
E-Matching and the Hypertableau Rule in the
Theorem Prover Princess

Philipp Rümmer
philipp@chalmers.se

Wintermeeting of the SET Division
January 13th 2009

1 / 10

Outline

The theorem prover Princess
E-Matching
Hypertableaux

How to simulate e-matching using hypertableaux

2 / 10

1. The Princess theorem prover

Prover for first-order logic with linear integer arithmetic:
Tailored to program verification
Complete for first-order logic, Presburger arithmetic, etc.

Classical sequent calculus, non-clausal
No uninterpreted functions→ relational encoding
Free variables + unification + constraints

Γ,∀x̄ .φ, [x̄/X̄]φ ` ∆

Γ,∀x̄ .φ ` ∆

More information, implementation, paper:
http://www.cse.chalmers.se/~philipp/princess/

3 / 10

http://www.cse.chalmers.se/~philipp/princess/

1. The Princess theorem prover

Prover for first-order logic with linear integer arithmetic:
Tailored to program verification
Complete for first-order logic, Presburger arithmetic, etc.

Classical sequent calculus, non-clausal
No uninterpreted functions→ relational encoding
Free variables + unification + constraints

Γ,∀x̄ .φ, [x̄/X̄]φ ` ∆

Γ, ∀x̄ .φ ` ∆

More information, implementation, paper:
http://www.cse.chalmers.se/~philipp/princess/

3 / 10

http://www.cse.chalmers.se/~philipp/princess/

2. E-Matching

Standard quantifier handling in SMT solvers:
Matching of “triggers” (modulo equations):

Γ,∀x̄ .φ[t [x̄]], [x̄/s̄]φ[t [x̄]] ` ψ[t [s̄]],∆

Γ,∀x̄ .φ[t [x̄]] ` ψ[t [s̄]],∆

Triggers t [x̄] are often provided by user

\forall int a, i, v;
select(store(a, i, v), i) = v

\forall int a, i1, i2, v;
(i1 != i2 ->
select(store(a, i1, v), i2) = select(a, i2))

4 / 10

2. E-Matching

Standard quantifier handling in SMT solvers:
Matching of “triggers” (modulo equations):

Γ,∀x̄ .φ[t [x̄]], [x̄/s̄]φ[t [x̄]] ` ψ[t [s̄]],∆

Γ,∀x̄ .φ[t [x̄]] ` ψ[t [s̄]],∆

Triggers t [x̄] are often provided by user

\forall int a, i, v;
select(store(a, i, v), i) = v

\forall int a, i1, i2, v;
(i1 != i2 ->
select(store(a, i1, v), i2) = select(a, i2))

4 / 10

2. E-Matching

Standard quantifier handling in SMT solvers:
Matching of “triggers” (modulo equations):

Γ,∀x̄ .φ[t [x̄]], [x̄/s̄]φ[t [x̄]] ` ψ[t [s̄]],∆

Γ,∀x̄ .φ[t [x̄]] ` ψ[t [s̄]],∆

Triggers t [x̄] are often provided by user

\forall int a, i, v;
select(store(a, i, v), i) = v

\forall int a, i1, i2, v;
(i1 != i2 ->
select(store(a, i1, v), i2) = select(a, i2))

4 / 10

Comparison

E-Matching Free variables + unification

Heuristic→ incomplete Systematic

Good for “simple” instances Can find “difficult” instances

Quite cheap Quite expensive
→ Very nondeterministic

⇒ Combination?

5 / 10

Comparison

E-Matching Free variables + unification

Heuristic→ incomplete Systematic

Good for “simple” instances Can find “difficult” instances

Quite cheap Quite expensive
→ Very nondeterministic

⇒ Combination?

5 / 10

3. Hypertableaux (aka “Model Generation”)

Derive models of clause sets by fixed-point iteration:
Clauses without negative literals:
⇒ Instantiate with free variables
Clauses with negative literals:
⇒ Discharge negative literals with unit resolution

q(X) `

∗
false `

r(X + 1) `

q(X) ∨ r(X + 1) `

. . . ,p(X) `

∀x .p(x), ∀x .
(
p(x)→ q(x) ∨ r(x + 1)

)
,∀x .¬r(x) `

Completeness (Conjecture)
If Γ ` ∆ is provable in the ordinary Princess calculus, then it is
also provable with the Hypertableau rule.

6 / 10

3. Hypertableaux (aka “Model Generation”)

Derive models of clause sets by fixed-point iteration:
Clauses without negative literals:
⇒ Instantiate with free variables
Clauses with negative literals:
⇒ Discharge negative literals with unit resolution

q(X) `

∗
false `

r(X + 1) `

q(X) ∨ r(X + 1) `

. . . ,p(X) `

∀x .p(x), ∀x .
(
p(x)→ q(x) ∨ r(x + 1)

)
, ∀x .¬r(x) `

Completeness (Conjecture)
If Γ ` ∆ is provable in the ordinary Princess calculus, then it is
also provable with the Hypertableau rule.

6 / 10

3. Hypertableaux (aka “Model Generation”)

Derive models of clause sets by fixed-point iteration:
Clauses without negative literals:
⇒ Instantiate with free variables
Clauses with negative literals:
⇒ Discharge negative literals with unit resolution

q(X) `

∗
false `

r(X + 1) `

q(X) ∨ r(X + 1) `

. . . ,p(X) `

∀x .p(x), ∀x .
(
p(x)→ q(x) ∨ r(x + 1)

)
, ∀x .¬r(x) `

Completeness (Conjecture)
If Γ ` ∆ is provable in the ordinary Princess calculus, then it is
also provable with the Hypertableau rule.

6 / 10

3. Hypertableaux (aka “Model Generation”)

Derive models of clause sets by fixed-point iteration:
Clauses without negative literals:
⇒ Instantiate with free variables
Clauses with negative literals:
⇒ Discharge negative literals with unit resolution

q(X) `

∗
false `

r(X + 1) `

q(X) ∨ r(X + 1) `

. . . ,p(X) `
∀x .p(x), ∀x .

(
p(x)→ q(x) ∨ r(x + 1)

)
, ∀x .¬r(x) `

Completeness (Conjecture)
If Γ ` ∆ is provable in the ordinary Princess calculus, then it is
also provable with the Hypertableau rule.

6 / 10

3. Hypertableaux (aka “Model Generation”)

Derive models of clause sets by fixed-point iteration:
Clauses without negative literals:
⇒ Instantiate with free variables
Clauses with negative literals:
⇒ Discharge negative literals with unit resolution

q(X) `

∗
false `

r(X + 1) `

q(X) ∨ r(X + 1) `

. . . ,p(X) `
∀x .p(x), ∀x .

(
p(x)→ q(x) ∨ r(x + 1)

)
, ∀x .¬r(x) `

Completeness (Conjecture)
If Γ ` ∆ is provable in the ordinary Princess calculus, then it is
also provable with the Hypertableau rule.

6 / 10

3. Hypertableaux (aka “Model Generation”)

Derive models of clause sets by fixed-point iteration:
Clauses without negative literals:
⇒ Instantiate with free variables
Clauses with negative literals:
⇒ Discharge negative literals with unit resolution

q(X) `

∗
false `

r(X + 1) `

q(X) ∨ r(X + 1) `
. . . ,p(X) `

∀x .p(x), ∀x .
(
p(x)→ q(x) ∨ r(x + 1)

)
, ∀x .¬r(x) `

Completeness (Conjecture)
If Γ ` ∆ is provable in the ordinary Princess calculus, then it is
also provable with the Hypertableau rule.

6 / 10

3. Hypertableaux (aka “Model Generation”)

Derive models of clause sets by fixed-point iteration:
Clauses without negative literals:
⇒ Instantiate with free variables
Clauses with negative literals:
⇒ Discharge negative literals with unit resolution

q(X) `

∗
false `

r(X + 1) `
q(X) ∨ r(X + 1) `

. . . ,p(X) `
∀x .p(x), ∀x .

(
p(x)→ q(x) ∨ r(x + 1)

)
, ∀x .¬r(x) `

Completeness (Conjecture)
If Γ ` ∆ is provable in the ordinary Princess calculus, then it is
also provable with the Hypertableau rule.

6 / 10

3. Hypertableaux (aka “Model Generation”)

Derive models of clause sets by fixed-point iteration:
Clauses without negative literals:
⇒ Instantiate with free variables
Clauses with negative literals:
⇒ Discharge negative literals with unit resolution

q(X) `

∗
false `

r(X + 1) `
q(X) ∨ r(X + 1) `

. . . ,p(X) `
∀x .p(x), ∀x .

(
p(x)→ q(x) ∨ r(x + 1)

)
, ∀x .¬r(x) `

Completeness (Conjecture)
If Γ ` ∆ is provable in the ordinary Princess calculus, then it is
also provable with the Hypertableau rule.

6 / 10

3. Hypertableaux (aka “Model Generation”)

Derive models of clause sets by fixed-point iteration:
Clauses without negative literals:
⇒ Instantiate with free variables
Clauses with negative literals:
⇒ Discharge negative literals with unit resolution

q(X) `

∗
false `

r(X + 1) `
q(X) ∨ r(X + 1) `

. . . ,p(X) `
∀x .p(x), ∀x .

(
p(x)→ q(x) ∨ r(x + 1)

)
, ∀x .¬r(x) `

Completeness (Conjecture)
If Γ ` ∆ is provable in the ordinary Princess calculus, then it is
also provable with the Hypertableau rule.

6 / 10

3. Hypertableaux (aka “Model Generation”)

Derive models of clause sets by fixed-point iteration:
Clauses without negative literals:
⇒ Instantiate with free variables
Clauses with negative literals:
⇒ Discharge negative literals with unit resolution

q(X) `

∗
false `

r(X + 1) `
q(X) ∨ r(X + 1) `

. . . ,p(X) `
∀x .p(x), ∀x .

(
p(x)→ q(x) ∨ r(x + 1)

)
, ∀x .¬r(x) `

Completeness (Conjecture)
If Γ ` ∆ is provable in the ordinary Princess calculus, then it is
also provable with the Hypertableau rule.

6 / 10

Relational encoding of functions

n-ary function f becomes (n + 1)-ary predicate fp:
Axioms: Totality + Functionality

∀x̄ .∃y . fp(x̄ , y)

∀x̄ , y1, y2. (fp(x̄ , y1)→ fp(x̄ , y2)→ y1
.

= y2)

Two equivalent ways to encode function applications:

φ[f (̄t)] ∀y .(fp (̄t , y)→ φ[y]) (negative)
 ∃y .(fp (̄t , y) ∧ φ[y]) (positive)

All function applications become literals

7 / 10

E-Matching using the Hypertableau rule

∀x̄ .φ[t [x̄]]

negative function positive encoding
encoding for t [x̄] for other

function appl.

E-Matching (almost) like in SMT-solvers
But: Choice of triggers has no effect on completeness!

Example:

∀x . f (x) ≥ 0

∀x , y .
(
fp(x , y)→ y ≥ 0

)
∀x .∃y .

(
fp(x , y) ∧ y ≥ 0

)

8 / 10

E-Matching using the Hypertableau rule

∀x̄ .φ[t [x̄]]

negative function positive encoding
encoding for t [x̄] for other

function appl.

E-Matching (almost) like in SMT-solvers
But: Choice of triggers has no effect on completeness!

Example:

∀x . f (x) ≥ 0

∀x , y .
(
fp(x , y)→ y ≥ 0

)
∀x .∃y .

(
fp(x , y) ∧ y ≥ 0

)
8 / 10

Conclusion

Relational function encoding + hypertableau = E-Matching
Implementation in progress . . .
E-Matching made respectable?

Future work, open questions:
Formal completeness proof for Princess hypertableau rule
When to use e-matching, when to use free variables?
Relational encoding vs. native functions
Partial functions vs. total functions

9 / 10

Thanks for your attention!

10 / 10

