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Abstract. Strings represent one of the most common and most intricate
data-types found in software programs, with correct string processing of-
ten being a decisive factor for correctness and security properties. This
has led to a wide range of recent research results on how to analyse pro-
grams operating on strings, using methods like testing, fuzzing, symbolic
execution, abstract interpretation, or model checking, and, increasingly,
support for strings is also added to constraint solvers and SMT solvers. In
this paper, we focus on the verification of software programs with strings
using model checking. We give a survey of the existing approaches to
handle strings in this context, and propose methods based on algebraic
data-types, Craig interpolation, and automata learning.

1 Introduction

The analysis of program operating on strings has received a lot of attention in the
past years, motivated by the observation that correct string handling is crucial to
achieve functional correctness, and that even innocent-looking mistakes related
to strings (for instance, incorrect input validation or sanitisation) can open severe
security vulnerabilities in programs [10]. In this paper, we consider the analysis
of software programs with the help of model checking, and provide a survey of
the methods used in model checkers to handle strings. We observe that several
bounded model checkers and tools for symbolic execution use “native” methods
for solving string constraints, in particular inbuilt string support in SMT solvers,
whereas unbounded model checkers tend to represent strings using data-types
like arrays and stay closer to the runtime implementation of strings. We then
outline ongoing work to handle strings natively in the Horn clause-based software
model checker JayHorn.

1.1 Strings in Programming Languages

Given a finite, non-empty alphabet Σ, strings are elements of the set Σ∗ or
finite sequences of characters over Σ. In practice, alphabets are, e.g., ASCII or
Unicode. Relevant operations on strings include functions to access individual
characters or substrings, to concatenate strings, to split strings, to compute the
length of strings or the number of character occurrences, to check membership in
regular or context-free languages, to replace all or some occurrences of substrings,
or more generally transformations like sanitisation or encoding/decoding.
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In programming languages, strings are partly given the status of a primitive
data-type with inbuilt notation for literals ("..."), but the full set of string
operations is typically provided through libraries, such as string.h in C, and
java.lang.String and related classes in Java. The internal representation of
strings as a character array is fully exposed in C, but usually hidden in more
high-level languages.

Strings are in programs often used to store data such as addresses, usernames,
or passwords, whose correct processing is critical. Strings can also represent code,
for instance when interfacing databases (SQL commands) or in the context of
the web (JavaScript embedded in HTML), leading to the possibility of injection
attacks when a programs fails to correctly isolate code from data [10].

2 Survey of Existing Methods for String Analysis

In this section, we focus on strings in model checking while only touching upon
some of the methods in other areas. For a more complete survey of string methods
we refer the reader to the recent book [10].

2.1 Bounded Methods

Bounded analysis methods, for instance, bounded model checking or symbolic ex-
ecution, typically only have to check satisfiability (SAT) of constraints extracted
from a program, usually testing path feasibility. In our case, such constraints will
contain variables ranging over strings. SAT checks on string constraints are at
this point supported relatively well by existing constraint and SMT solvers (as
a result of extensive research over the past years) and string theories have in
particular been added to state-of-the-art SMT solvers like Z3 [16] and CVC4 [7].
There is also a larger number of dedicated string solvers, for instance ABC [6],
Hampi [20], Kaluza [37], Norn [3], Ostrich [11], Sloth [26], Trau [1], Z3-str [41].
Scalability to handle real-world constraints and support for more complex string
operations (e.g., transduction) are still a concern with the existing solvers, how-
ever.

As a representative set of state-of-the-art software model checkers, we survey
the tools that participated at SV-COMP 2019 [8], the most recent competition of
automatic software verifiers. In the competition, 31 tools participated, of which
27 were verifiers for C and 4 for Java. It is observable that purely bounded
analysis is applied by 7 of the C verifiers3 and 3 of the Java verifiers,4 while the
other tools attempt exhaustive verification without imposing any bound on the
number of execution steps (Section 2.2).

Following the actual C semantics of strings, the predominant approach ap-
plied by the bounded C verifiers is to consider strings as zero-terminated arrays,

3 CBMC, CBMC-Path, Map2Check, Pinaka, VeriFuzz, Yogar-CBMC, Yogar-CBMC-
Parallel

4 JBMC, JPF, SPF
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and rely on decision procedures for the theory of arrays (for instance, via en-
coding to Boolean SAT) to perform feasibility checks. There exists some initial
work in CBMC to target native string solvers, but does not seem to be used in
the competition versions.

The situation is different in the bounded Java verifiers, where the symbolic
tools use native string solvers to analyse path constraints. JBMC [14] comes
with its own string solver that works through an encoding to Boolean SAT,
while SPF [36] can use multiple different string solvers as its back-end.

2.2 Unbounded Methods

In addition to SAT checks, unbounded (infinite-state) program verification meth-
ods also require artefacts like loop invariants or function summaries, which can
be provided manually or be computed automatically. For the latter purpose, a
wider range of techniques has been proposed that could be listed here; to get a
full picture, we refer to the recent handbook on model checking [13]. A general
observation, however, is that strings can be handled only by few of the existing
invariant generation methods; in particular, to the best of our knowledge, no
interpolation procedures are known for any (relevant) theory of strings.

The few invariant generation methods specifically supporting strings include
the randomised search approach in [38], and the SAT-based automata learning
approach in [2], which we employ in Section 3.3.

Software Model Checking. We survey again the tools that participated at SV-
COMP 2019 [8]: 20 tools performing unbounded verification for C programs,
and one model checker for unbounded Java verification. Like in the bounded
case, most of the C model checkers see strings as character arrays, and execute
string operations as code; this means that invariant generation relies on existing
methods for the theory of arrays. 2LS encodes data structures (including string)
using invariants describing heap configuration [33], PredatorHP models memory
using Symbolic Memory Graph (SMG) and defines certain manipulations of
zero-terminated strings over SMG [18], and SMACK models the behaviour of
string.h functions. The handling of strings in the Java model checker JayHorn,
an ongoing implementation effort, is discussed in Section 3.

Deductive Verification. In deductive verification systems, invariants and method
contracts usually have to be provided manually, but their correctness is verified
automatically. To be able to handle strings, deductive verification systems in-
clude axiomatic models of strings. For instance, in Dafny [31] strings are encoded
as sequences, which are in turn mapped to arrays, together with a set of oper-
ations modelled using quantified axioms that are heuristically instantiated by
the underlying SMT solver. The KeY system [4], a verification tool for Java pro-
grams, includes a formalisation of Java strings and the Java string constant pool
in terms of algebraic data-types [9]. This formalisation partly inspires the tech-
niques discussed in Section 3.2. Like [9], we propose to represent strings using
ADTs while targeting the fully-automatic setting of a software model checker,
including automatic invariant inference.
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Static Analysis and Abstract Interpretation. A number of abstract domains
have been proposed to analyse programs with strings, see for instance [10] for
an overview. A related approach [12] translates Java programs to (data) flow
graphs, extracts context-free grammars characterising the possible strings in the
program, and then over-approximates those sets using regular languages.

Dedicated Analysis Methods. Several approaches exist to specifically analyse
loops that iterate over or manipulate strings; such methods are usually restricted
to loops of a particular syntactic shape, or to loops written in domain-specific
languages. Bek is a language and system to write and analyse string sanitis-
ers that internally uses symbolic transducers [27]. An extended version of Bek,
named Bex, targets the more general case of string decoders [39]. A summarisa-
tion (or acceleration) method for string-manipulating loops is given in [40].

3 Towards String Handling in a Java Model Checker

We now describe ideas and techniques to handle strings natively in an unbounded
model checker for Java. The work is inspired by the implementation of JayHorn
tool [29], a Java verifier that works by translating Java bytecode to sets of
constrained Horn clauses [23].

As observed in the previous section, and as with any other theory in software
model checking, one of the main challenges with strings is the inference of in-
ductive invariants. This aspect is particularly pronounced with strings, for which
already decidability of SAT checks is sometimes open (depending on the precise
set of operations considered [21]), and implementation even of known decision
procedures can be hard. Logical methods used in other domains for invariant
generation, for instance Craig interpolation [34] or abduction [17], have so far
not been carried over for strings, to the best of our knowledge.

We consider two main paradigms to compute invariants in this setting:

– A reduction-based approach, in which string constraints are translated to
algebraic data-types (ADTs), which can then be handled using known tech-
niques, and are in particular amenable to Craig interpolation [24]. The re-
duction also requires an encoding of the string operations, which is in our
setting done by formulating constrained Horn clauses, i.e., through an oper-
ational encoding. This is possible for all computable operations on strings,
but does not always make it easy for an ADT solver to discover sufficiently
general invariants.

– A learning-based approach, which performs an exhaustive search for Craig
interpolants (as building blocks of inductive invariants) through SAT-based
construction of finite-state automata [2].

Those two approaches have quite complementary properties. Reduction to other
theories can in principle support all string operations, and handle the combi-
nation of strings with other theories (e.g., integers, arrays, or bit-vectors), but
might not lead to useful predicates or invariants. The reduction approach is
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also similar in flavour to the representation of strings as arrays in existing soft-
ware model checkers, though considering a different target theory, and using
tailor-made operational encodings also of the string operations. Learning and
systematic search can find concise predicates that pinpoint the reason why a
program behaves correctly, but the approach might be computationally expen-
sive, restricted to invariants of particular syntactic shape, and (depending on the
algorithm used) difficult to combine with other theories. In our case, the learning
procedure attempts to construct Craig interpolants that are regular expression
membership constraints, which means that formulas like equality of two strings
cannot be expressed or found.

3.1 Dealing with Implementation Artefacts

As a prerequisite for applying native string solving technology, it is necessary
to bridge the gap between the programming language semantics of strings (in
Java, the view of strings being instances of the class java.lang.String, and
the string constant pool [22]) and the algebraic view on strings (strings consti-
tuting the set Σ∗ of finite sequences over some alphabet Σ). The architecture of
JayHorn offers a natural solution for this: deviating from the standard runtime
implementation, object references in JayHorn are treated as tuples that consist of
the object address (an integer), but also include other (immutable) information
about an object [28]. For instance, a reference can store the precise dynamic
type of the referenced object, the allocation site, constructor parameters, or val-
ues of immutable fields. The additional information contained in a reference has
the purpose of increasing the expressive power of the class invariants used to
represent heap data-structures.

This approach turns out to be particularly useful for boxed data-types like
java.lang.Integer, since those classes are immutable and their contents do
not change after object creation. This means that a reference to an object of
java.lang.Integer can be defined to store the actual value (the boxed integer
number) as well, using the native data-type for integers; since the boxed data
can now be retrieved directly from the reference, without having to access any
fields of the object, verification with boxed data becomes very similar to the
handling of native data-types and local variables.

The same encoding can be used for strings: the reference tuple pointing to a
java.lang.String object can be defined to contain the actual string contents
as one of the components, represented using a native data-type, for instance, an
ADT as in Section 3.2. Since the semantics of most of the string operations (for
instance, String.equals and String.concat) can be modelled purely in terms
of the string contents, this means that programs can then be analysed treating
strings as a native data-type, assuming the idealised algebraic semantics of the
string stored in the reference tuple.
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3.2 Strings as an Algebraic Data-type

Algebraic data-types (with fully-free constructors) is a theory increasingly sup-
ported by Horn solvers, for instance by Eldarica [25], Spacer [30], and a version
of VeriMAP [15]. While ADT support in the mentioned solvers is still somewhat
limited and an active area of research (e.g., in case of Eldarica, only quantifier-
free solutions are computed), ADTs are significantly simpler to handle than a
full theory of strings, since methods like Craig interpolation and quantifier elim-
ination are available.5

We define the theories of recursive algebraic data types (ADTs) as it is done
in [24]. The signature of an ADT is defined by a sequence σ1, . . . , σk of sorts
and a sequence f1, . . . , fm of constructors. The type of an n-ary constructor is of
the form fi : σ1×· · ·×σn → σ0. Zero-ary constructors are also called constants.
In addition to constructors, formulas over ADTs can use variables (with some
type from the sorts {σ1, . . . , σk}); selectors f ji (which extract the jth argument
of an fi-term) and testers isfi (which determine whether a term is an fi-term).

ADTs enable a natural representation of strings as lists of characters. Here,
nil is a constant, cons is a binary constructor, and Character is a sort:

String ::= nil | cons(Character,String)

This representation still leaves a number of choices open; exploration of this
space is ongoing work, so that we only discuss the parameters in the scope of
this paper, without evaluating the implications experimentally.

Encoding choice 1: The character domain. In our current implementation in
JayHorn, the Character is a synonym for the mathematical integers, which are
handled well by most Horn solvers. This domain does obviously not model ASCII
or Unicode characters accurately, and might lead to spurious verification coun-
terexamples; a more precise encoding could be using bit-vectors or an interval
of the integers.

Encoding choice 2: The character order. The encoding of lists leaves open
in which order the characters of a string should be stored: starting with the
first character or starting with the last (or choosing an order individually for
each string variable). The current JayHorn implementation uses the more natural
order of storing the first string character as the first element of a list; but given
that it is more common in Java programs to append to strings, it is quite possible
that reverse order would perform better for static analysis.

After choosing the string representation, the Java API string operations have
to be defined. One approach for this would be to execute the bytecode implement-
ing the methods, for instance the methods of java.lang.String. This would
not yield the most efficient definition for the purpose of model checking, how-
ever, since the bytecode would assume the internal representation of strings as
character arrays, running counter to the chosen algebraic list representation. In
the context of JayHorn, a more efficient path is to encode each string operation

5 In this sense, ADTs also have better properties than the theory of arrays.
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package java.lang;

public class String {

[...]

public String concat(String that) { [...] };

[...]

}

Fig. 1. The Java string concatenation method

Recursive encoding Hrec :

Crec(nil, x, x) ← true

Crec(cons(c, x), y, cons(c, z)) ← Crec(x, y, z)

Recursive encoding with pre-condition Hprec :

Cpost
prec (nil, x, x) ← Cpre

prec(nil, x)

Cpre
prec(x, y) ← Cpre

prec(cons(c, x), y)

Cpost
prec (cons(c, x), y, cons(c, z)) ← Cpre

prec(cons(c, x), y) ∧ Cpost
prec (x, y, z)

Iterative encoding Hit :

C1
it(z̄, x, nil, y) ← Centry

it (z̄, x, y)

C1
it(z̄, a, cons(c, b), y) ← C1

it(z̄, cons(c, a), b, y)

C2
it(z̄, b, y) ← C1

it(z̄, nil, b, y)

C2
it(z̄, a, cons(c, b)) ← C2

it(z̄, cons(c, a), b)

Cexit
it (z̄, r) ← C2

it(z̄, nil, r)

Table 1. Different Horn encodings of concatenation of two strings

using a set of Horn clauses tailored to static analysis. As a case study in the
scope of this paper, we consider the method to perform concatenation of two
strings (Fig. 1). Other Java string operations can be handled in a similar way.

Encoding choice 3: The concatenation function. Table 1 shows some of the
different encodings of the concatenation function as a set of constrained Horn
clauses, operating on the ADT string representation: using a total function de-
fined recursively, and represented using a summary predicate Crec ; using a partial
function defined recursively by a summary predicate Cpost

prec and a domain pred-

icate Cpre
prec ; and using a purely iterative encoding with entry predicate Centry

it

and exit predicate Cexit
it .

A clause with a concatenation constraint on natively represented strings,

H ← z = concat(x, y) ∧B(ā)
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can then be translated using the different encodings, leading to three different
but equisatisfiable sets of clauses:

{H ← Crec(x, y, z) ∧B(ā)} ∪ Hrec (1)

{H ← Cpost
prec (x, y, z) ∧B(ā), Cpre

prec(x, y)← B(ā)} ∪ Hprec (2)

{H ← Cexit
it (ā, z), Centry

it (ā, x, y)← B(ā)} ∪ Hit (3)

In the last encoding Hit , the arity of the predicates has to be adjusted so that
all variables ā occurring in the clause body B(ā) can be passed through.

Only experiments can tell which of those encodings performs best in a soft-
ware model checker. Initial results indicate that the iterative encoding, although
it requires the largest number of clauses, might be easiest to handle for existing
Horn solvers, probably because only linear clauses are generated.

In cases where the length of the left string x is known to be bounded (and
small), it is, of course, most efficient to unwind the recursive/iterative definition
of the concatenation function sufficiently often.

Encoding choice 4: Clause sharing. In the iterative version of concatenation,
it is always necessary to introduce fresh predicates and clauses Hit for each
occurrence of concatenation concat in a program. This is not the case for the
recursive versions, however, where the same predicates and clauses could be used
for multiple occurrences of concat. Whether such clauses sharing has advantages
for Horn solving is so far unclear, however.

Encoding choice 5: Ghost data. In addition to just working with the string
contents represented using an ADT, it can be meaningful to also explicitly pass
around ghost data obtained by applying some homomorphism to string values.
For instance, the length of a string is a feature that is frequently useful for
invariants; the function that maps a string to its length is a homomorphism
of the concatenation function, and the clauses shown in Table 1 can easily be
augmented to keep track of string length as well.

3.3 Learning Invariants over Strings

The encoding of strings using ADTs is quite flexible, and can be expected to
work well when the correctness of a program can be shown using invariants on
the level of ADTs: that means, using quantifier-free formulas that talk about
a finite number of characters of the involved strings. Depending on the applied
Horn solver, and the encoding choices with respect to ghost data, also invariants
are feasible that can be expressed using recursive functions like the string length
function.6 However, ADTs do not suffice for programs that demand more in-
tricate invariants about strings; for instance, the statement that an unbounded
string only contains characters in the range a-z.

We propose the use of learning-based interpolation, as defined in [2], to find
such more expressive invariants. Interpolation is used by many Horn solvers to

6 For instance, Eldarica has built-in support for the ADT size function, which corre-
sponds to string length.
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construct building blocks for invariants. A (binary) interpolation problem is a
conjunction of formulas A[xA, x]∧B[x, xB ] over disjoint variables xA, xB local to
A, B and common variables x. An interpolant is a formula I[x] over the common
variables such that A[xA, x]⇒ I[x] and B[x, xB ]⇒ ¬I[x] hold.

In [2], it is assumed that x̄ = 〈x1, x2, . . . , xn〉 only contains string variables;
a SAT solver is then used to systematically search for interpolants of the form

I[x] = x1|x2| · · · |xn ∈ R (4)

where | is a fresh separator character, and R a regular expression. R is for the
search represented as a finite-state automaton using a set of Boolean variables.
The search procedure itself uses a refinement loop in which the SAT solver
guesses interpolant candidates, and a string solver checks the correctness of the
candidates. Counterexamples produced by the string solver are used to refine
the Boolean constraints. The procedure, therefore, has a lot of similarities with
methods in syntax-guided synthesis [5], and could be generalised to interpolant
patterns other than (4); it could also be changed to compute inductive invariants
instead of just interpolants directly.

SAT-based learning has in the past also been used for a number of related
applications, for instance to compute finite-state automata describing regions or
strategies of games on infinite graphs [35, 32], or to synthesise transition systems
that satisfy given LTL specifications [19]. This illustrates the flexibility of this
form of learning; the challenge, however, is usually scalability, since a SAT solver
essentially carries out a systematic search over all automata up to a certain size.

In practice, it appears most useful to combine the ADT-based method from
Section 3.2 with the learning method. This could be done, for instance, by using
the ADT method by default, but switching to the learning method when the
computed ADT interpolants start to contain too complex ADT expressions. As
a further criterion, when analysing programs that combine strings and other
data-types (the most common case), it should be checked prior to starting the
learning process whether the conjunction A[xA, x]∧B[x, xB ] is unsatisfiable for
reasons pertaining to strings. This is a necessary (though not sufficient) criterion
for the existence of an interpolant of the form (4). To check whether strings are
responsible for any inconsistency, the common non-string variables in x̄ can be
renamed to local variables x′i in A and x′′i in B.

4 Conclusions

We have given a survey of string handling in software model checkers, and pro-
posed a combination of methods for model checking of Java programs. The paper
presents work in progress, and at the moment the impact of the different design
and encoding choices has not been evaluated experimentally yet; we do believe,
however, that the outlined combination of string methods can significantly im-
prove the usability of a Java model checker like JayHorn.
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