
A Constraint Sequent Calculus for
First-Order Logic with Linear Integer Arithmetic

Philipp Rümmer
Chalmers University of Technology, Gothenburg

philipp@chalmers.se

Talk at Microsoft Research
30th April 2008

1 / 25

Outline, Context

Background, logic, demo

Constraints in tableau reasoning

Calculus for first-order logic

Calculus for integer arithmetic

Results, conclusions

2 / 25

History . . .

Ideas partly developed in the context of the KeY system
⇒ Software verification

Two lines of work:

Constraint solving to disprove program correctness,
[Rümmer, Shah, TAP’07], [Velroyen, Rümmer, TAP’08]

Handling of ground integer arithmetic (linear + nonlinear) in
a sequent calculus, [Rümmer, Verify’07]

. . . which are here put together

But:

Shown calculus/implementation is independent from KeY

3 / 25

The calculus in a nutshell

Classical sequent/tableau calculus

Non-normal-form calculus

Free variables for handling quantifiers

Constraints for describing variable instantiations
⇒ Constraints are formulae in Presburger arithmetic

Non-destructive

Recursive application to handle constraints

Complete for first-order logic (FOL)

Decision procedure for Presburger arithmetic (PA)

. . . complete for further fragments (more details later)

Partly implemented (“Princess”), more to be done

4 / 25

Logic accepted by the calculus

Linear integer arithmetic + uninterpreted predicates:

t ::= α || x || c || αt + · · ·+ αt

φ ::= φ ∧ φ || φ ∨ φ || ¬φ || ∀x .φ || ∃x .φ

|| t .
= 0 || t

.
≥ 0 || t

.
≤ 0 || α | t || p(t , . . . , t)

t . . . terms

φ . . . formulae

x . . . variables

c . . . constants

p . . . uninterpreted predicates (fixed arity)

α . . . integer literals (Z)

5 / 25

Examples, demo

6 / 25

The Calculus in Detail

3 common ways to handle quantifiers (among others)

Trigger-matching

Standard method in SMT-solvers

Ground reasoning → efficient

Heuristic → incomplete

Free-variable (FV) methods

Standard method in FOL reasoning

“Difficult” to integrate in tableau provers

Good way to combine with theories yet to be found

Quantifier elimination for certain theories (like PA)

Impossible for many logics

Often very high complexity

8 / 25

3 common ways to handle quantifiers (among others)

Trigger-matching

Standard method in SMT-solvers

Ground reasoning → efficient

Heuristic → incomplete

✗ Free-variable (FV) methods

Standard method in FOL reasoning

“Difficult” to integrate in tableau provers

Good way to combine with theories yet to be found

✗ Quantifier elimination for certain theories (like PA)

Impossible for many logics

Often very high complexity

8 / 25

Background: FOL proving with FVs and constraints

` X = c ∨ X = d ` f (c) = f (X)

` (X = c ∨ X = d) ∧ f (c) = f (X)

` ∃x . ((x = c ∨ x = d) ∧ f (c) = f (x))

To close proof, compatible constraints have to be found for all
branches:

X ≡ c ∧ f (c) ≡ f (X) X ≡ d ∧ f (c) ≡ f (X)

(Martin Giese, PhD thesis: Proof Search Without Backtracking
for Free Variable Tableaux.)

9 / 25

Background: FOL proving with FVs and constraints

` X = c ∨ X = d ` f (c) = f (X)

` (X = c ∨ X = d) ∧ f (c) = f (X)

` ∃x . ((x = c ∨ x = d) ∧ f (c) = f (x))

To close proof, compatible constraints have to be found for all
branches:

X ≡ c ∧ f (c) ≡ f (X) X ≡ d ∧ f (c) ≡ f (X)

(Martin Giese, PhD thesis: Proof Search Without Backtracking
for Free Variable Tableaux.)

9 / 25

Background: FOL proving with FVs and constraints

` X = c ∨ X = d ` f (c) = f (X)

` (X = c ∨ X = d) ∧ f (c) = f (X)

` ∃x . ((x = c ∨ x = d) ∧ f (c) = f (x))

To close proof, compatible constraints have to be found for all
branches:

X ≡ c ∧ f (c) ≡ f (X) X ≡ d ∧ f (c) ≡ f (X)

(Martin Giese, PhD thesis: Proof Search Without Backtracking
for Free Variable Tableaux.)

9 / 25

Background: FOL proving with FVs and constraints

` X = c, X = d
` X = c ∨ X = d ` f (c) = f (X)

` (X = c ∨ X = d) ∧ f (c) = f (X)

` ∃x . ((x = c ∨ x = d) ∧ f (c) = f (x))

To close proof, compatible constraints have to be found for all
branches:

X ≡ c ∧ f (c) ≡ f (X) X ≡ d ∧ f (c) ≡ f (X)

(Martin Giese, PhD thesis: Proof Search Without Backtracking
for Free Variable Tableaux.)

9 / 25

Background: FOL proving with FVs and constraints

[X ≡ c], [X ≡ d]

` X = c, X = d
` X = c ∨ X = d

[f (c) ≡ f (X)]

` f (c) = f (X)

` (X = c ∨ X = d) ∧ f (c) = f (X)

` ∃x . ((x = c ∨ x = d) ∧ f (c) = f (x))

To close proof, compatible constraints have to be found for all
branches:

X ≡ c ∧ f (c) ≡ f (X) X ≡ d ∧ f (c) ≡ f (X)

(Martin Giese, PhD thesis: Proof Search Without Backtracking
for Free Variable Tableaux.)

9 / 25

Background: FOL proving with FVs and constraints

[X ≡ c], [X ≡ d]

` X = c, X = d
` X = c ∨ X = d

[f (c) ≡ f (X)]

` f (c) = f (X)

` (X = c ∨ X = d) ∧ f (c) = f (X)

` ∃x . ((x = c ∨ x = d) ∧ f (c) = f (x))

To close proof, compatible constraints have to be found for all
branches:

X ≡ c ∧ f (c) ≡ f (X) X ≡ d ∧ f (c) ≡ f (X)

(Martin Giese, PhD thesis: Proof Search Without Backtracking
for Free Variable Tableaux.)

9 / 25

Full citizenship for constraints!

Constraint notation used here:

Γ ` ∆︸ ︷︷ ︸
Antecedent, Succedent

(sets of formulae)

⇓ C︸︷︷︸
Constraint
(formula)

Definition

Γ ` ∆ ⇓ C is valid if the formula C →
∧

Γ →
∨

∆ is valid.

In the example:
∗

` X = c, X = d ⇓ X = c
` X = c ∨ X = d ⇓ X = c

∗
` f (c) = f (X) ⇓ f (c) = f (X)

` (X = c ∨ X = d) ∧ f (c) = f (X) ⇓ X = c ∧ f (c) = f (X)

` ∃x . ((x = c ∨ x = d) ∧ f (c) = f (x)) ⇓ · · ·

10 / 25

Full citizenship for constraints!

Constraint notation used here:

Γ ` ∆︸ ︷︷ ︸
Antecedent, Succedent

(sets of formulae)

⇓ C︸︷︷︸
Constraint
(formula)

Definition

Γ ` ∆ ⇓ C is valid if the formula C →
∧

Γ →
∨

∆ is valid.

In the example:
∗

` X = c, X = d ⇓ X = c
` X = c ∨ X = d ⇓ X = c

∗
` f (c) = f (X) ⇓ f (c) = f (X)

` (X = c ∨ X = d) ∧ f (c) = f (X) ⇓ X = c ∧ f (c) = f (X)

` ∃x . ((x = c ∨ x = d) ∧ f (c) = f (x)) ⇓ · · ·
10 / 25

Anticipated way of proof construction

analytic reasoning

about input formula

x

Γ ` ∆ ⇓ ?

Γ1 ` ∆1 ⇓ ?

Γ2 ` ∆2 ⇓ ?

Γ3 ` ∆3 ⇓ ?

∗....
Γ3 ` ∆3 ⇓ ?

C1

Γ2 ` ∆2 ⇓ ?

C2

Γ1 ` ∆1 ⇓ ?

C3

....
Γ ` ∆ ⇓ ?

C

y propagation

of constraints

Constraints are simplified during propagation

If C is valid, then so is Γ ` ∆

If C is satisfiable, it describes a “solution” for Γ ` ∆

If C is unsatisfiable, expand the proof tree further . . .

11 / 25

Anticipated way of proof construction

analytic reasoning

about input formula

x
Γ ` ∆ ⇓ ?

Γ1 ` ∆1 ⇓ ?

Γ2 ` ∆2 ⇓ ?

Γ3 ` ∆3 ⇓ ?

∗....
Γ3 ` ∆3 ⇓ ?

C1

Γ2 ` ∆2 ⇓ ?

C2

Γ1 ` ∆1 ⇓ ?

C3

....
Γ ` ∆ ⇓ ?

C

y propagation

of constraints

Constraints are simplified during propagation

If C is valid, then so is Γ ` ∆

If C is satisfiable, it describes a “solution” for Γ ` ∆

If C is unsatisfiable, expand the proof tree further . . .

11 / 25

Anticipated way of proof construction

analytic reasoning

about input formula

x

Γ ` ∆ ⇓ ?

Γ1 ` ∆1 ⇓ ?

Γ2 ` ∆2 ⇓ ?

Γ3 ` ∆3 ⇓ ?

∗....
Γ3 ` ∆3 ⇓ ?

C1

Γ2 ` ∆2 ⇓ ?

C2

Γ1 ` ∆1 ⇓ ?

C3

....
Γ ` ∆ ⇓ ?

C

y propagation

of constraints

Constraints are simplified during propagation

If C is valid, then so is Γ ` ∆

If C is satisfiable, it describes a “solution” for Γ ` ∆

If C is unsatisfiable, expand the proof tree further . . .

11 / 25

Anticipated way of proof construction

analytic reasoning

about input formula

x

Γ ` ∆ ⇓ ?

Γ1 ` ∆1 ⇓ ?

Γ2 ` ∆2 ⇓ ?

Γ3 ` ∆3 ⇓ ?

∗....
Γ3 ` ∆3 ⇓ ?

C1

Γ2 ` ∆2 ⇓ ?

C2

Γ1 ` ∆1 ⇓ ?

C3

....
Γ ` ∆ ⇓ ?

C

y propagation

of constraints

Constraints are simplified during propagation

If C is valid, then so is Γ ` ∆

If C is satisfiable, it describes a “solution” for Γ ` ∆

If C is unsatisfiable, expand the proof tree further . . .

11 / 25

Anticipated way of proof construction

analytic reasoning

about input formula

x

Γ ` ∆ ⇓ ?

Γ1 ` ∆1 ⇓ ?

Γ2 ` ∆2 ⇓ ?

Γ3 ` ∆3 ⇓ ?

∗....
Γ3 ` ∆3 ⇓ ?

C1

Γ2 ` ∆2 ⇓ ?

C2

Γ1 ` ∆1 ⇓ ?

C3

....
Γ ` ∆ ⇓ ?

C

y propagation

of constraints

Constraints are simplified during propagation

If C is valid, then so is Γ ` ∆

If C is satisfiable, it describes a “solution” for Γ ` ∆

If C is unsatisfiable, expand the proof tree further . . .

11 / 25

Anticipated way of proof construction

analytic reasoning

about input formula

x

Γ ` ∆ ⇓ ?

Γ1 ` ∆1 ⇓ ?

Γ2 ` ∆2 ⇓ ?

Γ3 ` ∆3 ⇓ ?

∗....
Γ3 ` ∆3 ⇓ ?

C1

Γ2 ` ∆2 ⇓ ?

C2

Γ1 ` ∆1 ⇓ ?

C3

....
Γ ` ∆ ⇓ ?

C

y propagation

of constraints

Constraints are simplified during propagation

If C is valid, then so is Γ ` ∆

If C is satisfiable, it describes a “solution” for Γ ` ∆

If C is unsatisfiable, expand the proof tree further . . .

11 / 25

Anticipated way of proof construction

analytic reasoning

about input formula

x

Γ ` ∆ ⇓ ?

Γ1 ` ∆1 ⇓ ?

Γ2 ` ∆2 ⇓ ?

Γ3 ` ∆3 ⇓ ?

∗....
Γ3 ` ∆3 ⇓ ?

C1

Γ2 ` ∆2 ⇓ ?

C2

Γ1 ` ∆1 ⇓ ?

C3

....
Γ ` ∆ ⇓ ?

C

y propagation

of constraints

Constraints are simplified during propagation

If C is valid, then so is Γ ` ∆

If C is satisfiable, it describes a “solution” for Γ ` ∆

If C is unsatisfiable, expand the proof tree further . . .

11 / 25

Anticipated way of proof construction

analytic reasoning

about input formula

x

Γ ` ∆ ⇓ ?

Γ1 ` ∆1 ⇓ ?

Γ2 ` ∆2 ⇓ ?

Γ3 ` ∆3 ⇓ ?

∗....
Γ3 ` ∆3 ⇓ C1

Γ2 ` ∆2 ⇓ ?

C2

Γ1 ` ∆1 ⇓ ?

C3

....
Γ ` ∆ ⇓ ?

C

y propagation

of constraints

Constraints are simplified during propagation

If C is valid, then so is Γ ` ∆

If C is satisfiable, it describes a “solution” for Γ ` ∆

If C is unsatisfiable, expand the proof tree further . . .

11 / 25

Anticipated way of proof construction

analytic reasoning

about input formula

x

Γ ` ∆ ⇓ ?

Γ1 ` ∆1 ⇓ ?

Γ2 ` ∆2 ⇓ ?

Γ3 ` ∆3 ⇓ ?

∗....
Γ3 ` ∆3 ⇓ C1

Γ2 ` ∆2 ⇓ C2

Γ1 ` ∆1 ⇓ ?

C3

....
Γ ` ∆ ⇓ ?

C

y propagation

of constraints

Constraints are simplified during propagation

If C is valid, then so is Γ ` ∆

If C is satisfiable, it describes a “solution” for Γ ` ∆

If C is unsatisfiable, expand the proof tree further . . .

11 / 25

Anticipated way of proof construction

analytic reasoning

about input formula

x

Γ ` ∆ ⇓ ?

Γ1 ` ∆1 ⇓ ?

Γ2 ` ∆2 ⇓ ?

Γ3 ` ∆3 ⇓ ?

∗....
Γ3 ` ∆3 ⇓ C1

Γ2 ` ∆2 ⇓ C2

Γ1 ` ∆1 ⇓ C3....
Γ ` ∆ ⇓ ?

C

y propagation

of constraints

Constraints are simplified during propagation

If C is valid, then so is Γ ` ∆

If C is satisfiable, it describes a “solution” for Γ ` ∆

If C is unsatisfiable, expand the proof tree further . . .

11 / 25

Anticipated way of proof construction

analytic reasoning

about input formula

x

Γ ` ∆ ⇓ ?

Γ1 ` ∆1 ⇓ ?

Γ2 ` ∆2 ⇓ ?

Γ3 ` ∆3 ⇓ ?

∗....
Γ3 ` ∆3 ⇓ C1

Γ2 ` ∆2 ⇓ C2

Γ1 ` ∆1 ⇓ C3....
Γ ` ∆ ⇓ C

y propagation

of constraints

Constraints are simplified during propagation

If C is valid, then so is Γ ` ∆

If C is satisfiable, it describes a “solution” for Γ ` ∆

If C is unsatisfiable, expand the proof tree further . . .

11 / 25

Anticipated way of proof construction

analytic reasoning

about input formula

x

Γ ` ∆ ⇓ ?

Γ1 ` ∆1 ⇓ ?

Γ2 ` ∆2 ⇓ ?

Γ3 ` ∆3 ⇓ ?

∗....
Γ3 ` ∆3 ⇓ C1

Γ2 ` ∆2 ⇓ C2

Γ1 ` ∆1 ⇓ C3....
Γ ` ∆ ⇓ C

y propagation

of constraints

Constraints are simplified during propagation

If C is valid, then so is Γ ` ∆

If C is satisfiable, it describes a “solution” for Γ ` ∆

If C is unsatisfiable, expand the proof tree further . . .

11 / 25

FOL rules on constrained sequents

Γ ` φ,∆ ⇓ C Γ ` ψ,∆ ⇓ D
Γ ` φ ∧ ψ,∆ ⇓ C ∧ D

AND-RIGHT

Γ, φ ` ∆ ⇓ C Γ, ψ ` ∆ ⇓ D
Γ, φ ∨ ψ ` ∆ ⇓ C ∧ D

OR-LEFT

Γ, φ, ψ ` ∆ ⇓ C
Γ, φ ∧ ψ ` ∆ ⇓ C

AND-LEFT
Γ ` φ, ψ,∆ ⇓ C

Γ ` φ ∨ ψ,∆ ⇓ C
OR-RIGHT

Γ ` φ,∆ ⇓ C
Γ,¬φ ` ∆ ⇓ C

NOT-LEFT
Γ, φ ` ∆ ⇓ C

Γ ` ¬φ,∆ ⇓ C
NOT-RIGHT

Γ ` [x/c]φ,∃x .φ,∆ ⇓ [x/c]C
Γ ` ∃x .φ,∆ ⇓ ∃x .C

EX-RIGHT

Γ, [x/c]φ,∀x .φ ` ∆ ⇓ [x/c]C
Γ,∀x .φ ` ∆ ⇓ ∃x .C

ALL-LEFT

Γ ` [x/c]φ,∆ ⇓ [x/c]C
Γ ` ∀x .φ,∆ ⇓ ∀x .C

ALL-RIGHT
Γ, [x/c]φ ` ∆ ⇓ [x/c]C

Γ,∃x .φ ` ∆ ⇓ ∀x .C
EX-LEFT

12 / 25

Closure rules on constrained sequents

Γ,p(s1, . . . , sn) ` p(t1, . . . , tn),
∧

i si − ti
.
= 0,∆ ⇓ C

Γ,p(s1, . . . , sn) ` p(t1, . . . , tn),∆ ⇓ C
PRED-UNIFY

∗
Γ, φ1, . . . , φn ` ψ1, . . . , ψm,∆ ⇓ ¬φ1 ∨ · · · ∨ ¬φn ∨ ψ1 ∨ · · · ∨ ψm

CLOSE

Side-condition: CLOSE is only applied to predicate-free formulae
⇒ Constraints are PA formulae

13 / 25

Completeness

Lemma (Completeness for FOL)

If φ is a theorem of FOL, then there is a valid PA formula C
such that ` φ ⇓ C is provable.

Lemma (Fair Proof Construction for FOL)

If φ is a theorem of FOL, then fair application of rules eventually
leads to a closed proof with valid constraint.
(Special handling of rule CLOSE is necessary).

14 / 25

Adding Linear Integer Arithmetic

Rules for integer arithmetic

One possibility: move integer handling into constraints

In principle: any (external) PA procedure could be used to
decide constraints

Built-in PA rules seem more clever, however:

Eager simplification of equations, inequalities to prune
search space

Ground problems → no constraints are necessary

PA rules shown here are correspond to Omega:

Equations are solved and eliminated

Fourier-Motzkin + case analysis to handle inequalities

16 / 25

Rules for equations

Γ, t .
= 0 ` φ[s + α · t],∆ ⇓ C

Γ, t .
= 0 ` φ[s],∆ ⇓ C

RED

(t .
= 0 and φ[s] are different formulae)

Γ, α(u + c′) + t .
= 0, c − u − c′ .= 0 ` ∆ ⇓ [x/c′]C

Γ, αc + t .
= 0 ` ∆ ⇓ ∀x .C

COL-RED

(c′ a constant that does not occur in the conclusion or in u)

Γ, α(u + c′) + t .
= 0, c − u − c′ .= 0 ` ∆ ⇓ [x/c′]C

Γ, αc + t .
= 0 ` ∆ ⇓ [x/c − u]C

COL-RED-SUBST

(c′ a constant that does not occur in the conclusion or in u)

17 / 25

Rules for divisibility

Γ,∃x .αx + t .
= 0 ` ∆ ⇓ C

Γ, α | t ` ∆ ⇓ C
DIV-LEFT

(x a variable that does not occur in the conclusion)

Γ, (α | t + 1) ∨ · · · ∨ (α | t + α− 1) ` ∆ ⇓ C
Γ ` α | t ,∆ ⇓ C

DIV-RIGHT
(α > 0)

Γ, αc − t .
= 0 ` ∆ ⇓ C

Γ, αc − t .
= 0 ` ∆ ⇓ [x/t]C′ ∨ α - t

DIV-CLOSE

(c does not occur in t or in C′,C′ a PA formula such that C ⇔ [x/αc]C′)

18 / 25

Rules for inequalities

Γ ` t
.
≤ 0,∆ ⇓ C Γ ` t

.
≥ 0,∆ ⇓ D

Γ ` t .
= 0,∆ ⇓ C ∧ D

SPLIT-EQ

Γ, t .
= 0 ` ∆ ⇓ C

Γ, t
.
≤ 0, t

.
≥ 0 ` ∆ ⇓ C

ANTI-SYMM

Γ, αc + s
.
≥ 0, βc + t

.
≤ 0, βs − αt

.
≥ 0 ` ∆ ⇓ C

Γ, αc + s
.
≥ 0, βc + t

.
≤ 0 ` ∆ ⇓ C

FM-ELIM

(α > 0, β > 0)

Γ,

∧
i,j αibj − aiβj − (αi − 1)(βj − 1)

.
≥ 0

∨∨
i

∨mi
k=0

(
αic − ai − k .

= 0 ∧∧
i αic − ai

.
≥ 0 ∧

∧
j βjc − bj

.
≤ 0

) ` ∆ ⇓ C

Γ, {αic − ai
.
≥ 0}i , {βjc − bj

.
≤ 0}j ` ∆ ⇓ C

OMEGA-ELIM

(αi > 0, βj > 0)
19 / 25

Properties of PA calculus

Lemma

There is an application strategy for the PA rules such that:

application of rules to a PA formula φ terminates,

the produced constraint C is equivalent to φ, and

if φ only contains existential quantifiers, then C is ground.

PA calculus eliminates quantifiers

Quantifiers in constraints ⇒ recursive application

DEMO

20 / 25

Properties of PA calculus

Lemma

There is an application strategy for the PA rules such that:

application of rules to a PA formula φ terminates,

the produced constraint C is equivalent to φ, and

if φ only contains existential quantifiers, then C is ground.

PA calculus eliminates quantifiers

Quantifiers in constraints ⇒ recursive application

DEMO

20 / 25

Further completeness-results

Lemma (Existential formulae (ground formulae))

If φ is an unsatisfiable formula that only contains existential
quantifiers, then there is a valid constraint C such that
φ ` ⇓ C is provable.

Lemma (Universal formulae)

If φ is an unsatisfiable formula that only contains universal
quantifiers, then there is a valid constraint C such that
φ ` ⇓ C is provable.

21 / 25

Further completeness-results (2)

Lemma (Universal formulae with finite parametrisation)

Suppose ∃ā.(φ ∧ ψ) is an unsatisfiable formula, where:

φ is a PA formula over ā that only has finitely many
solutions, and

ψ is an arbitrary formula over ā that only contains universal
quantifiers.

Then there is a valid constraint C such that ∃ā.(φ ∧ ψ) ` ⇓ C
is provable.

⇒ These are the formulae handled by ME(LIA)

22 / 25

Related work

ME(LIA): model evolution modulo linear integer arithmetic,
[Baumgartner, Tinelli, Fuchs, 08]

Various approaches to integrate theories in saturation
calculi, e.g. [Stickel, JAR’85], [Bürchert, CADE’90],
[Korovin, Voronkov, CSL’07],
[Prevosto, Waldmann, ESCoR’06]

Various SMT-solvers

23 / 25

Conclusion, Future work

Combination of different techniques:
SMT-like ground reasoning, tableau-like free-variable
reasoning, quantifier elimination

Comparatively strong completeness properties

The shown calculus is still very “unrefined”
⇒ Refinements to make it practically usable necessary

Continue implementation . . .

Model construction?

Add missing result: fair application strategy is complete

Investigate connection conditions
(in particular, hypertableau strategy)

Further investigate connection to SMT-calculi

Direct support for function symbols?
24 / 25

Thanks for your attention!

More information:
http://www.cs.chalmers.se/~philipp/princess/

25 / 25

http://www.cs.chalmers.se/~philipp/princess/

