: contradiction.
(ii) We can assume that each φi has the form βe+ t

.
= 0 ∧ ψ with e ∈ Q,

such that d ≺P e for all constants d in t. Due to the definition of ≺P

we have e ≺P c
′ and thus e 6= c′ and c′ does not occur in t. This implies

that [c′/c− u]φi is shielded by Q:

[c′/c− u]φi ⇔ βe+ t
.
= 0 ∧ [c′/c− u]ψ

– The rule div-close’ is applied: let D1 ⇔ [x/αc′]D′
1 be the constraint of the

direct subproof of R1 and [x/t]D′
1 ∨ α - t the constraint of R1. Because D1

does not contain any Qc-constants, we can assume that D′
1 does neither. The

constraint of the direct subproof of R2 is equivalent to [x/αc′]D′
1 ∨
∨n
i=1 φi,

where each φi is shielded by Q.
(i) Because t does not contain Qc-constants, neither does [x/t]D′

1 ∨ α - t.
(ii) We can assume that each φi has the form βiei + ti

.
= 0 ∧ ψi with ei ∈ Q.

As for col-red-subst, it follows that c′ does not occur in βiei + ti.
Assume that ψi ⇔ [x/αc′]ψ′

i, then the formula βiei + ti
.
= 0 ∧ [x/t]ψ′

i

is shielded by Q. Altogether, the constraint of R2 is equivalent to:

[x/t]D′
1 ∨ α - t ∨

n∨

i=1

(βiei + ti
.
= 0 ∧ [x/t]ψ′

i)

– Existential quantification of constraints (rules ex-right, etc.): let [x/c]D1

be the constraint of the direct subproof of R1 and ∃x.D1 the constraint of R1.
The constraint of the direct subproof ofR2 is equivalent to [x/c]D1 ∨

∨n
i=1 φi,

where each φi is shielded by Q.
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(i) Because [x/c]D1 does not contain Qc-constants, neither does ∃x.D1.

(ii) The constraint of R2 is equivalent to:

∃x.
(

D1 ∨
n∨

i=1

[c/x]φi

)

⇔ ∃x.D1 ∨
n∨

i=1

∃c.φi

We can assume that each φi has the form βe+ t
.
= 0 ∧ ψ with e ∈ Q.

As for col-red-subst, it follows that c does not occur in βe+ t, and
thus ∃c.φi ⇔ βe+ t

.
= 0 ∧ ∃c.ψ is shielded by Q. By renaming it can

be achieved that no illegal constants occur in ∃c.ψ.

– Universal quantification of constraints (rules all-right, etc.): let [x/c]D1

be the constraint of the direct subproof of R1 and ∀x.D1 the constraint of R1.
The constraint of the direct subproof ofR2 is equivalent to [x/c]D1 ∨

∨n
i=1 φi,

where each φi is shielded by Q.

(i) As for existential quantification.

(ii) We can assume that each φi has the form ti
.
= 0 ∧ ψi, where ti

.
= 0 is

the shielding equation. Wlog., assume that t1, . . . , tk are the terms
that contain c with a non-negative coefficient, while c does not occur
in tk+1, . . . , tn. This implies that c shields the formulae φ1, . . . , φk.

• If c 6∈ Q, it has to be the case that k = 0, as for col-red-subst.
With the help of Lem. 27, we can rewrite the constraint of R2 as
follows:

∀c.
(

[x/c]D1 ∨
n∨

i=1

(ti
.
= 0 ∧ ψi)

)

⇔
∨

S⊆{1,...,n}

( ∧

i∈S

ti
.
= 0 ∧ ∀c.

(

[x/c]D1 ∨
∨

i∈S

ψu

))

⇔ ∀x.D1 ∨
∨

S⊆{1,...,n}
S 6=∅

( ∧

i∈S

ti
.
= 0 ∧ ∀c.

(

[x/c]D1 ∨
∨

i∈S

ψu

))

• If c ∈ Q, then D1 does not contain x by the induction hypothesis.
We can again use Lem. 27 as follows:

∀c.
(

D1 ∨
k∨

i=1

(ti
.
= 0 ∧ ψi)

︸ ︷︷ ︸

ψ0[c]

∨
n∨

i=k+1

(ti
.
= 0 ∧ ψi)

)

⇔
∨

S⊆{k+1,...,n}

( ∧

i∈S

ti
.
= 0 ∧ ∀c.

(

ψ0[c] ∨
∨

i∈S

ψu

))

⇔ ∀c.ψ0[c] ∨
∨

S⊆{k+1,...,n}
S 6=∅

( ∧

i∈S

ti
.
= 0 ∧ ∀c.

(

ψ0[c] ∨
∨

i∈S

ψu

))
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The formula ∀c.ψ0[c] can be simplified because all but the first
disjunct are shielded by c:

∀c.
(

D1 ∨
k∨

i=1

(ti
.
= 0 ∧ ψi)

)

⇔ D1 ∨ ∀c.
k∨

i=1

(ti
.
= 0 ∧ ψi)

⇔ D1 ⇔ ∀x.D1

In both cases, renaming can be used afterwards to eliminate c.


