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@ Ideas partly developed in the context of the KeY system
= Software verification

Two lines of work:

@ Constraint solving to disprove program correctness,
[Rimmer, Shah, TAP'07], [Velroyen, Rimmer, TAP'08]

@ Handling of ground integer arithmetic (linear + nonlinear) in
a sequent calculus, [RUmmer, Verify’'07]

... which are here put together

But:
@ Shown calculus/implementation is independent from KeY
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The calculus in a nutshell

Classical sequent/tableau calculus
Non-normal-form calculus
Free variables for handling quantifiers

Constraints for describing variable instantiations
= Constraints are formulae in Presburger arithmetic

Non-destructive
Recursive application to handle constraints

Complete for first-order logic (FOL)
Decision procedure for Presburger arithmetic (PA)
. complete for further fragments (more details later)

Partly implemented (“Princess”), more to be done
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Logic accepted by the calculus

Linear integer arithmetic + uninterpreted predicates:

t = alxlclat—k--‘—i-at

¢ = dNd|OVe|-0|vxe|Ix.0
[t=0|t>0|t<0|alt]|p(t,...,1)

. terms

. formulae

. variables

. constants

. uninterpreted predicates (fixed arity)
. integer literals (%)

O T O X © ~
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Examples, demo
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The Calculus in Detall



3 common ways to handle quantifiers (among others)

Trigger-matching
@ Standard method in SMT-solvers
@ Ground reasoning — efficient
@ Heuristic — incomplete

Free-variable (FV) methods
@ Standard method in FOL reasoning
@ “Difficult” to integrate in tableau provers
@ Good way to combine with theories yet to be found

Quantifier elimination for certain theories (like PA)
@ Impossible for many logics
@ Often very high complexity
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Background: FOL proving with FVs and constraints

9/25



Background: FOL proving with FVs and constraints

9/25



Background: FOL proving with FVs and constraints

9/25



Background: FOL proving with FVs and constraints

9/25



Background: FOL proving with FVs and constraints

[X =c], [X =d]
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Background: FOL proving with FVs and constraints

F X=c, X= [f(c) =f(X)]
FX=cvX= F f(c) =f(X)
F (X=cvX=d)Af(c)="F(X)
F 3X.(x=cvx=d)Af(c)=1f(x))

To close proof, compatible constraints have to be found for all
branches:

X =cAf(c)=1(X) X =d Af(c) =f(X)

(Martin Giese, PhD thesis: Proof Search Without Backtracking
for Free Variable Tableaux.)
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Full citizenship for constraints!

Constraint notation used here:

FreA lC
S——

Antecedent, Succedent Constraint
(sets of formulae) (formula)

Definition
= A | Cisvalid if the formulaC — AT — \/ A is valid.
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Full citizenship for constraints!

Constraint notation used here:

FreA lC
S——

Antecedent, Succedent Constraint
(sets of formulae) (formula)

Definition
= A | Cisvalid if the formulaC — AT — \/ A is valid.

In the example:

*

FX=c, X=d |X=c

FX=cvX=d {|X=c F f(c) = (;u():f(x)
F(X=cvX=d)Af(c)=Ff(X )UX—C/\():(X)
F3x. (x=cvx=d)Af(c)="1(x)) |-
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Anticipated way of proof construction

M- A2
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Anticipated way of proof construction

*

s F Az | Cq
analytic reasoning T L+ A, Gy J propagation
about input formula M - A IGCs of constraints

rcA J|C

@ Constraints are simplified during propagation

@ IfCisvalid, thensoisT - A

@ If C is satisfiable, it describes a “solution” forI” = A
@ If C is unsatisfiable, expand the proof tree further . ..
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FOL rules on constrained sequents

M= ¢,A §C r=¢,A D
N ony,A JCAD

AND-RIGHT

e A JC Ny A YD

r»¢\/1/1|_AUC/\D OR-LEFT
ewt-A|C r ¢,,A | C
Fong - A yc ANPHERT P oV U A [ C ORRIeHT
r-¢A{C ok A |C
W_—AUC NOT-LEFT W NOT-RIGHT
I+ [x/clo,3x.¢,A | [x/c]C
[ F 3x.¢,A | 3x.C EX-RIGHT
r,[x/cle,vx.¢ = A | [x/c]C
|_7VX.(;5 E A l}HX.C ALL-LEFT
I+ [x/clg,A | [x/c]C ALL-RIGHT rx/cle - A | [x/c]C .

I F Vx.6,A || Vx.C F3x.¢ F A | Vx.C
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Closure rules on constrained sequents

r,p(s1,...,sn) F p(ta,...,ta), A;Si—ti=0,A | C
rp(si,-.-,Sn) F p(ts,...,th),A | C

PRED-UNIFY

*
CLOSE
ra¢l7"‘>¢n F 1/117-~-a¢maA Uﬁ¢l\/\/ﬁ¢n\/¢l\/\/¢m

@ Side-condition: CLOSE is only applied to predicate-free formulae
= Constraints are PA formulae
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Completeness

Lemma (Completeness for FOL)

If ¢ is a theorem of FOL, then there is a valid PA formula C
suchthat - ¢ | C is provable.

| A\

Lemma (Fair Proof Construction for FOL)

If ¢ is a theorem of FOL, then fair application of rules eventually

leads to a closed proof with valid constraint.
(Special handling of rule CLOSE is necessary).
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Adding Linear Integer Arithmetic



Rules for integer arithmetic

One possibility: move integer handling into constraints

@ In principle: any (external) PA procedure could be used to
decide constraints

Built-in PA rules seem more clever, however:

@ Eager simplification of equations, inequalities to prune
search space

@ Ground problems — no constraints are necessary

PA rules shown here are correspond to Omega:
@ Equations are solved and eliminated
@ Fourier-Motzkin + case analysis to handle inequalities
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Rules for equations

Nt=0F ¢[s+a-t],A |C
rt=0F ¢sl,A §C
(t = 0 and ¢[s] are different formulae)

RED

Na(u+c)+t=0c—u—-c'=0F A | [x/c']C
Mac+t=0+F A |Vx.C
(¢’ a constant that does not occur in the conclusion or in u)

COL-RED

Na(u+c)+t=0,c—u—-c' =0+ A |[x/c']C
Nac+t=0+F A J[x/c—u]C
(¢’ a constant that does not occur in the conclusion or in u)

COL-RED-SUBST
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Rules for divisibility

MNxaex+t=0F A |JC
Naltt+- A JC
(x a variable that does not occur in the conclusion)

DIV-LEFT

M(at+1)v-v(a|tta-DFAYC
rcalt,A IC (a > 0)

ac—t=0F A |C
ac—t=0F A | [x/t]C'Va It

DIV-CLOSE

(c does not occurint orin C’,C’ a PA formula such that C < [x/ac]C’)
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Rules for inequalities

rM-t<0,A JC r-t>0,A D
F-t=0,A CAD

SPLIT-EQ

rt=0F A |C
Nt<o,t>0F A | C

ANTI-SYMM

Mac+s>03c+t<0,8s—at>0F A | C
Nac+s>0p08c+t<0HF A ||C

FM-ELIM

(>0, 3>0)
Nijibi —aif — (i = 1)(5 —1) = 0
r ' FAJC
7 m aic—a—k=0A I
ViVito . _
Niaic —ai = 0A /A fic — b <0
OMEGA-ELIM

M {aic —a >0}, {fic —b <0} - A | C
(ai > 0, 5j > 0)
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Properties of PA calculus

There is an application strategy for the PA rules such that:
@ application of rules to a PA formula ¢ terminates,
@ the produced constraint C is equivalent to ¢, and
@ if ¢ only contains existential quantifiers, then C is ground.

@ PA calculus eliminates quantifiers
@ Quantifiers in constraints =- recursive application
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Further completeness-results

Lemma (Existential formulae (ground formulae))

If ¢ is an unsatisfiable formula that only contains existential
guantifiers, then there is a valid constraint C such that
¢ = | Cis provable.

| \

Lemma (Universal formulae)

If ¢ is an unsatisfiable formula that only contains universal
guantifiers, then there is a valid constraint C such that
¢ + | Cis provable.
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Further completeness-results (2)

Lemma (Universal formulae with finite parametrisation)

Suppose 3Ja.(¢ A ¢) is an unsatisfiable formula, where:

@ ¢ is a PA formula over a that only has finitely many
solutions, and

@ 1 is an arbitrary formula over a that only contains universal
guantifiers.

Then there is a valid constraint C such that 3a.(¢ A¢) = || C
is provable.

= These are the formulae handled by ME(LIA)
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Related work

@ ME(LIA): model evolution modulo linear integer arithmetic,
[Baumgartner, Tinelli, Fuchs, 08]

@ Various approaches to integrate theories in saturation
calculi, e.g. [Stickel, JAR'85], [Burchert, CADE’90],
[Korovin, Voronkov, CSL07],

[Prevosto, Waldmann, ESCoR’06]

@ Various SMT-solvers
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Conclusion, Future work

@ Combination of different techniques:
SMT-like ground reasoning, tableau-like free-variable
reasoning, quantifier elimination

@ Comparatively strong completeness properties

@ The shown calculus is still very “unrefined”
=- Refinements to make it practically usable necessary

@ Continue implementation ...
@ Model construction?
@ Add missing result: fair application strategy is complete

@ Investigate connection conditions
(in particular, hypertableau strategy)

@ Further investigate connection to SMT-calculi
@ Direct support for function symbols?
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Thanks for your attention!

More information:
http://www.cs.chalmers.se/~philipp/princess/
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