Trait

ap.algebra

Field

Related Doc: package algebra

Permalink

trait Field extends CommutativeRing with RingWithDivision

Fields are commutative rings in which all non-zero elements have multiplicative inverses.

Linear Supertypes
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Field
  2. RingWithDivision
  3. CommutativeRing
  4. CommutativePseudoRing
  5. Ring
  6. PseudoRing
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def div(s: ITerm, t: ITerm): ITerm

    Permalink

    Division operation

    Division operation

    Definition Classes
    RingWithDivision
  2. abstract val dom: Sort

    Permalink

    Domain of the ring

    Domain of the ring

    Definition Classes
    PseudoRing
  3. abstract def int2ring(s: ITerm): ITerm

    Permalink

    Conversion of an integer term to a ring term

    Conversion of an integer term to a ring term

    Definition Classes
    PseudoRing
  4. abstract def minus(s: ITerm): ITerm

    Permalink

    Additive inverses

    Additive inverses

    Definition Classes
    PseudoRing
  5. abstract def mul(s: ITerm, t: ITerm): ITerm

    Permalink

    Ring multiplication

    Ring multiplication

    Definition Classes
    PseudoRing
  6. abstract def one: ITerm

    Permalink

    The one element of this ring

    The one element of this ring

    Definition Classes
    PseudoRing
  7. abstract def plus(s: ITerm, t: ITerm): ITerm

    Permalink

    Ring addition

    Ring addition

    Definition Classes
    PseudoRing
  8. abstract def zero: ITerm

    Permalink

    The zero element of this ring

    The zero element of this ring

    Definition Classes
    PseudoRing

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def additiveGroup: Group with Abelian

    Permalink

    Addition gives rise to an Abelian group

    Addition gives rise to an Abelian group

    Definition Classes
    PseudoRing
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  11. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  12. def inverse(s: ITerm): ITerm

    Permalink
  13. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  14. def minus(s: ITerm, t: ITerm): ITerm

    Permalink

    Difference between two terms

    Difference between two terms

    Definition Classes
    PseudoRing
  15. def multiplicativeGroup: Group with Abelian

    Permalink

    Non-zero elements now give rise to an Abelian group

  16. def multiplicativeMonoid: Monoid with Abelian

    Permalink

    Multiplication gives rise to an Abelian monoid

    Multiplication gives rise to an Abelian monoid

    Definition Classes
    CommutativeRingRing
  17. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  18. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  20. def product(terms: ITerm*): ITerm

    Permalink

    N-ary sums

    N-ary sums

    Definition Classes
    PseudoRing
  21. def summation(terms: ITerm*): ITerm

    Permalink

    N-ary sums

    N-ary sums

    Definition Classes
    PseudoRing
  22. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  23. def times(num: IdealInt, s: ITerm): ITerm

    Permalink

    num * s

    num * s

    Definition Classes
    PseudoRing
  24. def toString(): String

    Permalink
    Definition Classes
    PseudoRing → AnyRef → Any
  25. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from RingWithDivision

Inherited from CommutativeRing

Inherited from CommutativePseudoRing

Inherited from Ring

Inherited from PseudoRing

Inherited from AnyRef

Inherited from Any

Ungrouped