Class/Object

ap.theories

ADT

Related Docs: object ADT | package theories

Permalink

class ADT extends Theory

Theory solver for algebraic data-types.

Linear Supertypes
Theory, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. ADT
  2. Theory
  3. AnyRef
  4. Any
  1. Hide All
  2. Show all
Visibility
  1. Public
  2. All

Instance Constructors

  1. new ADT(sortNames: Seq[String], ctorSignatures: Seq[(String, CtorSignature)], measure: ADT.TermMeasure.Value = ADT.TermMeasure.RelDepth)

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. object SortNum

    Permalink

    Extractor to recognise sorts belonging to this ADT.

  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. val axioms: Formula

    Permalink

    Axioms defining the theory; such axioms are simply added as formulae to the problem to be proven, and thus handled using the standard reasoning techniques (including e-matching).

    Axioms defining the theory; such axioms are simply added as formulae to the problem to be proven, and thus handled using the standard reasoning techniques (including e-matching).

    Definition Classes
    ADTTheory
  7. val cardinalities: Seq[Option[IdealInt]]

    Permalink

    The number of elements per sort, or None for infinite sorts.

    The number of elements per sort, or None for infinite sorts.

  8. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. val constructorPreds: IndexedSeq[Predicate]

    Permalink
  10. val constructors: IndexedSeq[MonoSortedIFunction]

    Permalink

    The constructors of the ADT

  11. val ctorId2PerSortId: IndexedSeq[Int]

    Permalink
    Attributes
    protected[ap]
  12. val ctorIdPreds: IndexedSeq[Predicate]

    Permalink
  13. val ctorIds: IndexedSeq[MonoSortedIFunction]

    Permalink

    Function symbols representing the index of the head symbol of a constructor term

  14. def ctorIdsPerSort: IndexedSeq[IndexedSeq[Int]]

    Permalink

    List the constructors belonging to each sort; the constructors are identified with the position of a constructor in the sequence ctorSignatures.

    List the constructors belonging to each sort; the constructors are identified with the position of a constructor in the sequence ctorSignatures.

  15. def ctorTermSize(f: ITerm): Option[Int]

    Permalink

    Compute the size (number of constructor occurrences) of a constructor term; return None if parts of the term are symbolic, and the size cannot be determined.

    Compute the size (number of constructor occurrences) of a constructor term; return None if parts of the term are symbolic, and the size cannot be determined.

  16. val dependencies: Iterable[Theory]

    Permalink

    Optionally, other theories that this theory depends on.

    Optionally, other theories that this theory depends on. Specified dependencies will be loaded before this theory, but the preprocessors of the dependencies will be called after the preprocessor of this theory.

    Definition Classes
    Theory
  17. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  18. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  19. def evalFun(f: IFunApp): Option[ITerm]

    Permalink

    Optionally, a function evaluating theory functions applied to concrete arguments, represented as constructor terms.

    Optionally, a function evaluating theory functions applied to concrete arguments, represented as constructor terms.

    Definition Classes
    ADTTheory
  20. def evalPred(p: IAtom): Option[Boolean]

    Permalink

    Optionally, a function evaluating theory predicates applied to concrete arguments, represented as constructor terms.

    Optionally, a function evaluating theory predicates applied to concrete arguments, represented as constructor terms.

    Definition Classes
    Theory
  21. def extend(order: TermOrder): TermOrder

    Permalink

    Add the symbols defined by this theory to the order

    Add the symbols defined by this theory to the order

    Definition Classes
    Theory
  22. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  23. val functionPredicateMapping: Seq[(IFunction, Predicate)]

    Permalink

    Mapping of interpreted functions to interpreted predicates, used translating input ASTs to internal ASTs (the latter only containing predicates).

    Mapping of interpreted functions to interpreted predicates, used translating input ASTs to internal ASTs (the latter only containing predicates).

    Definition Classes
    ADTTheory
  24. val functionTranslation: Map[IFunction, Predicate]

    Permalink
  25. val functionalPredicates: Set[Predicate]

    Permalink

    Information which of the predicates satisfy the functionality axiom; at some internal points, such predicates can be handled more efficiently

    Information which of the predicates satisfy the functionality axiom; at some internal points, such predicates can be handled more efficiently

    Definition Classes
    ADTTheory
  26. val functions: Seq[IFunction]

    Permalink

    Interpreted functions of the theory

    Interpreted functions of the theory

    Definition Classes
    ADTTheory
  27. def generateDecoderData(model: Conjunction): Option[TheoryDecoderData]

    Permalink

    If this theory defines any Theory.Decoder, which can translate model data into some theory-specific representation, this function can be overridden to pre-compute required data from a model.

    If this theory defines any Theory.Decoder, which can translate model data into some theory-specific representation, this function can be overridden to pre-compute required data from a model.

    Definition Classes
    Theory
  28. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  29. def getCtorPerSort(sortNum: Int, ctorNum: Int): MonoSortedIFunction

    Permalink

    Get the constructor number ctorNum of sort sortNum.

    Get the constructor number ctorNum of sort sortNum.

  30. def hasCtor(t: ITerm, id: Int): IFormula

    Permalink

    Query the constructor type of a term; the given id is the position of a constructor in the sequence ctorSignatures.

    Query the constructor type of a term; the given id is the position of a constructor in the sequence ctorSignatures.

  31. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  32. def iPostprocess(f: IFormula, signature: Signature): IFormula

    Permalink

    Optionally, a post-processor that is applied to formulas output by the prover, for instance to interpolants or the result of quantifier elimination.

    Optionally, a post-processor that is applied to formulas output by the prover, for instance to interpolants or the result of quantifier elimination. This method will be applied to the formula after calling Internal2Inputabsy.

    Definition Classes
    Theory
  33. def iPreprocess(f: IFormula, signature: Signature): (IFormula, Signature)

    Permalink

    Optionally, a pre-processor that is applied to formulas over this theory, prior to sending the formula to a prover.

    Optionally, a pre-processor that is applied to formulas over this theory, prior to sending the formula to a prover. This method will be applied very early in the translation process.

    Definition Classes
    Theory
  34. val isEnum: IndexedSeq[Boolean]

    Permalink

    Enum sorts, i.e., sorts with only nullary constructors.

  35. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  36. lazy val isRecursive: IndexedSeq[Boolean]

    Permalink

    Recursive sorts, i.e., sorts that can appear (directly or indirectly) as sort of subterms of its own terms.

  37. def isSoundForSat(theories: Seq[Theory], config: Theory.SatSoundnessConfig.Value): Boolean

    Permalink

    Check whether we can tell that the given combination of theories is sound for checking satisfiability of a problem, i.e., if proof construction ends up in a dead end, can it be concluded that a problem is satisfiable.

    Check whether we can tell that the given combination of theories is sound for checking satisfiability of a problem, i.e., if proof construction ends up in a dead end, can it be concluded that a problem is satisfiable.

    Definition Classes
    ADTTheory
  38. val modelGenPredicates: Set[Predicate]

    Permalink

    Optionally, a set of predicates used by the theory to tell the PresburgerModelFinder about terms that will be handled exclusively by this theory.

    Optionally, a set of predicates used by the theory to tell the PresburgerModelFinder about terms that will be handled exclusively by this theory. If a proof goal in model generation mode contains an atom p(x), for p in this set, then the PresburgerModelFinder will ignore x when assigning concrete values to symbols.

    Definition Classes
    Theory
  39. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  40. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  41. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  42. lazy val parikhSizeConstraints: IndexedSeq[Conjunction]

    Permalink
  43. def plugin: Option[Plugin]

    Permalink

    Optionally, a plug-in implementing reasoning in this theory

    Optionally, a plug-in implementing reasoning in this theory

    Definition Classes
    ADTTheory
  44. def postSimplifiers: Seq[(IExpression) ⇒ IExpression]

    Permalink

    Optionally, simplifiers that are applied to formulas output by the prover, for instance to interpolants or the result of quantifier.

    Optionally, simplifiers that are applied to formulas output by the prover, for instance to interpolants or the result of quantifier. Such simplifiers are invoked by with ap.parser.Simplifier.

    Definition Classes
    Theory
  45. def postprocess(f: Conjunction, order: TermOrder): Conjunction

    Permalink

    Optionally, a post-processor that is applied to formulas output by the prover, for instance to interpolants or the result of quantifier elimination.

    Optionally, a post-processor that is applied to formulas output by the prover, for instance to interpolants or the result of quantifier elimination. This method will be applied to the raw formulas, before calling Internal2Inputabsy.

    Definition Classes
    Theory
  46. val predicateMatchConfig: PredicateMatchConfig

    Permalink

    Information how interpreted predicates should be handled for e-matching.

    Information how interpreted predicates should be handled for e-matching.

    Definition Classes
    ADTTheory
  47. val predicates: Seq[Predicate]

    Permalink

    Interpreted predicates of the theory

    Interpreted predicates of the theory

    Definition Classes
    ADTTheory
  48. def preprocess(f: Conjunction, order: TermOrder): Conjunction

    Permalink

    Optionally, a pre-processor that is applied to formulas over this theory, prior to sending the formula to a prover.

    Optionally, a pre-processor that is applied to formulas over this theory, prior to sending the formula to a prover.

    Definition Classes
    ADTTheory
  49. val reducerPlugin: ReducerPluginFactory

    Permalink

    Optionally, a plugin for the reducer applied to formulas both before and during proving.

    Optionally, a plugin for the reducer applied to formulas both before and during proving.

    Definition Classes
    Theory
  50. def rewriteADTFormula(f: Conjunction, order: TermOrder): Conjunction

    Permalink

    Rewrite a formula prior to solving; e.g., add selector and tester constraints

  51. val selectorPreds: IndexedSeq[Seq[Predicate]]

    Permalink
  52. val selectors: IndexedSeq[Seq[MonoSortedIFunction]]

    Permalink

    The selectors of the ADT

  53. val singleInstantiationPredicates: Set[Predicate]

    Permalink

    When instantiating existentially quantifier formulas, EX phi, at most one instantiation is necessary provided that all predicates in phi are contained in this set.

    When instantiating existentially quantifier formulas, EX phi, at most one instantiation is necessary provided that all predicates in phi are contained in this set.

    Definition Classes
    Theory
  54. lazy val sizeLowerBound: IndexedSeq[IdealInt]

    Permalink
  55. def sortOfCtor(ctorNum: Int): Int

    Permalink

    The sort sorts(n) belonging to the constructor constructors(ctorNum).

    The sort sorts(n) belonging to the constructor constructors(ctorNum).

  56. lazy val sortSCCs: IndexedSeq[Seq[Int]]

    Permalink

    The strongly connected components among the ADTs sorts.

  57. val sorts: IndexedSeq[ADTProxySort]

    Permalink
  58. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  59. val termDepth: IndexedSeq[MonoSortedIFunction]

    Permalink

    Function symbols representing (relative) depth of constructor terms.

    Function symbols representing (relative) depth of constructor terms. The symbols are only available for measure == ADT.TermMeasure.RelDepth

  60. val termDepthPreds: IndexedSeq[Predicate]

    Permalink
  61. val termSize: IndexedSeq[MonoSortedIFunction]

    Permalink

    Function symbols representing absolute size of constructor terms.

    Function symbols representing absolute size of constructor terms. The symbols are only available for measure == ADT.TermMeasure.Size

  62. val termSizePreds: IndexedSeq[Predicate]

    Permalink
  63. def toString(): String

    Permalink
    Definition Classes
    ADT → AnyRef → Any
  64. val totalityAxioms: Conjunction

    Permalink

    Additional axioms that are included if the option +genTotalityAxioms is given to Princess.

    Additional axioms that are included if the option +genTotalityAxioms is given to Princess.

    Definition Classes
    ADTTheory
  65. val triggerRelevantFunctions: Set[IFunction]

    Permalink

    A list of functions that should be considered in automatic trigger generation

    A list of functions that should be considered in automatic trigger generation

    Definition Classes
    ADTTheory
  66. lazy val uniqueTermSize: IndexedSeq[Option[IdealInt]]

    Permalink
  67. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  68. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  69. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  70. val witnesses: Seq[ITerm]

    Permalink

Inherited from Theory

Inherited from AnyRef

Inherited from Any

Ungrouped