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1. The Princess theorem prover

Prover for first-order logic with linear integer arithmetic:
Tailored to program verification
Complete for first-order logic, Presburger arithmetic, etc.

Classical sequent calculus, non-clausal
No uninterpreted functions→ relational encoding
Free variables + unification + constraints

Γ,∀x̄ .φ, [x̄/X̄ ]φ ` ∆

Γ,∀x̄ .φ ` ∆

More information, implementation, paper:
http://www.cse.chalmers.se/~philipp/princess/
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2. E-Matching

Standard quantifier handling in SMT solvers:
Matching of “triggers” (modulo equations):

Γ,∀x̄ .φ[t [x̄ ]], [x̄/s̄]φ[t [x̄ ]] ` ψ[t [s̄]],∆

Γ,∀x̄ .φ[t [x̄ ]] ` ψ[t [s̄]],∆

Triggers t [x̄ ] are often provided by user

\forall int a, i, v;
select(store(a, i, v), i) = v

\forall int a, i1, i2, v;
(i1 != i2 ->
select(store(a, i1, v), i2) = select(a, i2))
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Comparison

E-Matching Free variables + unification

Heuristic→ incomplete Systematic

Good for “simple” instances Can find “difficult” instances

Quite cheap Quite expensive
→ Very nondeterministic

⇒ Combination?
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3. Hypertableaux (aka “Model Generation”)

Derive models of clause sets by fixed-point iteration:
Clauses without negative literals:
⇒ Instantiate with free variables
Clauses with negative literals:
⇒ Discharge negative literals with unit resolution

q(X ) `

∗
false `

r(X + 1) `

q(X ) ∨ r(X + 1) `

. . . ,p(X ) `

∀x .p(x), ∀x .
(
p(x)→ q(x) ∨ r(x + 1)

)
,∀x .¬r(x) `

Completeness (Conjecture)
If Γ ` ∆ is provable in the ordinary Princess calculus, then it is
also provable with the Hypertableau rule.
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Relational encoding of functions

n-ary function f becomes (n + 1)-ary predicate fp:
Axioms: Totality + Functionality

∀x̄ .∃y . fp(x̄ , y)

∀x̄ , y1, y2. (fp(x̄ , y1)→ fp(x̄ , y2)→ y1
.

= y2)

Two equivalent ways to encode function applications:

φ[f (̄t)]  ∀y .(fp (̄t , y)→ φ[y ]) (negative)
 ∃y .(fp (̄t , y) ∧ φ[y ]) (positive)

All function applications become literals
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E-Matching using the Hypertableau rule

∀x̄ .φ[t [x̄ ]]

  

negative function positive encoding
encoding for t [x̄ ] for other

function appl.

E-Matching (almost) like in SMT-solvers
But: Choice of triggers has no effect on completeness!

Example:

∀x . f (x) ≥ 0
  

∀x , y .
(
fp(x , y)→ y ≥ 0

)
∀x .∃y .

(
fp(x , y) ∧ y ≥ 0

)
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Conclusion

Relational function encoding + hypertableau = E-Matching
Implementation in progress . . .
E-Matching made respectable?

Future work, open questions:
Formal completeness proof for Princess hypertableau rule
When to use e-matching, when to use free variables?
Relational encoding vs. native functions
Partial functions vs. total functions
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Thanks for your attention!

10 / 10


