
1

An Automatable Formal Semantics
for IEEE-754 Floating-Point Arithmetic

Last revised: Friday 30th October, 2015

Martin Brain∗, Cesare Tinelli†, Philipp Rümmer‡ and Thomas Wahl§ ∗ Department of
Computer Science, University of Oxford, Oxford, UK † Department of Computer

Science, The University of Iowa, Iowa City, IA, USA ‡ Department of Information
Technology, Uppsala University, Uppsala, Sweden § College of Computer and

Information Science, Northeastern University, Boston, MA, USA

Abstract

Automated reasoning tools often provide little or no support to reason accurately and efficiently about floating-
point arithmetic. As a consequence, software verification systems that use these tools are unable to reason reliably
about programs containing floating-point calculations or may give unsound results. These deficiencies are in stark
contrast to the increasing awareness that the improper use of floating-point arithmetic in programs can lead to
unintuitive and harmful defects in software. To promote coordinated efforts towards building efficient and accurate
floating-point reasoning engines, this paper presents a formalization of the IEEE-754 standard for floating-point
arithmetic as a theory in many-sorted first-order logic. Benefits include a standardized syntax and unambiguous
semantics, allowing tool interoperability and sharing of benchmarks, and providing a basis for automated, formal
analysis of programs that process floating-point data.

I. INTRODUCTION

Real values can be represented in a computer in many ways, with various level of precision: as fixed-
point numbers, binary or decimal floating-point numbers, rationals, arbitrary precision reals, etc. Due
to the wide availability of high-performance hardware and support in most programming languages,
binary floating-point has become the dominant representation system. Aside from some industry-specific
exceptions, most programs that interact with or model the real world, not least those employed in safety
critical applications, rely on binary floating-point arithmetic. This creates a significant challenge for
program analysis tools: accurate reasoning about the behavior of (numerical) programs is only possible with
bit-accurate reasoning about floating-point arithmetic. Many automated verification tools, such as software
model checkers, rely on solvers for Satisfiability Modulo Theories (SMT) [4] as their reasoning engines.
These solvers use specialized, built-in methods to check the satisfiability of formulas in background
theories of interest, such as for instance the theories of integer numbers, arrays, bit vectors and so on.
Reasoning about floating-point numbers accurately in SMT then requires the identification of a suitable
theory of floating-point arithmetic. Due to significant semantic differences, reasoning in substitute theories
such as the reals would generally render the solvers unsound and is thus not a satisfactory option.

In the past, designing a formal theory of floating-point arithmetic would have been prohibitively
complex, as different manufacturers used different floating-point formats which varied from the others in
significant, structural aspects. The introduction, in 1985, and subsequent near universal adoption of the
IEEE-754 standard has considerably improved the situation. However, the standard is unsatisfactory as a
formal theory definition for a number of reasons: it is written in natural language; it covers various aspects
that are not relevant to developing a theory of floating-point (see Section VIII-B); it is lengthy (the 2008

Work partially supported by the Toyota Motor Corporation, ERC project 280053, EPSRC project EP/H017585/1, DSTL under CDE Project
30713, NSF grant CCF-1218075, and the VR grant 2011-6310.



2

revision has 70 pages) and, most critically for automated reasoning purposes, it does not describe a logical
signature and interpretations.

This paper presents the syntax and semantics of a logical theory that formalizes floating-point arithmetic
based on the IEEE-754 standard, with the goal of facilitating the construction of automated and precise
reasoning tools for it. The models of our theory correspond exactly to conforming implementations of
IEEE-754. While rather general, our formalization was developed with inputs from the SMT community
to be a reference theory for SMT solver implementors and users, and was recently incorporated in the
SMT-LIB standard [5], a widely used input/output language for SMT solvers.

This paper makes three specific contributions:
1) Discusses the challenges of reasoning about floating-point numbers and illustrates its critical uses.

[Section II]
2) Presents mathematical structures intended to formally model binary floating-point arithmetic. [Section

V]
3) Provides a signature for a theory of floating-point arithmetic and an interpretation of its operators in

terms of the mathematical structures defined earlier. [Section VI]

II. FLOATING-POINT ARITHMETIC

Floating-point refers to a way of encoding subsets of the rational numbers using bit vectors of fixed
width. A floating point number consists of three such bit vectors: one for the fractional part of the number,
called the significand, one for the exponent of an integer power by which the fractional part is multiplied,
and a single bit for the sign. For example:

7.28125 = 7 + 28125 · 10−5 = (22 + 21 + 20) + (2−2 + 2−5)
= 111.010012 = 1.11010012 · 22

can be represented as a binary floating point number with a sign bit of 0, an exponent of 2 and a
significand of 1101001: the leading 1 before the binary point is omitted (for so-called normal numbers)
and hence known as the hidden bit.

Arithmetic on floating point numbers is defined as performing the operation as if the numbers were
reals, followed by rounding the result to the nearest value representable as a floating point number;
“nearest” is defined by a set of rules called a rounding mode. Many floating-point systems implemented
in computer processors have included special values such as infinities and not-a-number (NaN). When an
underflow, overflow or other exceptional condition occurs, these special values can be returned instead
of triggering an interrupt. This can simplify the control circuitry and results in faster computation but at
the cost of making the floating-point number system more complex. IEEE-754 standardizes, in different
floating-point formats, the sizes of the bit vectors used for number presentation, as well as the various
rounding modes, and the meaning and use of special values.

Formal reasoning about algorithms and programs that use floating-point numbers has acquired a repu-
tation of being difficult, complex and error prone [25]. There are at least two causes for this. One is the
combinatorial explosion in operations due to the existence of special computational values. More precisely,
IEEE-754 defines five classes of numbers: normal, subnormal (which cannot be expressed in normal form,
due to limits on the exponent range), zeros (a positive and a negative one, so that approximation from above
and below can be distinguished), infinities (one positive and one negative), and NaN. The behavior of
each operation depends on the classes of its arguments, potentially requiring a five-way case distinction
for every operation considered. The other cause for the intricacies is rounding. Rounding is vital as
it permits a fixed bound on the amount of memory required to store and compute with floating-point
numbers. However, it also causes floating-point arithmetic to defy some fundamental laws of traditional
arithmetics, such as the associativity of addition1 As a result, many algebraic and automated reasoning

1Since rounding is performed after every operation, the expressions (a+ b) + c and a+ (b+ c) can evaluate to different values.



3

techniques based on these laws are inapplicable to it. While challenging, reasoning formally and possibly
automatically about floating-point numbers is crucial for many purposes.
Identifying the Generation of Special-Values It is generally useful to know whether a program may

generate the special floating-point values infinity and NaN. While their presence is not necessarily
a bug, they fall outside classical real-number arithmetic. In some cases, the detection of subnormal
numbers is valuable as they have limited precision and can thus amplify errors.

Detecting Numerical Instabilities As a consequence of rounding, there are non-zero, normal numbers
x and y such that x+ y = x. Although again this is not necessarily a bug, it is counter-intuitive for
many programmers and may be a symptom of deeper algorithmic problems. Similarly, catastrophic
cancellation occurs in x+y when the exponents of x and y are (near-)equal and their signs differ. In
this case the most significant bits can cancel, effectively amplifying the errors introduced by rounding.

Exposing Undefined Behavior With few exceptions, IEEE-754 fully defines the results of all operations
on floating-point numbers but does not cover corner cases of conversions to other formats. Although
this may seem like a trivial issue, it was the immediate cause of the loss of Ariane 5 Flight 501.

Generating Test-Cases Many safety standards for embedded software mandate testing coverage criteria.
Automatic test case generation is vital as system complexity rises, and is particularly important for
showing which paths are infeasible, as developers often miss floating-point related corner cases.
These applications demand model generating and bit-precise reasoning engines.

Proving Functional Correctness Formal correctness specifications for numerical programs often include
bounds on the output. Checking those bounds is a suitable task for a reasoning tool. Another common
correctness measure is the difference between the result of the computation performed in floating-point
and its real-arithmetic result. Care must be taken because most non-trivial numerical algorithms are
not simple transcriptions of mathematical expressions into software; comparing the same algorithm
over the two domains may be misleading.

All these scenarios have in common that classical mathematical reasoning, regardless of whether it is
manual or automated, is ineffective when dealing with floating-point.

III. FORMALIZATION IN AUTOMATED REASONING

In general, to automate reasoning in a domain D of interest using a formal logic one has to restrict
the set of possible interpretations assigned to the function and predicate symbols used to build formulas
representing statements over D. There are normally two approaches to achieve this, one axiomatic and
one algebraic.

In the axiomatic approach, typical of interactive theorem proving tools, one first constructs a formula ψ
that axiomatizes D, i.e., formally describes (some of) the properties of the chosen function and predicate
symbols. Then, to check that a particular formula φ is valid in D one asks the prover, in essence, to check
the logical validity of the implication ψ ⇒ φ. Previous formalizations of floating-point (see Section VII)
have followed this approach. Since the axiomatization ψ is part of the input, no specific support for the
domain D on the prover’s side is needed. Formalizations of this kind are flexible and easily extensible,
however, the axioms ψ tend to be voluminous and intricate, which can limit the performance of many
automated techniques. Another limitation is that certain domains cannot be captured accurately by a
relatively small, or even finite, axiomatization in the prover’s logic. In that case, different, approximate
axiomatizations may have to be considered and compared with respect the trade-offs they offer.

In the algebraic approach, typical of SMT solvers, a domain D is formalized instead by a set of algebraic
structures (i.e., models in the chosen logic) that interpret the various functions and predicate symbols.
The formalization is used as a specification for the prover, and the knowledge of what the symbols mean
is pre-built into the prover. An advantage of this is that fast, domain specific procedures can be used to
reason about D. Moreover, in addition to checking for validity in D, such procedure are usually also able
to generate counter-examples for invalid formulas. Since these formalizations are used as specifications,
the key issues are whether they can be implemented easily and efficiently and how well the interpretations
they describe capture relevant properties of the domain.



4

TABLE I
FORMALIZATION OF NaN’S BEHAVIOR, WITH u ∈ S∗

u+ NaN = NaN + u = NaN −NaN = NaN
u ·NaN = NaN · u = NaN NaN−1 = NaN

NaN 6 u ⇔ u = NaN u 6 NaN ⇔ u = NaN

We present a formalization of floating-point arithmetic in the algebraic style, intended as a specification
for SMT solvers, and make the case that this accurately captures the semantics of the IEEE-754 standard.
We concentrate on arithmetic aspects, abstracting away more operational ones, such as exception handling.
Also, we only consider the case of binary (as opposed to decimal) floating-point arithmetic, as it is more
widely used in practice.

IV. FORMAL FOUNDATIONS

IEEE-754 gives an informal definition of the semantics of floating-point operations:
Each of the computational operations that return a numeric result specified by this standard
shall be performed as if it first produced an intermediate result correct to infinite precision
and with unbounded range, and then rounded that intermediate result, if necessary, to fit in the
destination’s format.

To formalize this it is helpful to define an extension of the real numbers so that we can treat floating-point
values as if they had “infinite precision and unbounded range,” and to define a notion of rounding. Note
that the extended reals are used here simply to aid the formal definition of floating-point operations. They
are not the domain of interpretation of floating-point numbers. For that we will define a family of algebras
over bit vector triples.

A. Extended Reals
We extend the set R of real numbers with three new elements: +∞, −∞ and NaN, which represent

respectively positive and negative infinity and a special not a number value used to obtain an arithmetically
closed system. For each set S ⊆ R we can define the following sets:

S† = S ∪ {+∞,−∞} S∗ = S† ∪ {NaN}

When S is the base of an ordered additive or multiplicative monoid or group, we extend R’s binary
operations + and ·, unary operations − and ( )−1 and order relation ≤. Table I gives axioms defining
these operations when one argument is NaN. Table III gives axioms defining these operations when one
argument is +∞ or −∞, as well as the axiom for the inverse of zero. We remark that, although these
definitions extend the operations of ordered fields and rings and can be applied to R and Z, the extended
reals R∗ and extended integers Z∗ do not have all of the structure of R and Z.2

Note that (R∗,6) is a partial order since NaN is comparable only with itself. In contrast (R†,6)
is a total order. The extended reals operate as three largely algebraically independent subsets: {NaN},
{+∞,−∞} and R. If a sub-expression of an expression e evaluates to NaN, then the whole e evaluates
to NaN — the set is closed under the basic operations. Infinities generate infinities or NaN, although the
reciprocal operator maps an infinity back to a real value. Reals are of course closed under all operations
except reciprocal of zero. For convenience, we will also use the usual additional symbols in Table II,
which are definable in terms of the basic operations.

2R∗ is neither an additive or multiplicative group as (−NaN) + NaN 6= 0 and NaN−1 · NaN 6= 1, nor does it have an annihilating 0
as NaN · 0 6= 0. However it is an additive and multiplicative commutative monoid with the distributivity property, a structure some authors
refer to as a semi-ring.



5

TABLE II
DEFINED SYMBOLS, WITH x, y ∈ S∗

x > y := y 6 x
x− y := x+ (−y) x < y := (x 6 y) ∧ ¬(x = y)
x/y := x · y−1 x > y := (x > y) ∧ ¬(x = y)

TABLE III
FORMALIZATION OF ±∞’S AND INVERSE OF ZERO’S BEHAVIOR, w ∈ S†

+∞ 6 w ⇔ w = +∞ w 6 −∞ ⇔ w = −∞

w 6 +∞ −(+∞) = −∞ +∞−1 = 0
−∞ 6 w −(−∞) = +∞ −∞−1 = 0

w + (+∞) = (+∞) + w =

{
NaN if w = −∞
+∞ if w 6= −∞

w + (−∞) = (−∞) + w =

{
NaN if w = +∞
−∞ if w 6= −∞

w ·+∞ = +∞ · w =


+∞ if 0 < w

−∞ if w < 0

NaN if w = 0

w · −∞ = −∞ · w =


−∞ if 0 < w

+∞ if w < 0

NaN if w = 0

0−1 = +∞

B. Rounding
The second concept needed to formalize the IEEE-754 definition of operations is that of rounding; a

map that will take the intermediate result in R∗ back into the set of floating-point numbers. We define it
as a function that selects between the two adjoints of the corresponding map into R∗.

More generally, let (X,v) be a partially ordered set that consists of one or more disjoint lattices, and let
v : X → R∗ be an order-embedding function from X into the extended reals such that {+∞,−∞,NaN} ⊂
v(X). Then, the upper adjoint and lower adjoint of v are respectively the unique functions v : R∗ → X
and v : R∗ → X such that for all r ∈ R∗.
• r 6 v(v(r)) and v(r) v x for all x ∈ X with r 6 v(x);
• v(v(r)) 6 r and x v v(r) for all x ∈ X with v(x) 6 r.

The function v maps an element r to the smallest element of X that projects above r (rounding up) while
v maps r to the largest element of X that projects below r (rounding down). Let B = {>,⊥} be the
Booleans, with > being the true value. We define a family of (higher-order) rounding functions:

round : RM× B× R∗ → (X → R∗)→ (R∗ → X)

parametrized by the partially ordered set X , which provides a systematic way of selecting between
rounding up and rounding down. Given a map v : X → R∗, the rounding function returns one of
v’s two adjoints, based on three previous inputs. The first is the rounding mode, chosen from the set:

RM = {rne, rna, rtp, rtn, rtz}

which represents the five rounding modes defined by IEEE-754, namely, round to nearest with ties picking
even value (rne), round to nearest with ties away from zero (rna), round towards +∞ (rtp), round towards
−∞ (rtn), and round towards zero (rtz). The second input of round is a Boolean value determining the
sign of zero when X contains signed zeros (which is the case when X is a set of floating-point numbers).
The third input is the value to be rounded, needed because the rounding direction may depend on it (for
example, when rounding to the nearest element of X).



6

TABLE IV
DEFINITION OF round

round(rne, s, r)(v) =



v r 6= 0, ¬lhX(r, v), ¬tbX(r, v)

v r 6= 0, tbX(r, v), evX(v(r))

v r 6= 0, tbX(r, v), evX(v(r))

v r 6= 0, lhX(r, v)

rsz(s)(v) r = 0

v r = NaN

round(rna, s, r)(v) =



v r > 0, ¬lhX(r, v)

v r > 0, lhX(r, v)

rsz(s)(v) r = 0

v r < 0, ¬lhX(r, v), ¬tbX(r, v)

v r < 0, lhX(r, v) ∨ tbX(r, v)

v r = NaN

round(rtp, s, r)(v) =

{
rsz(s)(v) r = 0

v otherwise

round(rtn, s, r)(v) =

{
rsz(s)(v) r = 0

v otherwise

round(rtz, s, r)(v) =


v r > 0

rsz(s)(v) r = 0

v otherwise

where

rsz(>)(v) = v rsz(⊥)(v) = v

TABLE V
AUXILIARY PREDICATES FOR ROUND IN THE CASE X = Z∗

lhZ∗(r, v) := r − v(v(r)) < v(v(r))− r
tbZ∗(r, v) := r − v(v(r)) = v(v(r))− r

evZ∗(x) := ∃z ∈ Z � x = 2 ∗ z

The function round is defined in Table IV. The definition relies on three auxiliary predicates lhX , tbX
and evX whose own definition depend on the particular domain X . These express: when the value is in
the lower half of the interval between two representations in X (i.e. closer to v(r) than v(r)); the tie-
break condition when it is equal distance from both; and whether a representation is even. For illustration
purposes, we provide a definition of those predicates in Table V for when X = Z, the set of integers with
the usual ordering. A definition of those predicates for sets of floating-point numbers is given later, after
we formalize such sets.

The fairly elaborate definition of round is motivated by our goal to provide an accurate model of
rounding as defined in IEEE-754. In particular, there is no mathematical reason for not using exclusively
v or v in it. However, doing so would fail to reflect some properties of IEEE-754 floating-point numbers,
for example “the sign of a sum [...] differs from at most one of the addends’ signs” [1]. For brevity, we
will write rnd(v,m, s, r) for the application round(m, s, r)(v)(r) which returns the value of X that the
real number r is rounded to by using v.

V. MODELS OF FLOATING-POINT ARITHMETIC

In this section we specify a set of (many-sorted) structures in the sense of model theory. These are the
intended models of a logical theory of floating-point numbers that reflects IEEE-754. In the next section
we will specify a signature for such a theory and show how each sort, function and predicate symbol in
the signature is interpreted over this set of structures.



7

A. Universe
The universe of each of our models consists of multiple sets: one for the rounding modes and one for

each of the different floating-point precisions. Floating-point numbers other than NaN are triples of bit
vectors modelling the three components (sign, exponent and significand) of the representations in IEEE-
754. We identify bit vectors of length ν > 0 with elements of the function space BVν = Nν → {0, 1}
where Nν = {0, . . . , ν − 1}. We write 1ν for the unique function in Nν → {1} and 0ν for the unique
function in Nν → {0}, which represent respectively the bit vector of length ν containing all ones and
that containing all zeros. Let ubν : BVν → N and sbν : BVν → Z denote the usual unsigned and 2’s
complement encodings of bit vectors into integers. Let Bµ,ν denote the set BV1 × BVµ × BVν−1. For all
integers ε, σ > 1, we define the set of floating-point numbers with ε exponent bits and σ significand bits3

as the set Fε,σ = Fε,σ ∪ {NaN} where

Fε,σ = FZε,σ ∪ FSε,σ ∪ FNε,σ ∪ FIε,σ

FZε,σ = {(s, e,m) ∈ Bε,σ | e = 0ε, m = 0σ−1}
FSε,σ = {(s, e,m) ∈ Bε,σ | e = 0ε, m 6= 0σ−1}
FNε,σ = {(s, e,m) ∈ Bε,σ | e 6= 1ε, e 6= 0ε}
FIε,σ = {(s, e,m) ∈ Bε,σ | e = 1ε, m = 0σ−1}

The last four sets above correspond respectively to the bit vector triples used to represent zeros, subnormal
numbers, normal numbers and infinities in IEEE-754, with the three components storing respectively sign,
exponent and significand of the floating-point number.4 We will write informally −0 and +0 to refer to
the two elements of FZε,σ.

We fix a total order v over Fε,σ such that (s1, e1,m1) v (s2, e2,m2) if one of the following holds:
• s1 = 1, s2 = 0
• s1 = 0, s2 = 0, ubε(e1) < ubε(e2)
• s1 = 0, s2 = 0, ubε(e1) = ubε(e2), ubσ(m1) 6 ubσ(m2)
• s1 = 1, s2 = 1, ubε(e2) < ubε(e1)
• s1 = 1, s2 = 1, ubε(e1) = ubε(e2), ubσ(m2) 6 ubσ(m1)

We extend v to a partial order on Fε,σ by NaN v NaN.
As discussed in Section IV, we define operations over Fε,σ analogously to those defined over R∗ by

mapping floating-point values to extended reals, performing the corresponding extended reals operation and
then rounding the result back to a floating-point value. To formalize this we define a function vε,σ : Fε,σ →
R∗ which maps each floating-point number to the extended real it represents. Let bias(ε) = 2ε−1 − 1.

vε,σ(f) = vε,σ((s, e,m)) =
0 f ∈ FZε,σ

(−1)ub1(s) · 21−bias(ε) · (0 + ubσ−1(m)
2σ−1 ) f ∈ FSε,σ

(−1)ub1(s) · 2ubε(e)−bias(ε) · (1 + ubσ−1(m)
2σ−1 ) f ∈ FNε,σ

(−1)ub1(s) · (+∞) f ∈ FIε,σ

vε,σ(NaN) = NaN

For brevity we will write just v in place of vε,σ when the values ε and σ are clear from context or
not important. One can show that v is injective over Fε,σ \ FZε,σ and monotonic. Thanks to the latter we
have that both v and v are well defined5 and so the function round can be used to map back from R∗ to
Fε,σ. The auxiliary predicates used in the definition of rounding in the case of X = Fε,σ are defined in
Table VI. Both lhFε,σ and tbFε,σ use a set of floating-point numbers with one extra significand bit. This is

3Allowing arbitrary values for ε and σ is strictly a generalization of IEEE-754, which only defines a handful of precisions. However,
doing so supports a wider range of applications with little additional notation and effort.

4The significand component has length σ − 1 because the hidden bit, which is 1 for normal numbers, is not explicitly represented.
5These are surjections for all points except FZε,σ which has the curious property that −0 = v(0) v v(0) = +0.



8

TABLE VI
AUXILIARY PREDICATES FOR ROUND IN THE CASE X = Fε,σ

evFε,σ (f) := f = (s, e,m) ∈ Fε,σ ∧ evZ∗(ubσ−1(m))

lhFε,σ (r, v) := σ′ = σ + 1 ∧ v(v(r)) = vε,σ′(vε,σ′(r))

tbFε,σ (r, v) := σ′ = σ + 1 ∧ v(v(r)) < vε,σ′(vε,σ′(r)) =

vε,σ′(vε,σ′(r)) < vε,σ′(v(r))

equivalent to the guard bit used in hardware implementations, giving a point mid-way between v and v.
The predicate tbFε,σ captures the property of r being equidistant from v(r) and v(r), which means that
any further significand bits would be 0. This is equivalent to the sticky bit used in hardware being equal
to 0.

B. Relations
Having defined a universe for the models, we next define various relations which will be used as the

interpretation of predicates in the theory of floating-point. Every relation is parameterized by a floating-
point domain, so each definition here actually describes a whole family of relations.

1) Unary Relations: We consider the following unary relations (subsets) for classifying floating-point
numbers as well as determining their sign, if applicable (see Section VIII-B for further discussion of sign)
.6

isNegε,σ = {f ∈ Fε,σ | f = (1, e,m)}
isPosε,σ = {f ∈ Fε,σ | f = (0, e,m)}

2) Binary Relations: We define a number of binary relations for comparing floating-point numbers.
These are different from the equality and ordering relations on Fε,σ (i.e., = and v) and those on R∗ (i.e.,
= and 6). Despite their names, they are not actually equality or ordering relations as they do not contain
(NaN,NaN) and eq, leq and geq contain both (+0,−0) and (−0,+0).

eqε,σ = {(f, g) ∈ Fε,σ × Fε,σ | v(f) = v(g)}
leqε,σ = {(f, g) ∈ Fε,σ × Fε,σ | v(f) 6 v(g)}
ltε,σ = {(f, g) ∈ Fε,σ × Fε,σ | v(f) < v(g)}

geqε,σ = {(f, g) ∈ Fε,σ × Fε,σ | v(f) > v(g)}
gtε,σ = {(f, g) ∈ Fε,σ × Fε,σ | v(f) > v(g)}

C. Operations
Similarly to relations, we define families (parameterized by domains) of functions which will serve as

the interpretation of various operations in the theory of floating-point.

6These definitions imply f = NaN⇔ ¬(isNegε,σ(f) ∨ isPosε,σ(f)).



9

a) Sign Operations: Two operations, negation and absolute value, manipulate the sign of the number.
Since the domains of floating-point numbers are symmetric around 0, there is no need for rounding and
the operations can be defined directly on the floating-point bit vectors without using R∗.

negε,σ : Fε,σ → Fε,σ

negε,σ(f) =

{
(¬s, e,m) f = (s, e,m) ∈ Fε,σ

NaN f = NaN

absε,σ : Fε,σ → Fε,σ

absε,σ(f) =

{
(0, e,m) f = (s, e,m) ∈ Fε,σ

NaN f = NaN

b) Arithmetic Operations: The main operations on floating-point numbers are those that correspond
to the operations on an ordered field. They are defined by mapping arguments to R∗ with v, performing
the corresponding operation in R∗, and finally mapping the result back with round.

addε,σ : RM× Fε,σ × Fε,σ → Fε,σ
addε,σ(rm, f, g) = rnd(v, rm, addSign(rm, f, g), v(f) + v(g))

subε,σ : RM× Fε,σ × Fε,σ → Fε,σ
subε,σ(rm, f, g) = rnd(v, rm, subSign(rm, f, g), v(f)− v(g))

mulε,σ : RM× Fε,σ × Fε,σ → Fε,σ
mulε,σ(rm, f, g) = rnd(v, rm, xorSign(f, g), v(f) ∗ v(g))

divε,σ : RM× Fε,σ × Fε,σ → Fε,σ
divε,σ(rm, f, g) ={

negε,σ(rnd(v, rm,>,−(v(f)/v(g)))) xorSign(f, g)

rnd(v, rm,⊥, v(f)/v(g)) ¬xorSign(f, g)

fmaε,σ : RM× Fε,σ × Fε,σ × Fε,σ → Fε,σ
fmaε,σ(rm, f, g, h) =

rnd(v, rm, fmaSign(rm, f, g, h), (v(f) ∗ v(g)) + v(h))

The addSign, subSign, xorSign and fmaSign predicates above are defined as follows (⊕ denotes
exclusive or):

addSign(rm, f, g) :=

{
isNeg(f) ∧ isNeg(g) rm 6= rtn

isNeg(f) ∨ isNeg(g) rm = rtn

xorSign(f, g) := isNeg(f)⊕ isNeg(g)

fmaSign(rm, f, g, h) := addSign(rm,mulε,σ(rm, f, g), h)

subSign(rm, f, g) := addSign(rm, f, negε,σ(g))

Note that since fmaε,σ only calls round once, it is not the same as addε,σ(rm,mulε,σ(rm, a, b), c). Also,
divε,σ is equal to rnd(v, rm, xorSign(f, g), v(f)/v(g)) at all points except positive numbers divided by
−0, where the “obvious” definition gives positive infinity while the definition given above gives the correct
result of minus infinity.



10

c) Additional operations: IEEE-754 defines a square root function which returns the floating-point
number nearest to the square root of the real represented by the input number. Also sqrt(rm,−0) = −0
since −0 represents 0 ∈ R∗, whose square root is 0 ∈ R∗ and the sign is inherited when rounding is
performed.

sqrtε,σ : RM× Fε,σ → Fε,σ

sqrtε,σ(rm, f) =


rnd(v, rm, isNeg(f), z) 0 6 x = v(f),

z · z = x, 0 6 z

NaN otherwise

While this is the natural definition of square root, it results in a few unexpected consequences. For
example mul(rm, sqrt(rm1, x), sqrt(rm2, x)) is not guaranteed to be equal to x and, depending on the
three rounding modes may give an infinity, even when x is a normal number.7

Let wε,σ be the restriction of vε,σ to FIε,σ∪{NaN}∪{f ∈ Fε,σ | vε,σ(f) ∈ Z}. The following operation
rounds back to a subset of Fε,σ, effectively rounding the value to a whole number representable in the
given floating-point format:

rtiε,σ : RM× Fε,σ → Fε,σ
rtiε,σ(rm, f) = rnd(wε,σ, rm, isNeg(f), v(r))

Let in : Z∗ → R∗ with in(z) = z.8 Similarly to rtiε,σ, the remainder operation requires rounding an
intermediate value to an integer:

remε,σ : RM× Fε,σ × Fε,σ → Fε,σ
remε,σ(rm, f, g) =

f f 6∈ FIε,σ ∪ {NaN}, g ∈ FIε,σ

NaN f ∈ FIε,σ ∪ {NaN}
NaN g ∈ FZε,σ ∪ {NaN}
rnd(v, rm, isNeg(f), x) x = v(f)− (v(g) ∗ y),

y = rnd(in, rm,⊥, v(f)/v(g))
remrneε,σ : Fε,σ × Fε,σ → Fε,σ
remrneε,σ(f, g) = remε,σ(rne, f, g)

Note that the remainder computed as above is always exact when rne is used. This remainder function
is the one used by the C standard library but is not necessarily the same as the intuitive idea of
remainder which can be computed via: fmaε,σ(rm, negε,σ(divε,σ(rm, f, g)), g, f). The next two operations,
the maximum and minimum of two floating-point numbers, are specified only partially: when the two
arguments have the same value in R∗, either one of the arguments can be returned.

maxε,σ : Fε,σ × Fε,σ → Fε,σ

maxε,σ(f, g) =


f gtε,σ(f, g) or g = NaN

g gtε,σ(g, f) or f = NaN

h h ∈ {f, g}, eqε,σ(f, g)

minε,σ : Fε,σ × Fε,σ → Fε,σ

minε,σ(f, g) =


f ltε,σ(f, g) or g = NaN

g ltε,σ(g, f) or f = NaN

h h ∈ {f, g}, eqε,σ(f, g)

7x ∈ R∗ and thus z is uniquely defined. Given f ∈ Fε,σ there is not necessarily a g ∈ Fε,σ such that f = mulε,σ(rm, g, g) and
leqε,σ(0, g). Furthermore, in the case of subnormal numbers, there are potentially multiple, distinct, positive square roots. Thus care must
be taken with implicit definitions of sqrt just using mul or fma.

8We consider Z a subset of R and hence Z∗ a subset of R∗.



11

Note that the underspecification is an issue only when one of the inputs to maxε,σ or minε,σ is −0 and
the other is +0. However, it means that we consider as acceptable models any structures with function
families maxε,σ and minε,σ that satisfy the specifications above, regardless of whether they return −0
or +0 for (−0,+0), and for (+0,−0). This is necessary because IEEE-754 itself allows either value to
be returned, and compliant implementations do vary. For example, on some Intel processors the result
returned by the x87 and SSE units is different.

All the preceding operations have floating-point input and outputs in the same set, Fε,σ. To convert
between different floating-point domains the following map is needed:

castε,σ,ε′,σ′ : RM× Fε′,σ′ → Fε,σ
castε′,σ′,ε,σ(rm, f) = rnd(vε,σ, rm, isNeg(f), vε′,σ′(f))

If ε > ε′ and σ > σ′, the rounding mode argument is irrelevant since then all values of Fε′,σ′ are
representable exactly in Fε,σ. However, this cannot be regarded as syntactic sugar because whether a
value is a normal or a subnormal number does change depending on the floating-point domain.

D. Combinations with Other Theories
For many applications, the theory of floating-point is not sufficient to reason about the full problem;

other theories such as integers, bit vectors, or reals are needed as well. This section describes the extensions
to the intended models required to account for these additional domains, and possible mappings between
them. IEEE-754 includes a number of functions to convert to “integer formats.” We define here such
conversions as well as extensions to IEEE-754 covering conversion to real and from real and bit vectors.
Many of the additional operations are underspecified in that out of bounds and other error conditions do
not have prescribed return values.

1) Real Numbers: For a model of the theory of floating-point to also be a model of the theory of reals,
its universe has to be extended to a disjoint union with R. Using the connections between Fε,σ and R∗,
we add the following two conversion operations:

realToFPε,σ : RM× R→ Fε,σ
realToFPε,σ(rm, r) = rnd(v, rm,⊥, r)

FPToRealε,σ : Fε,σ → R

FPToRealε,σ(f) =

{
v(f) v(f) ∈ R
x x ∈ R, otherwise

We do not specify what the value of FPToRealε,σ(f) is when f does not correspond to a real number.
This means again that we accept as a model any structure with a function family FPToRealε,σ that satisfies
the specification above.

2) Fixed-size Bit Vectors: Similarly to the previous case, to form a joint model of the theories of
floating-point and fixed-width bit vectors, the domain must be extended to a disjoint union with BVν for
every ν > 0. Let • : BVµ × BVν → BVµ+ν be the bit vector concatenation function for each µ, ν > 0.
The following function converts a bit vector of length ε+ σ, with ε, σ > 1, to a floating-point number in
Fε,σ by slicing the bit vector in three:

bitpatternToFPε,σ : BVε+σ → Fε,σ

bitpatternToFPε,σ(b) =


(s, e,m) b = s • e •m,

(s, e,m) ∈ Fε,σ

NaN otherwise



12

The function bitpatternToFP is not injective as there are multiple bit-patterns which represent NaN.
This implies that it is not possible to give a reverse map without fixing the encoding of NaN to a particular
value.

The next two functions first convert the bit vector to the integer value it denotes in binary, in 2’s
complement and unsigned format respectively, and then round that value to the corresponding floating-
point. The last two functions do the inverse conversion.

sIntToFPν,ε,σ : RM× BVν → Fε,σ
sIntToFPν,ε,σ(rm, b) = rnd(v, rm,⊥, sbν(b))

uIntToFPν,ε,σ : RM× BVν → Fε,σ
uIntToFPν,ε,σ(rm, b) = rnd(v, rm,⊥,ubν(b))

FPToSIntν,ε,σ : RM× Fε,σ → BVν

FPToSIntν,ε,σ(rm, f) =

{
b sbν(b) = rnd(in, rm,⊥, v(f))
NaN otherwise

FPToUIntν,ε,σ : RM× Fε,σ → BVν

FPToUIntν,ε,σ(rm, f)

{
b ubν(b) = rnd(in, rm,⊥, v(f))
NaN otherwise

VI. FROM MODELS TO THEORY

We now formalize a logical theory of floating-point numbers based on the structures defined in the
previous section. We use the version of many-sorted logic adopted by the SMT-LIB 2 standard [5] whose
main differences with traditional many-sorted logic is that (i) it allows sorts to be denoted by terms instead
of just constants and (ii) it allows sort, function and predicate symbols to be indexed by one or more
natural number indices. For example, possible sorts may be not just constants like Int but also terms like
Array(Int, Real) or BitVecn for all n > 0.

A. Preliminaries
A (logical) signature is consists of a set of sort symbols (of arity ≥ 0) and a set of function symbols f

with an associated rank, a tuple (S1, . . . , Sn, S) of sort terms specifying the sort of f ’s arguments, namely,
S1, . . . , Sn, and result, S. Constants are represented by nullary function symbols; predicate symbols by
function symbols whose return sort is a distinguished sort Bool. Every signature Σ is assumed to contain
Bool and constants true and false of that sort, as well as an overloaded symbol = of rank (S, S, Bool)
for each sort S, for the identity relation over S. Given a set of sorted variables for each of the sorts in
Σ, well-sorted terms and well-sorted formulas of signature Σ are defined as usual.

For every signature Σ, a Σ-interpretation I is a structure that interprets each sort S in Σ as a non-
empty set JSKI , each variable x of sort S as an element JxKI of JSKI , and each function symbol f of rank
(S1, . . . , Sn, S) as an element JfKI of the (total) function space JS1KI×· · ·×JSnKI → JSKI . Additionally,
I interprets Bool as B = {>,⊥} and each = of rank (S, S, Bool) as the function that maps (x, y) ∈ S×S
to > iff x is y. For each sort S, I induces a mapping J KI from terms of sort S to JSKI as expected. A
satisfaction relation |= between Σ-interpretations and Σ-formulas is also defined as expected. A theory of
signature Σ as a pair T = (Σ, I) where I is a set of Σ-interpretations, the models of T , that is closed under
variable reassignment.9 We say that a Σ-formula ϕ is satisfiable (resp., unsatisfiable) in T if I |= ϕ for
some (resp., no) I ∈ I.

9That is, every Σ-interpretation that differs from one in I only in how it interprets the variables is also in I.



13

TABLE VII
SORTS AND THEIR INTERPRETATION REQUIREMENTS

JRoundingModeKI = RM JFloatingPointε,σKI = Fε,σ
JRealKI = R JBitVecνKI = BVν

TABLE VIII
CONSTRUCTOR SYMBOLS AND THEIR INTERPRETATION

Symbols of rank RM:
JrneKI = rne JrnaKI = rna JrtpKI = rtp

JrtnKI = rtn JrtzKI = rtz

Symbols of rank FPε,σ:
J+ooε,σKI = (0,1ε,0σ−1) J+zeroε,σKI = (0,0ε,0σ−1)

J-ooε,σKI = (1,1ε,0σ−1) J-zeroε,σKI = (1,0ε,0σ−1)

JNaNε,σKI = NaN

Symbols of rank (BV1, BVε, BVσ, FPε,σ):

JfpKI = λ(b1, bε, bσ−1).bitpatternToFPε,σ(b1 • bε • bσ−1)

B. A Theory of Floating-Point Numbers
In the following we define a theory TFP of floating-point numbers in the sense above by specifying a

signature ΣFP and a set of IFP of ΣFP-interpretations.
The sorts of ΣFP consist, besides Bool, of two individual sorts: RoundingMode and Real; and two

sort families: BitVecν , indexed by an integer ν > 0, and FloatingPointε,σ, indexed by two integers
ε, σ > 1. The set of function symbols of ΣFP, and their ranks, is given in Table VIII through X. In those
tables, we abbreviate RoundingMode, FloatingPoint, and BitVec respectively as RM, FP, and BV.

We define the set IFP as the set of all possible ΣFP-interpretations I that interpret sort and function
symbol as specified in Table VII through X in terms of the sets and functions introduced in Section V.
Many of the function symbols are overloaded for having different ranks; so we specify their interpretation
separately for each rank.

As shown in Table VIII, the theory has a family of symbols denoting the floating-point infinities, zeros,
and NaN for each pair of exponent and significand length. It also has a ternary function symbol fp that
constructs a floating point number from a triple of bit vectors respectively storing the sign, exponent and
significant. This allows us to represent all non-NaN values with bit-level precision.

Table IX lists function symbols for the various arithmetic operations over floating-point numbers, and
provides their semantics in terms of the operations defined in Subsection V-C. The table lists predicate
symbols corresponding to the relations defined in Subsection V-B and to the various subsets of Fε,σ. For
simplicity and by a slight abuse of notation, we identify functions h of type D1 × · · · × Dn → B with
the n-ary relations {(x1, . . . , xn) ∈ D1 × · · · ×Dn | h(x1, . . . , xn) = >}.

Finally, Table X lists function symbols corresponding to the various conversion functions introduced in
Subsection V-D as well as the casting function between floating-point sets of different precision.

VII. RELATED WORK

The earliest formalizations of floating-point [10] were limited by the diversity of floating-point formats
and systems they had to cover. For example, the formalization needed to support a range of bases, as
2, 16 and 10 were all in use. Overflow and underflow were particularly problematic as, again, systems
in common usage took very different approaches to handling them. One interesting note is that the
motivation behind this early work, to support writing portable numerical software, was also one of the



14

TABLE IX
MAIN SYMBOLS AND THEIR INTERPRETATION

Symbols of rank (FPε,σ, FPε,σ):
Jfp.absKI = absε,σ Jfp.negKI = negε,σ

Symbols of rank (FPε,σ, FPε,σ, FPε,σ):

Jfp.maxKI = maxε,σ Jfp.minKI = minε,σ

Jfp.remKI = remrneε,σ

Symbols of rank (RM, FPε,σ, FPε,σ):

Jfp.sqrtKI = sqrtε,σ Jfp.roundToIntegralKI = rtiε,σ

Symbols of rank (RM, FPε,σ, FPε,σ, FPε,σ):

Jfp.addKI = addε,σ Jfp.subKI = subε,σ

Jfp.mulKI = mulε,σ Jfp.divKI = divε,σ

Symbols of rank (RM, FPε,σ, FPε,σ, FPε,σ, FPε,σ):
Jfp.fmaKI = fmaε,σ

Symbols of rank (FPε,σ, Bool):

Jfp.isNormalKI = FNε,σ Jfp.isNegativeKI = isNegε,σ

Jfp.isSubnormalKI = FSε,σ Jfp.isPositiveKI = isPosε,σ

Jfp.isInfiniteKI = FIε,σ Jfp.isZeroKI = FZε,σ

Jfp.isNaNKI = {NaN}

Symbols of rank (FPε,σ, FPε,σ, Bool), where gtε,σ is the converse of ltε,σ:

Jfp.ltKI = ltε,σ Jfp.leqKI = leqε,σ

Jfp.gtKI = gtε,σ Jfp.geqKI = geqε,σ

Jfp.eqKI = eqε,σ

TABLE X
CONVERSION SYMBOLS AND THEIR INTERPRETATION

Conversions to floating-point
Jto fpε,σ : (RM, FPε′,σ′ , FPε,σ)KI = castε′,σ′,ε,σ

Jto fpε,σ : (BVε+σ, FPε,σ)KI = bitpatternToFPε,σ

Jto fpε,σ : (RM, Real, FPε,σ)KI = realToFPε,σ

Jto fpε,σ : (RM, BVν , FPε,σ)KI = sIntToFPν,ε,σ

Jto fp unsignedε,σ : (RM, BVν , FPε,σ)KI = uIntToFPν,ε,σ

Conversions from floating-point
Jfp.to sbvν : (FPε,σ, BVν)KI = FPToSIntν,ε,σ

Jfp.to ubvν : (FPε,σ, BVν)KI = FPToUIntν,ε,σ

Jfp.to real : (FPε,σ, Real)KI = FPToRealν,ε,σ

drivers of the development of IEEE-754. The first formalization of IEEE-754 [6] is notable on several
grounds. It was the first to use a formal language (Z) and to be used to verify algorithms for the basic
operations. The verification was manual, using Hoare logic, and the algorithms in question were those
implemented in the firmware of the T800 Transputer. During the formalization, a few issues in IEEE-754
were found and the verification uncovered bugs that would have been difficult to find with testing [28].
Foreshadowing the issue in the Pentium 1, bugs were found in the Transputer’s handling of floating-point,



15

introduced by the translation to machine code and manual “tidying up” [17], suggesting a need to extend
the proof chain to the whole development process and a need for greater automation.

The FDIV bug in the Pentium 1 and the cost of the resultant recall spurred the use of machine-checked
formal proofs in the design of floating-point hardware [20], [21]. To this end, IEEE-754 was formalized
in a variety of interactive theorem provers, including Isabelle [29], HOL [11], HOL Light [19] (used by
Intel), ACL2 [26] (used by AMD and Centaur), PVS [24] and Coq [14], [23], [7]. These and related
approaches [2] share a number of common characteristics due to the provers they targeted. They are
all instances of the axiomatic approach described in Section III; generally reduce floating-point numbers
to integers and reals; are intended for use in machine checked proofs; and are normally used to verify
implementations of floating-point and specific algorithms based on them. In contrast, this work (and
its precursor [27]) follows the algebraic approach; builds on computationally simple primitives; and is
intended to be a formal reference for automatic theorem provers providing built-in support for reasoning
about floating-point arithmetic.

A number of SMT solvers provide support for early versions of our theory by encoding floating-point
expressions as bit-vector expressions based on the circuits used to implement floating-point operations.
To improve performance, they often rely on over and under approximation schemes. To our knowledge,
the earliest implementation of this approach was given in the CBMC model checker [9]. The approach is
now used in Z3 [16], MathSAT [12], SONOLAR [22] and CVC4 [3], and improving it remains an active
area of research [30]. An alternative approach is based on abstract interpretation. It uses intervals or other
abstract domains to over-approximate possible models, and a system of branching and learning similar
to the SAT algorithm CDCL to narrow these to particular concrete models [18], [8]. There has also been
work to integrate the automated prover Gappa [15] into SMT solvers [13], although these solvers are not
known to implement the semantics presented in this paper.

VIII. DISCUSSION

This work originated in the context of the SMT-LIB initiative10 with the goal of defining a standard,
reference SMT-LIB theory of floating-point numbers for SMT solvers. The process of defining this
reference theory was guided by three, somewhat conflicting, main principles:

1) minimise the amount of effort required to implement a solver for such a theory;
2) support a wide range of applications (including avoiding hardware or language specific idioms);
3) conform strictly with IEEE-754in the sense that any compliant implementation of IEEE-754 would

form a model of the theory and vice versa.

A. Process of Standardisation
An initial proposal for an SMT-LIB floating-point theory was made by P. Rümmer and T. Wahl in

2010 [27]. A second draft based on that proposal was produced by C. Tinelli using initial community
feedback. This draft was used by a number of system implementors to produce benchmarks and theory
solvers. To draw on the experience of using the theory, a work group was formed to decide on a first
official theory definition. The suggestions made and changes requested by the work group were written
up by C. Tinelli and M. Brain and released to the SMT-LIB community mailing list. We used feedback
and corrections from this final review to prepare the version of the theory presented here. The semantics
we developed for this theory, discussed in Section IV, was inspired by the initial work in [27], but differs
substantially from that work by providing a bit-precise semantics of IEEE-754 floating-point.

B. Limitations and Omissions
The theory presented here does not cover all of the functionality of IEEE-754. Here is a list of salient

omissions and restrictions and their rationale.
10See www.smt-lib.org .



16

• Two radices, 2 and 10, are included in IEEE-754, although compliant implementations are not required
to support both. Our theory only covers radix 2 (binary) representations, as decimal representations
are not widely implemented, supported by languages, or used.

• IEEE-754 gives four “specification levels” (extended real, floating-point data, representations and
bit-strings) with maps between them. The formalization in this paper is based on the second level of
specification. Thus there is only one NaN, as quiet and signalling NaN are introduced at level three.
Also, NaN is not regarded to have a sign or a payload as these concepts are introduced at level four.
As a consequence, functionality that uses these properties of NaN, such as copy sign, sign of and
the total order predicate, has been omitted.

• Our formalization does not cover the IEEE-754 notion of exceptions or flags (the default handling
of executions). This is simply because there is no notion of execution order in a logical formula, and
so there is no meaningful way of expressing those notions directly in theory.

• The 2008 revision of IEEE-754 adds the notion of attributes, a means of attaching implicit parameters
to sections of programs. Only the most commonly supported attribute, rounding direction, is modeled
in our theory—by adding an explicit rounding mode parameter to operations affected by it. Some
of the other attributes could be effectively modeled but we chose not to do so because they are
programming language specific.

• We do not support unordered variants of comparison operators (those that return true if one or more
of the arguments are NaN) since they are rarely used. It would, however, be relatively simple to
model these variants.

• IEEE-754 contains recommendations for trigonometric functions and exponentials but neither are
mandated. The accuracy of implementations of these functions vary significantly, making it very
hard to come up with logical models that are widely applicable but also meaningfully constrained.
Similarly, there are only recommendations for reduction operations, and implementations vary.

IX. CONCLUSION

This paper presents a formalization of IEEE-754 binary floating-point arithmetic as a logical theory,
with the goal of enabling automated bit-precise reasoning about programs using floating-point data. The
theory is defined as a set of function symbols that model several floating-point operations, and a set
of mathematical structures that act as the intended models. This work represents the culmination of a
community-driven process to define a standard theory of floating-point arithmetic for SMT, and is intended
to be provide a common formal reference for both developers and users of SMT solvers, especially in
the context of verification applications.

Acknowledgments: We would like to to thank François Bobot, David Cok, Alberto Griggio, Florian
Lapschies, Leonardo de Moura, Gabriele Paganelli, Cody Roux, and Christoph Wintersteiger for their
input, feedback and active involvement in the work group.

REFERENCES

[1] I. S. Association. IEEE standard for floating-point arithmetic, 2008. http://grouper.ieee.org/groups/754/.
[2] A. Ayad and C. Marché. Multi-prover verification of floating-point programs. In IJCAR’10, pages 127–141. Springer, 2010.
[3] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and C. Tinelli. CVC4. In CAV’11, CAV’11,

pages 171–177. Springer, 2011.
[4] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo theories. In A. Biere, M. J. H. Heule, H. van Maaren, and

T. Walsh, editors, Handbook of Satisfiability, volume 185, chapter 26, pages 825–885. IOS Press, February 2009.
[5] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. Technical report, Department of Computer Science, The

University of Iowa, 2010.
[6] G. Barrett. Formal methods applied to a floating-point number system. IEEE Trans. Softw. Eng., 15(5):611–621, May 1989.
[7] S. Boldo and G. Melquiond. Flocq: A Unified Library for Proving Floating-point Algorithms in Coq. In ARITH’11, pages 243–252.

IEEE, July 2011.
[8] M. Brain, V. D’Silva, A. Griggio, L. Haller, and D. Kroening. Interpolation-based verification of floating-point programs with abstract

CDCL. In SAS’13, pages 412–432. Springer, June 2013.
[9] A. Brillout, D. Kroening, and T. Wahl. Mixed abstractions for floating-point arithmetic. In FMCAD’09. Springer, 2009.



17

[10] W. S. Brown. A simple but realistic model of floating-point computation. ACM Trans. Math. Softw., 7(4):445–480, Dec. 1981.
[11] V. A. Carreño. Interpretation of IEEE-854 floating-point standard and definition in the HOL system. Technical report, NASA Langley

Research Center, 1995.
[12] A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani. The MathSAT5 SMT Solver. In TACAS’13, volume 7795. Springer, 2013.
[13] S. Conchon, G. Melquiond, C. Roux, and M. Iguernelala. Built-in treatment of an axiomatic floating-point theory for SMT solvers. In

SMT’12, pages 12–21. EasyChair, 2013.
[14] M. Daumas, L. Rideau, and L. Théry. A generic library for floating-point numbers and its application to exact computing. In TPHOL’01,

pages 169–184. Springer, 2001.
[15] F. de Dinechin, C. Lauter, and G. Melquiond. Certifying the floating-point implementation of an elementary function using Gappa.

IEEE Trans. on Computers, 60(2), 2011.
[16] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS’08, pages 337–340. Springer, 2008.
[17] J. Gibbons. Formal methods: Why should I care? – the development of the T800 transputer floating-point unit. In New Zealand

Computer Society Conference, pages 207–217, 1993.
[18] L. Haller, A. Griggio, M. Brain, and D. Kroening. Deciding floating-point logic with systematic abstraction. In FMCAD’12, pages

131–140, October 2012.
[19] J. Harrison. Floating point verification in HOL light: The exponential function. In AMAST’97, pages 246–260. Springer, 1997.
[20] J. Harrison. Floating-point verification using theorem proving. In SFM’06, pages 211–242. Springer, 2006.
[21] J. Harrison. Floating-point verification. J. UCS, 13(5):629–638, 2007.
[22] E. V. Jan Peleska and F. Lapschies. Automated test case generation with SMT-solving and abstract interpretation. In NFM’11, LNCS,

pages 298–312. Springer, April 2011.
[23] G. Melquiond. Floating-point arithmetic in the Coq system. Information and Computation, 216:14–23, July 2012.
[24] P. S. Miner. Defining the IEEE-854 floating-point standard in PVS. Technical report, NASA Langley Research Center, 1995.
[25] D. Monniaux. The pitfalls of verifying floating-point computations. ACM Trans. Program. Lang. Syst., 30(3), 2008.
[26] J. Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof of the AMD5K86TM floating-point division program. IEEE

Trans. on Computers, 47(9):913–926, Sep 1998.
[27] P. Ruemmer and T. Wahl. An SMT-LIB theory of binary floating-point arithmetic. In SMT’10, 2010.
[28] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal methods: Practice and experience. ACM Comput. Surv., 41(4):19:1–

19:36, Oct. 2009.
[29] L. Yu. A formal model of IEEE floating point arithmetic, July 2013. http://afp.sf.net/entries/IEEE Floating Point.shtml.
[30] A. Zeljic, C. M. Wintersteiger, and P. Rümmer. Approximations for model construction. In IJCAR’14, pages 344–359. Springer, 2014.


