Class/Object

ap.proof.certificates

SplitEqCertificate

Related Docs: object SplitEqCertificate | package certificates

Permalink

case class SplitEqCertificate(leftInEq: CertInequality, rightInEq: CertInequality, _leftChild: Certificate, _rightChild: Certificate, _order: TermOrder) extends BinaryCertificate with Product with Serializable

Certificate corresponding to splitting a negated equation into two inequalities.

Linear Supertypes
Serializable, Serializable, Product, Equals, BinaryCertificate, Certificate, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. SplitEqCertificate
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. BinaryCertificate
  7. Certificate
  8. AnyRef
  9. Any
  1. Hide All
  2. Show all
Visibility
  1. Public
  2. All

Instance Constructors

  1. new SplitEqCertificate(leftInEq: CertInequality, rightInEq: CertInequality, _leftChild: Certificate, _rightChild: Certificate, _order: TermOrder)

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. val _leftChild: Certificate

    Permalink
  5. val _order: TermOrder

    Permalink
  6. val _rightChild: Certificate

    Permalink
  7. def apply(i: Int): Certificate

    Permalink
    Definition Classes
    BinaryCertificateCertificate
  8. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  9. lazy val assumedFormulas: Set[CertFormula]

    Permalink

    Formulae that the proof assumes to be present on this branch (i.e., premisses of rules applied in the proof).

    Formulae that the proof assumes to be present on this branch (i.e., premisses of rules applied in the proof). We assume that all formulae live in the antecedent.

    Definition Classes
    Certificate
  10. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  11. val closingConstraint: Conjunction

    Permalink

    The constraint resulting from this proof

    The constraint resulting from this proof

    Definition Classes
    BinaryCertificateCertificate
  12. lazy val constants: Set[ConstantTerm]

    Permalink

    Set of constants occurring in this certificate.

    Set of constants occurring in this certificate. By default this will contain the set of all constants in sub-certificates, as well as constants in assumed formulas.

    Definition Classes
    Certificate
  13. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  14. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  16. val hashCode: Int

    Permalink
    Definition Classes
    SplitEqCertificate → AnyRef → Any
  17. lazy val inferenceCount: Int

    Permalink
    Definition Classes
    Certificate
  18. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  19. def iterator: Iterator[Certificate]

    Permalink
    Definition Classes
    BinaryCertificateCertificate
  20. val leftChild: Certificate

    Permalink
    Definition Classes
    BinaryCertificate
  21. val leftInEq: CertInequality

    Permalink
  22. def length: Int

    Permalink
    Definition Classes
    BinaryCertificateCertificate
  23. val localAssumedFormulas: Set[CertFormula]

    Permalink
    Definition Classes
    SplitEqCertificateCertificate
  24. val localBoundConstants: Set[ConstantTerm]

    Permalink

    Constants bound by the root operator of the certificate.

    Constants bound by the root operator of the certificate.

    Definition Classes
    Certificate
  25. val localProvidedFormulas: Seq[Set[CertFormula]]

    Permalink

    Formulae that are introduced into the antecedent by this rule application (one set for each subproof).

    Formulae that are introduced into the antecedent by this rule application (one set for each subproof). This will implicitly simplify formulae (all simplifications that are built into the datastructures are carried out).

    Definition Classes
    SplitEqCertificateCertificate
  26. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  27. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  28. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  29. val order: TermOrder

    Permalink
    Definition Classes
    BinaryCertificateCertificate
  30. val rightChild: Certificate

    Permalink
    Definition Classes
    BinaryCertificate
  31. val rightInEq: CertInequality

    Permalink
  32. def size: Int

    Permalink
    Definition Classes
    Certificate
  33. def subCertificates: IndexedSeq[Certificate]

    Permalink
    Definition Classes
    Certificate
  34. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  35. lazy val theoryAxioms: Set[CertFormula]

    Permalink
    Definition Classes
    Certificate
  36. def toString(): String

    Permalink
    Definition Classes
    SplitEqCertificate → AnyRef → Any
  37. def update(newSubCerts: Seq[Certificate]): Certificate

    Permalink
    Definition Classes
    SplitEqCertificateCertificate
  38. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  39. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  40. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from BinaryCertificate

Inherited from Certificate

Inherited from AnyRef

Inherited from Any

Ungrouped