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@ The theorem prover Princess
@ E-Matching
@ Hypertableaux

@ How to simulate e-matching using hypertableaux



1. The Princess theorem prover

Prover for first-order logic with linear integer arithmetic:
@ Tailored to program verification
@ Complete for first-order logic, Presburger arithmetic, etc.

@ Classical sequent calculus, non-clausal
@ No uninterpreted functions — relational encoding
@ Free variables + unification + constraints

More information, implementation, paper:
http://www.cse.chalmers.se/~philipp/princess/
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@ Tailored to program verification
@ Complete for first-order logic, Presburger arithmetic, etc.

@ Classical sequent calculus, non-clausal
@ No uninterpreted functions — relational encoding
@ Free variables + unification + constraints
rvx.o,[x/X]o F A
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2. E-Matching

Standard quantifier handling in SMT solvers:
@ Matching of “triggers” (modulo equations):

I, vx.olt[x]], [x/sleltiX]] = ¢[t[s]], A
r,vx.o[tx] = v[t[s], A

@ Triggers t[x] are often provided by user
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\forall int a, i, v;

select (store(a, i, v), 1) = v
\forall int a, 1il, 12, v;
(11 '= i2 —>
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Comparison

E-Matching Free variables + unification
Heuristic — incomplete Systematic

Good for “simple” instances Can find “difficult” instances
Quite cheap Quite expensive

— Very nondeterministic
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3. Hypertableaux (aka “Model Generation”)

Derive models of clause sets by fixed-point iteration:
@ Clauses without negative literals:
= Instantiate with free variables

@ Clauses with negative literals:
= Discharge negative literals with unit resolution
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3. Hypertableaux (aka “Model Generation”)

Derive models of clause sets by fixed-point iteration:

@ Clauses without negative literals:
= Instantiate with free variables

@ Clauses with negative literals:
= Discharge negative literals with unit resolution

*

false +
q(X) + r(X+1)
gX)vr(X+1)
p(X) F
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Completeness (Conjecture)

If = A is provable in the ordinary Princess calculus, then it is
also provable with the Hypertableau rule.




Relational encoding of functions

n-ary function f becomes (n+ 1)-ary predicate fy:
@ Axioms: Totality + Functionality

vx.3y. f(X, y)
VX, y1, Yo (fo(X, y1) = fo(X, ¥2) — y1 = o)

@ Two equivalent ways to encode function applications:

S[fD]  ~  y.(h(ty) = ¢ly)  (negative)
~ 3y (h(t,y) A ol¥]) (positive)

@ All function applications become literals



E-Matching using the Hypertableau rule

X.G[t[X]]

g %
negative function positive encoding
encoding for ¢[x] for other

function appl.

@ E-Matching (almost) like in SMT-solvers
@ But: Choice of triggers has no effect on completeness!



E-Matching using the Hypertableau rule

X.G[t[X]]

g %
negative function positive encoding
encoding for ¢[x] for other

function appl.

@ E-Matching (almost) like in SMT-solvers
@ But: Choice of triggers has no effect on completeness!

Example:
vx. f(x) >0
s %
X, y. (fo(X.y) = y 2 0) vx.3y. (fo(x,y) Ay = 0)



Conclusion

@ Relational function encoding + hypertableau = E-Matching
@ Implementation in progress ...
@ E-Matching made respectable?

Future work, open questions:
@ Formal completeness proof for Princess hypertableau rule
@ When to use e-matching, when to use free variables?
@ Relational encoding vs. native functions
@ Partial functions vs. total functions



Thanks for your attention!
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