
Noname manuscript No.
(will be inserted by the editor)

Interpolating Bit-Vector Formulas using Uninterpreted
Predicates and Presburger Arithmetic

Peter Backeman · Philipp Rümmer ·
Aleksandar Zeljić

the date of receipt and acceptance should be inserted later

Abstract The inference of program invariants over machine arithmetic, commonly
called bit-vector arithmetic, is an important problem in verification. Techniques
that have been successful for unbounded arithmetic, in particular Craig interpola-
tion, have turned out to be difficult to generalise to machine arithmetic: existing
bit-vector interpolation approaches are based either on eager translation from bit-
vectors to unbounded arithmetic, resulting in complicated constraints that are
hard to solve and interpolate, or on bit-blasting to propositional logic, in the
process losing all arithmetic structure. We present a new approach to bit-vector
interpolation, as well as bit-vector quantifier elimination (QE), that works by lazy
translation of bit-vector constraints to unbounded arithmetic. Laziness enables us
to fully utilise the information available during proof search (implied by decisions
and propagation) in the encoding, and this way produce constraints that can be
handled relatively easily by existing interpolation and QE procedures for Pres-
burger arithmetic. The lazy encoding is complemented with a set of native proof
rules for bit-vector equations and non-linear (polynomial) constraints, this way
minimising the number of cases a solver has to consider. We also incorporate a
method for handling concatenations and extractions of bit-vector efficiently.

Keywords bit-vectors, interpolation, quantifier elimination, Presburger arith-
metic

Acknowledgements This research has been supported by the Swedish Research Council
(VR) under the grants 2014-5484 and 2018-04727, by the Swedish Foundation for Strategic
Research (SSF) under the project WebSec (Ref. RIT17-0011), and by a grant from Microsoft.
We also wish to thank the reviewers for their extensive and helpful feedback.

Peter Backeman
Mälardalen University, Väster̊as, Sweden

Philipp Rümmer
Department of Information Technology, Uppsala University, Sweden

Aleksandar Zeljić
Stanford University, Stanford, USA

2 Peter Backeman et al.

1 Introduction

Craig interpolation is a commonly used technique to infer invariants or contracts
in verification. Over the last 15 years, efficient interpolation techniques have been
developed for a variety of logics and theories, including propositional logic [1,2],
uninterpreted functions [1,3,4], first-order logic [5,6,7], algebraic data-types [8,9],
linear real arithmetic [1], non-linear real arithmetic [10], Presburger arithmetic [11,
4,12], and arrays [13,14,15].

A theory that has turned out notoriously difficult to handle in Craig inter-
polation is bounded machine arithmetic, commonly called bit-vector arithmetic.
Decision procedures for bit-vectors are predominantly based on bit-blasting, in
combination with sophisticated preprocessing and simplification methods, which
implies that also extracted interpolants stay on the level of propositional logic and
are difficult to map back to compact high-level bit-vector constraints. An alterna-
tive interpolation approach translates bit-vector constraints to unbounded integer
arithmetic formulas [16], but is limited to linear constraints and tends to pro-
duce integer formulas that are hard to solve and interpolate, due to the necessary
introduction of additional variables and large coefficients to model wrap-around
semantics correctly.

In this article, we introduce a new Craig interpolation method for bit-vector
arithmetic, initially focusing on arithmetic bit-vector operations including addi-
tion, multiplication, and division. Like [16], we compute interpolants by reducing
bit-vectors to unbounded integers; unlike in earlier approaches, we define a cal-
culus that carries out this reduction lazily, and can therefore dynamically choose
between multiple possible encodings of the bit-vector operations. This is done by
initially representing bit-vector operations as uninterpreted predicates, which are
expanded and replaced by Presburger arithmetic expressions on demand. The cal-
culus also includes native rules for non-linear constraints and bit-vector equations,
so that formulas can often be proven without having to resort to a full encoding as
integer constraints. Our approach gives rise to both Craig interpolation and quan-
tifier elimination (QE) methods for bit-vector constraints, with both procedures
displaying competitive performance in our experiments.

Reduction of bit-vectors to unbounded integers has the additional advantage
that integer and bit-vector formulas can be combined efficiently, including the use
of conversion functions between both theories, which are difficult to support using
bit-blasting. This combination is of practical importance in software verification,
since programs and specifications often mix machine arithmetic with arbitrary-
precision numbers; tools might also want to switch between integer semantics
(if it is known that no overflows can happen) and bit-vector semantics for each
individual program instruction.

This is an extended version of a paper presented at FMCAD 2018 [17]. Com-
pared to the conference version, this article considers an extended fragment of bit-
vector logic, including also concatenation and extraction operations on bit-vectors,
as well as bit-wise operators like bvor or bvnot. We show that the representation of
concatenation and extraction using uninterpreted predicates is sufficient to obtain
an interpolation procedure for the quantifier-free structural fragment of bit-vector
logic, i.e., bit-vector constraints with only concatenation, extraction, and posi-
tive equations [18,19]. Bit-wise operations are handled via a direct translation to
Presburger arithmetic akin to bit-blasting.

Title Suppressed Due to Excessive Length 3

The contributions of the article are: 1. a new calculus for non-linear integer
arithmetic, which can eliminate quantifiers (in certain cases) and extract Craig
interpolants (Section 3); 2. a corresponding calculus for arithmetic bit-vector con-
straints (Section 4); 3. the extension of the calculus to handle concatenation, ex-
traction, and bit-wise operations (Section 5); 4. an experimental evaluation using
SMT-LIB and model checking benchmarks (Section 6).

1.1 Example 1: Interpolating Arithmetic Bit-Vector Operations

We start by considering one of the examples from [16], the interpolation prob-
lem A ∧B defined by

A = ¬bvule8(bvadd8(y4, 1), y3) ∧ y2 = bvadd8(y4, 1)

B = bvule8(bvadd8(y2, 1), y3) ∧ y7 = 3 ∧ y7 = bvadd8(y2, 1)

where all variables range over unsigned 8-bit bit-vectors. The function bvadd8
represents addition of two bit-vectors, while the predicate bvule8 is the unsigned
≤ comparison. An interpolant for A ∧B is a formula I such that the implications
A⇒ I and B ⇒ ¬I hold, and such that only variables common to A and B occur
in I.

An eager encoding into Presburger arithmetic (linear integer arithmetic, LIA)
would typically add variables to handle wrap-around semantics, e.g., mapping
y′4 = bvadd8(y4, 1) to y′4 = y4 + 1 − 28σ1 ∧ 0 ≤ y′4 < 28 ∧ 0 ≤ σ1 ≤ 1. This yields
a formula in Presburger arithmetic that exactly models the bit-vector semantics,
and can be solved and interpolated using existing methods implemented in SMT
solvers. Interpolants can be mapped back to a pure bit-vector formula if needed.
However, additional variables and large coefficients tend to be hard both for solving
and interpolation; the LIA interpolant presented in [16] for A∧B is the somewhat
complicated formula ILIA = −255 ≤ y2 − y3 + 256⌊−1 y2

256⌋.
Our approach translates bit-vector formulas to our core language — an exten-

sion of Presburger arithmetic with constructs to express bit-vector domains, wrap-
around semantics and operations that can be simplified in different ways, such as
bvmul. For example, domain predicate inw(x) expresses that variable x belongs to
the value range of a bit-vector of width w. Similarly, predicate ubmodw (x, y) ex-
presses the unsigned wrap-around semantics without explicitly encoding it. Trans-
lating A and B to the core language yields:

Acore = ψA ∧ ubmod8 (y4 + 1, c1) ∧ c1 > y3 ∧ y2 = c1

Bcore = ψB ∧ ubmod8 (y2 + 1, c2) ∧ c2 ≤ y3 ∧ y7 = 3 ∧ y7 = c2

where ψA = in8(y2)∧in8(y3)∧in8(y4)∧in8(c1) and ψB = in8(y2)∧in8(y3)∧in8(y7)∧
in8(c2) capture the domain constraints. The core language enables a layered cal-
culus that encodes predicates on a case by case basis, preferring simpler encodings
whenever possible. In our example, rule bmod-split splits the ubmod8 (y2 + 1, c2)
into the only two relevant cases based on the bounds of y2 implied by Acore, Bcore:

. . . , 0 ≤ c2 < 256, y2 + 1 = c2 ⊢

. . . , 0 ≤ c2 < 256, y2 + 1 = c2 + 256 ⊢
. . . , ubmod8 (y2 + 1, c2) ⊢

bmod-split

4 Peter Backeman et al.

Due to y7 = 3∧y7 = c2, the cases reduce to y2 = 2 and y2 = 258, and immediately
contradict Acore, Bcore.

When variable bounds are tight enough and there are only a few cases, case
splits are more efficient than σ variables. However, that is not always the case
and our calculus lazily decides how to handle each occurrence. Simpler proofs also
lead to simpler and more compact interpolants; using our lazy approach, the final
interpolant in the example is ILAZY = y3 < y2, which is simple and avoids the
division operator in ILIA. We will revisit this example in Section 4.4 and explain
in greater detail how this interpolant is obtained.

1.2 Example 2: Interpolating Structural Bit-Vector Operations

We continue with a (reduced) example taken from [19], a formula of equalities
between (slices of) bit-vectors of length 8:

x[5 : 0] = 22 ∧ y[7 : 2] = 6 ∧ x = y

where x[u : l] is the extraction of the slice of bits from uth down to lth (inclusive). In
the previous example the bit-vector formula was translated to integer arithmetic,
however this can sometimes be inefficient when dealing with structural bit-vector
operations, e.g., extractions and concatenations. A direct translation to integer
arithmetic has a hard time to isolate the conflict, since integer operations cannot
capture extractions in a natural way.

Instead, it is possible to split the bit-vectors into segments

x[5 : 0] = 22 y[7 : 2] = 6 x = y

y[7 : 6] = 0 x[7 : 6] = y[7 : 6]

x[5 : 2] = 5 y[5 : 2] = 6 x[5 : 2] = y[5 : 2]

x[1 : 0] = 2 x[1 : 0] = y[1 : 0]

Given this decomposition of the bit-vectors, it is easy see the conflict x[5 : 2] =
5 ̸= 6 = y[5 : 2] without a translation to integers. Interpolants can in this setting
be extracted by referring to individual slices of bit-vectors, with the help of the
extraction operator. In Section 5 we show how bit-vectors can be decomposed in
this manner using an interpolating calculus.

1.3 Related Work

Most SMT solvers handle bit-vectors using bit-blasting and SAT solving, and usu-
ally cannot extract interpolants for bit-vector problems. The exception is Math-

SAT [20], which uses a layered approach [16] to compute interpolants: MathSAT

first tries to compute interpolants by keeping bit-vector operations uninterpreted;
then using a restricted form of quantifier elimination; then by eager encoding into
linear integer arithmetic (LIA); and finally through bit-blasting. Our approach has
some similarities to the LIA encoding, but can choose simpler encodings thanks
to laziness, and also covers non-linear arithmetic constraints.

A similarly layered approach, proposed in [21], can be used to compute function
summaries in bounded model checking. When bounded model checking is able to

Title Suppressed Due to Excessive Length 5

prove (bounded) safety of a program, Craig interpolation can subsequently be
used to extract function summaries; such summaries can later be useful to speed
up other verification tasks. To handle bit-vector constraints in this context, [21]
successively applies more and more precise over-approximations of bit-vectors:
using uninterpreted functions, linear real arithmetic, and finally using precise bit-
blasting. Interpolants are computed in the coarsest theory that was able to prove
safety of a verification task.

Other related work has focused on interpolation for fragments of bit-vector
logic. In [22], an algorithm is given for reconstructing bit-vector interpolants from
bit-level interpolants, however restricted to the case of bit-vector equalities. An
interpolation procedure based on a set of tailor-made (but incomplete) rewriting
rules for bit-vectors is given in [23].

Looking more generally at model checking for finite-state systems formulated
over the theory of bit-vectors (often called word-level model checking), lazy ap-
proaches to handle complex bit-vector operations have been proposed. In [24],
an approximation method for model checking RTL designs is defined that in-
stantiates complex bit-vector operations lazily. Initially, such operations are over-
approximated by leaving the results unconstrained; when spurious counterexam-
ples occur, the approximation is refined by adding additional constraints, or ulti-
mately by precisely instantiating the operator. Such approaches are independent
of the underlying finite-state model checking algorithm, and do not necessarily
involve Craig interpolation, however.

The core logic of bit-vectors (formulas with only concatenation, extraction, and
positive equations) was identified in [18] to be solvable in polynomial time.1 Our
work is inspired by the decomposition-based decision procedure for this fragment
developed in [19], where the authors present an algorithm together with a data-
structure designed for solving formulas over the core logic of bit-vectors efficiently.
To the best of our knowledge, Craig interpolation for the structural fragment has
not been considered previously.

2 Preliminaries: The Base Logic

We formulate our approach on top of a simple logic of Presburger arithmetic con-
straints combined with uninterpreted predicates, introduced in [25] and extended
in [4,11] to support Craig interpolation. Let x range over an infinite set X of vari-
ables, c over an infinite set C of constants, p over a set P of predicate symbols with
fixed arity, and α over the set Z of integers. The syntax of terms and formulas is
defined by the following grammar:

ϕ ::= t = 0 || t ≤ 0 || p(t, . . . , t) ||ϕ ∧ ϕ ||ϕ ∨ ϕ || ¬ϕ || ∀x.ϕ || ∃x.ϕ

t ::= α || c ||x ||αt+ · · ·+ αt

The symbol t denotes terms of linear arithmetic. Substitution of a term t for a
variable x in ϕ is denoted by [x/t]ϕ; we assume that variable capture is avoided
by renaming bound variables as necessary. For simplicity, we sometimes write

1 To avoid confusing with our own “core” fragment introduction in Section 4, we call the
logic from [18] the “structural fragment” in this article.

6 Peter Backeman et al.

Γ, ϕ ⊢ ∆ Γ,ψ ⊢ ∆

Γ, ϕ ∨ ψ ⊢ ∆
∨-left

Γ, ϕ ⊢ ∆ Γ,ψ ⊢ ∆

Γ ⊢ ϕ ∧ ψ,∆ ∧-right

Γ, ϕ, ψ ⊢ ∆

Γ, ϕ ∧ ψ ⊢ ∆
∧-left

Γ ⊢ ϕ, ψ,∆

Γ ⊢ ϕ ∨ ψ,∆ ∨-right

Γ ⊢ ϕ,∆

Γ,¬ϕ ⊢ ∆
¬-left

Γ, ϕ ⊢ ∆

Γ ⊢ ¬ϕ,∆
¬-right

∗
Γ, ϕ ⊢ ϕ,∆

close

Γ, [x/t]ϕ,∀x.ϕ ⊢ ∆

Γ, ∀x.ϕ ⊢ ∆
∀-left

Γ, [x/c]ϕ ⊢ ∆

Γ,∃x.ϕ ⊢ ∆
∃-left

Γ ⊢ [x/t]ϕ, ∃x.ϕ,∆
Γ ⊢ ∃x.ϕ,∆ ∃-right

Γ ⊢ [x/c]ϕ,∆

Γ ⊢ ∀x.ϕ,∆ ∀-right

Fig. 1 A selection of the basic calculus rules for propositional logic (upper box) and quantifier
rules (lower box). In the rules ∃-left and ∀-right, c is a constant that does not occur in the
conclusion.

s = t as a shorthand of s− t = 0, inequalities s ≤ t and t ≥ s for s− t ≤ 0, and
∀c.ϕ as a shorthand of ∀x.[c/x]ϕ if c is a constant. The abbreviation true (false)
stands for equality 0 = 0 (1 = 0), and the formula ϕ → ψ abbreviates ¬ϕ ∨ ψ.
Semantic notions such as structures, models, satisfiability, and validity are defined
as is common (e.g., [26]), but we assume that evaluation always happens over the
universe Z of integers; bit-vectors will later be defined as a subset of the integers.

2.1 A Sequent Calculus for the Base Logic

For checking whether a formula in the base logic is satisfiable or valid, we work
with the calculus presented in [25], a part of which is shown in Figure 1. If Γ ,
∆ are finite sets of formulas, then Γ ⊢ ∆ is a sequent. A sequent is valid if the
formula

∧
Γ →

∨
∆ is valid. Positions in ∆ that are underneath an even/odd

number of negations are called positive/negative; and vice versa for Γ . Proofs are
trees growing upward, in which each node is labeled with a sequent, and each
non-leaf node is related to the node(s) directly above it through an application
of a calculus rule. A proof is closed if it is finite and all leaves are justified by an
instance of a rule without premises. Soundness of the calculus implies that the
root of a closed proof is a valid sequent.

In addition to propositional and quantifier rules in Figure 1, the calculus in
[25] also includes rules for equations and inequalities in Presburger arithmetic;
the details of those rules are not relevant for this paper. The calculus is complete
for quantifier-free formulas in the base logic, i.e., for every valid quantifier-free
sequent a closed proof can be found. It is well-known that the base logic including
quantifiers does not admit complete calculi [27], but as discussed in [25] the calculus
can be made complete (by adding slightly more sophisticated quantifier handling)
for interesting undecidable fragments, for instance for sequents ⊢ ϕ in which ϕ

contains ∃/∀ only under an even/odd number of negations.
For quantifier-free input formulas, proof search can be implemented in depth-

first style following the core concepts of DPLL(T) [28]: rules with multiple premises

Title Suppressed Due to Excessive Length 7

correspond to decisions and explore the branches one by one; rules with a single
premise represent propagation or rewriting; and logging of rule applications is used
in order to implement conflict-driven learning and proof extraction. For experi-
ments, we use the implementation of the calculus in Princess.2

2.2 Quantifier Elimination in the Base Logic

The sequent calculus can eliminate quantifiers in Presburger arithmetic, i.e., in the
base logic without uninterpreted predicates, since the arithmetic calculus rules are
designed to systematically eliminate constants. To illustrate this use case, suppose
ϕ is a formula without uninterpreted predicates (P = ∅) and without constants c,
but possibly containing variables x. Formula ϕ furthermore only contains ∀/∃ un-
der an even/odd number of negations, i.e., all quantifiers are effectively universal.
To compute a quantifier-free formula ψ that is equivalent to ϕ, we can construct
a proof with root sequent ⊢ ϕ, and keep applying rules until no further appli-
cations are possible in any of the remaining open goals {Γi ⊢ ∆i | i = 1, . . . , n}.
In this process, rules ∃-left and ∀-right can introduce fresh constants, which
are subsequently isolated and eliminated by the arithmetic rules. To find ψ, it is
essentially enough to extract the constant-free formulas Γ v

i ⊆ Γi, ∆
v
i ⊆ ∆i in the

open goals, and construct ψ =
∧n

i=1(
∧
Γ v
i →

∨
∆v

i).
The full calculus [25] is moreover able to eliminate arbitrarily nested quan-

tifiers, and can be used similarly to prove validity of sequents with quantifiers.
A recent independent evaluation [29] showed that the resulting proof procedure
is competitive with state-of-the-art SMT solvers and theorem provers on a wide
range of quantified integer problems.

2.3 Craig Interpolation in the Base Logic

Given formulas A and B such that A ∧B is unsatisfiable, Craig interpolation can
determine a formula I such that the implications A⇒ I and B ⇒ ¬I hold, and
non-logical symbols in I occur in both A and B [30]. An interpolating version of
our sequent calculus has been presented in [4,11], and is summarised in Figure 2.
To keep track of the partitions A,B, the calculus operates on labeled formulas ⌊ϕ⌋L
(with L for “left”) to indicate that ϕ is derived from A, and similarly formulas ⌊ϕ⌋R
for ϕ derived from B. If Γ , ∆ are finite sets of L/R-labeled formulas, and I is an
unlabeled formula, then Γ ⊢ ∆ ▶ I is an interpolating sequent.

Semantics of interpolating sequents is defined using the following projections:
ΓL =def {ϕ | ⌊ϕ⌋L ∈ Γ} and ΓR =def {ϕ | ⌊ϕ⌋R ∈ Γ}, which extract the L/R-parts
of a set Γ of labeled formulas. A sequent Γ ⊢ ∆ ▶ I is valid if 1. the sequent
ΓL ⊢ I,∆L is valid, 2. the sequent ΓR, I ⊢ ∆R is valid, and 3. constants and
predicates in I occur in both ΓL ∪∆L and ΓR ∪∆R. As a special case, note that
the sequent ⌊A⌋L, ⌊B⌋R ⊢ ∅ ▶ I is valid iff I is an interpolant of A∧B. Soundness
of the calculus guarantees that the root of a closed interpolating proof is a valid
interpolating sequent.

To solve an interpolation problem A ∧B, a prover typically first constructs
a proof of A,B ⊢ ∅ using the ordinary calculus from Section 2.1. Once a closed

2 http://www.philipp.ruemmer.org/princess.shtml

http://www.philipp.ruemmer.org/princess.shtml

8 Peter Backeman et al.

Γ, ⌊ϕ⌋L ⊢ ∆ ▶ I Γ, ⌊ψ⌋L ⊢ ∆ ▶ J

Γ, ⌊ϕ ∨ ψ⌋L ⊢ ∆ ▶ I ∨ J
∨-leftL

Γ, ⌊ϕ⌋R ⊢ ∆ ▶ I Γ, ⌊ψ⌋R ⊢ ∆ ▶ J

Γ, ⌊ϕ ∨ ψ⌋R ⊢ ∆ ▶ I ∧ J
∨-leftR

Γ, ⌊ϕ⌋D, ⌊ψ⌋D ⊢ ∆ ▶ I

Γ, ⌊ϕ ∧ ψ⌋D ⊢ ∆ ▶ I
∧-leftD

Γ ⊢ ⌊ϕ⌋D,∆ ▶ I

Γ, ⌊¬ϕ⌋D ⊢ ∆ ▶ I
¬-leftD

∗
Γ, ⌊ϕ⌋L ⊢ ⌊ϕ⌋L,∆ ▶ false

closeLL
∗

Γ, ⌊ϕ⌋R ⊢ ⌊ϕ⌋R,∆ ▶ true
closeRR

∗
Γ, ⌊ϕ⌋L ⊢ ⌊ϕ⌋R,∆ ▶ ϕ

closeLR
∗

Γ, ⌊ϕ⌋R ⊢ ⌊ϕ⌋L,∆ ▶ ¬ϕ
closeRL

Γ, ⌊[x/t]ϕ⌋L, ⌊∀x.ϕ⌋L ⊢ ∆ ▶ I

Γ, ⌊∀x.ϕ⌋L ⊢ ∆ ▶ ∀Rt I
∀-leftL

Γ, ⌊[x/t]ϕ⌋R, ⌊∀x.ϕ⌋R ⊢ ∆ ▶ I

Γ, ⌊∀x.ϕ⌋R ⊢ ∆ ▶ ∃Lt I
∀-leftR

Γ, ⌊[x/c]ϕ⌋D ⊢ ∆ ▶ I

Γ, ⌊∃x.ϕ⌋D ⊢ ∆ ▶ I
∃-leftD

Γ ⊢ ⌊[x/c]ϕ⌋D,∆ ▶ I

Γ ⊢ ⌊∀x.ϕ⌋D,∆ ▶ I
∀-rightD

Fig. 2 The upper box presents a selection of interpolating rules for propositional logic, while
the lower box shows rules for quantifiers. Parameter D stands for either L or R. The quanti-
fier ∀Rt denotes universal quantification over all constants occurring in t but not in ΓL ∪∆L;
likewise, ∃Lt denotes existential quantification over all constants occurring in t but not in
ΓR ∪∆R. In ∃-leftD, c is a constant that does not occur in the conclusion.

proof has been found, it can be lifted to an interpolating proof: this is done by
replacing the root formulas A,B with ⌊A⌋L, ⌊B⌋R, respectively, and recursively
assigning labels to all other formulas as defined by the rules from Figure 2. Then,
starting from the leaves, intermediate interpolants are computed and propagated
back to the root, leading to an interpolating sequent ⌊A⌋L, ⌊B⌋R ⊢ ∅ ▶ I.

3 Solving Non-Linear Constraints

We extend the base logic in three steps: in this section, symbols and rules are
added to solve non-linear diophantine problems; a second extension is then done in
Section 4 to handle arithmetic bit-vector constraints; and, finally, additional symbols
to express structural bit-vector constraints are introduced in Section 5. All construc-
tions preserve the ability of the calculus to eliminate quantifiers (under certain
assumptions) and derive Craig interpolants.

For non-linear constraints, we assume that the set P of predicates contains a
distinguished ternary predicate ×, with the intended semantics that the third argu-
ment represents the result of multiplying the first two arguments, i.e., ×(s, t, r) ⇔
s · t = r. The predicate × is clearly sufficient to express arbitrary polynomial
constraints by introducing a ×-literal for each product in a formula, at the cost
of introducing a linear number of additional constants or existentially quanti-
fied variables. We make the simplifying assumption that × only occurs in neg-
ative positions; that means, top-level occurrences will be on the left-hand side
of sequents. Positive occurrences can be eliminated thanks to the equivalence
¬×(s, t, r) ⇔ ∃x.(×(s, t, x) ∧ x ̸= r).

Title Suppressed Due to Excessive Length 9

3.1 Calculus Rules for Non-Linear Constraints

We now introduce classes of calculus rules to reason about the ×-predicate. The
rules are necessarily incomplete for proving that a sequent is valid, but they are
complete for finding counterexamples: if ϕ is a satisfiable quantifier-free formula
with × as the only predicate symbol, then it is possible to construct a proof for
ϕ ⊢ ∅ that has an open and unprovable goal in pure Presburger arithmetic (by
systematically splitting variable domains, Section 3.1.4). The rule classes are:

– Deriving Implied Equalities with Gröbner Bases: if implied linear equalities can
be found using Buchberger’s algorithm these can be added to the proof goal.

– Interval Constraint Propagation: if new bounds for constants can be derived from
existing bounds these can be added to the proof goal.

– Cross-Multiplication of Inequalities:, if two terms are known to be non-negative,
then the non-negativity of their product can be added to the proof goal.

– Interval Splitting: as a last resort, the proof branch can be split by dividing the
possible values for a constant or variable in half.

– ×-Elimination: if a occurrence of × is implied by other literals, it can be elim-
inated from the proof goal.

3.1.1 Deriving Implied Equalities with Gröbner Bases

The first rule applies standard algebra methods to infer new equalities from mul-
tiplication literals. To avoid the computation of more and more complex terms in
this process, we restrict the calculus to the inference of linear equations that can
be derived through computation of a Gröbner basis.3 Given a set {×(si, ti, ri)}ni=1

of ×-literals and a set {ej = 0}mj=1 of linear equations, the generated ideal I =
Ideal({si · ti−ri}ni=1∪{ej}mj=1) over rational numbers is the smallest set of rational
polynomials that contains {si · ti − ri}ni=1 ∪ {ej}mj=1, is closed under addition, and
closed under multiplication with arbitrary rational polynomials [31]. Any f ∈ I

corresponds to an equation f = 0 that logically follows from the literals, and can
therefore be added to a proof goal:

Γ, {×(si, ti, ri)}ni=1, {ej = 0}mj=1, f = 0 ⊢ ∆

Γ, {×(si, ti, ri)}ni=1, {ej = 0}mj=1 ⊢ ∆
×-eq

if f is linear, has integer coefficients, and f ∈ I

To see how this rule can be applied practically, note that the subset of linear
polynomials in I forms a rational vector space, and therefore has a finite basis.
It is enough to apply ×-eq for terms f1, . . . , fk corresponding to any such basis,
since linear arithmetic reasoning (in the base logic) will then be able to derive
all other linear polynomials in I. To compute a basis f1, . . . , fk, we can transform
{si · ti−ri}ni=1∪{ej}mj=1 to a Gröbner basis using Buchberger’s algorithm [32], and
then apply Gaussian elimination to find linear basis polynomials (or directly by
choosing a suitable monomial order).

3 The set of all linear equations implied by a set of ×-literals over integers is clearly not
computable, by reduction of Hilbert’s 10th problem.

10 Peter Backeman et al.

Example 1 Consider the formula for the square of a sum: (x+ y)2 = x2+2xy+ y2.
We can show its validity by rewriting it to normal form and constructing a proof.
Let Π = {×(x, x, c1),×(x, y, c2),×(y, y, c3),×(x+ y, x+ y, c4)}:

∗....
Π, c1 + 2c2 + c3 − c4 = 0 ⊢ c4 = c1 + 2c2 + c3

Π ⊢ c4 = c1 + 2c2 + c3
×-eq

Here, the ×-eq-step is motivated by the fact that the Gröbner basis derived from
Π contains the linear polynomial c1+2c2+c3−c4, from which the desired equation
can be derived using linear reasoning (using calculus rules not presented in this
paper, see Section 2.1).

3.1.2 Interval Constraint Propagation (ICP)

Our main technique for inequality reasoning in the presence of ×-predicates is
interval constraint propagation (ICP) [33]. ICP is a fixed-point computation on
the lattice IS of functions mapping constants and variables S = C∪X to intervals I,
and can efficiently approximate the value ranges of symbols. We define the lattice I
of intervals and the lattice IS of interval assignments as follows; S → I represents
the set of (total) functions from S = C∪X to I, and ⊥ is the distinguished bottom
element of IS :

I = {[x, y] | x, y ∈ Z, x ≤ y} ∪ {(−∞,∞)} ∪
{(−∞, y) | y ∈ Z} ∪ {(x,∞) | x ∈ Z}

IS = (S → I) ∪ {⊥}

We denote the (point-wise) join and meet on IS with ⊔,⊓, respectively.
To define the fixed-point computation, we then introduce abstraction and con-

cretisation functions that connect the lattice IS with the powerset lattice P(S → Z)
of value assignments. The abstraction of a set V ∈ P(S → Z) of value assignments
is the least element α(V) of IS such that the interval α(V)(c) assigned to a sym-
bol c ∈ S contains all values of c in V (or α(V) = ⊥ if V is empty). The abstraction
function α : P(S → Z) → IS is formally defined as follows:

α(V) =
⊔
β∈V

{c 7→ [β(c), β(c)] | c ∈ S} for V ∈ P(S → Z).

The concretisation γ(I) of some interval assignment I ∈ IS is the set V of all
value assignments that stay within the intervals specified by I. More formally,
γ : IS → P(S → Z) is defined by:

γ(I) =

{
∅ if I = ⊥
{β : S → Z | β(c) ∈ I(c) for all c ∈ S} otherwise

for I ∈ IS .

The result of ICP can then be defined as the greatest fixed-point of a mono-
tonic propagation function Prop : IS → IS on the lattice IS . Propagation can be

Title Suppressed Due to Excessive Length 11

defined separately for each formula occurring in a sequent; in particular, propaga-
tion Propϕ : IS → IS for a multiplication literal ϕ = ×(s, t, r) is defined as:

Prop×(s,t,r)(I) = α({β ∈ γ(I) | β |= s · t = r})

This means, propagation eliminates values from the intervals that are inconsistent
with ×(s, t, r). Propagation for equalities t = 0 and inequalities t ≤ 0 is defined
similarly; in practice, also any monotonic over-approximation of Propϕ can be used
instead of Propϕ, at the cost of more over-approximate results in the end.

Given a set {ϕ1, . . . , ϕn} of formulas, the overall propagation function Prop =
Prop{ϕ1,...,ϕn} is the meet of the individual propagators:

Prop{ϕ1,...,ϕn}(I) =
nl

i=1

Propϕi
(I)

The ICP rule assumes that a greatest fixed-point gfpProp{ϕ1,...,ϕn} for equality,
inequality, and multiplication literals ϕ1, . . . , ϕn in a sequent has been computed,
and adds resulting bounds for a constant c:

Γ, ϕ1, . . . , ϕn, l ≤ c, c ≤ u ⊢ ∆

Γ, ϕ1, . . . , ϕn ⊢ ∆
×-icp

if (gfpProp{ϕ1,...,ϕn})(c) = [l, u]

Example 2 From two inequalities x ≥ 5 and y ≥ 5, the rule ×-icp can derive
(x+ y)2 ≥ 100:

×(x+ y, x+ y, c4), x ≥ 5, y ≥ 5, c4 ≥ 100 ⊢
×(x+ y, x+ y, c4), x ≥ 5, y ≥ 5 ⊢

×-eq

The slightly different problem x+y ≥ 10 → (x+y)2 ≥ 100 cannot be proven in the
same way, since ICP will not be able to deduce bounds for x or y from x+ y ≥ 10.

3.1.3 Cross-Multiplication of Inequalities

While ICP is highly effective for approximating the range of constants, and quickly
detecting inconsistencies, it is less useful for inferring relationships between mul-
tiple constants that follow from multiplication literals. We cover such inferences
using a cross-multiplication rule that resembles procedures used in ACL2 [34]. The
rule captures the fact that if s, t are both non-negative, then also the product s · t
is non-negative.

Like in Section 3.1.1, we prefer to avoid the introduction of new multiplication
literals during proof search. By disallowing non-linear terms, we avoid the intro-
duction of more and more complex terms and thus only add s · t ≥ 0 if the term s · t
can be expressed linearly. For this, we again write I = Ideal({si·ti−ri}ni=1∪{ej}

m
j=1)

for the ideal induced by equations and ×-literals:

Γ, s ≤ 0, t ≤ 0, −f ≤ 0 ⊢ ∆

Γ, s ≤ 0, t ≤ 0 ⊢ ∆
×-cross

if f is linear, has integer coefficients, and s · t− f ∈ I

The term f can practically be found by computing a Gröbner basis of I, and
reducing the product s · t to check whether an equivalent linear term exists.

12 Peter Backeman et al.

3.1.4 Interval Splitting

If everything else fails, as last resort it can become necessary to systematically
split over the possible values of a variable or constant c ∈ C ∪X:

Γ, c ≤ α− 1 ⊢ ∆ Γ, c ≥ α ⊢ ∆

Γ ⊢ ∆
×-split

The α ∈ Z can in principle be chosen arbitrarily in the rule, but in practice a
useful strategy is to make use of the range information derived for ×-icp: when no
ranges can be tightened any further using ×-icp, instead ×-split can be applied
to split one of the intervals in half.

3.1.5 ×-Elimination

Finally, occurrences of × can be eliminated whenever a formula is subsumed by
other literals in a goal, again writing I = Ideal({si · ti − ri}ni=1 ∪ {ej}mj=1):

Γ ⊢ ∆

Γ,×(s, t, r) ⊢ ∆
×-elim

if s · t− r ∈ I

Note that ×-elim only eliminates non-linear ×-literals, whereas ×-eq only intro-
duces linear equations, so that the application of the two rules cannot induce
cycles.

3.2 Quantifier Elimination for Non-Linear Constraints

Due to necessary incompleteness of calculi for Peano arithmetic, quantifiers can
in general not be eliminated in the presence of the × predicate, even when con-
sidering formulas that do not contain uninterpreted predicates. By combining the
QE approach in Section 2.2 with the rules for × that we have introduced, it is
nevertheless possible to reason about quantified non-linear constraints in many
practical cases, and sometimes even get rid of quantifiers. This is possible because
the rules in Section 3.1 are not only sound, but even equivalence transformations:

in any application of the rules, the conjunction of the premises is equivalent to the
conclusion.

Similarly as in [35], QE is always possible if sufficiently many constants or
variables in a formula ϕ range over bounded domains: if there is a set B ⊆ C ∪X
of symbols with bounded domain such that in each literal ×(s, t, r) either s or t
contain only symbols from B. In this case, proof construction will terminate when
applying the rule ×-split only to variables or constants with bounded domain.
This guarantees that eventually every literal ×(s, t, r) can be turned into a linear
equation using ×-eq, and then be eliminated using ×-elim, only leaving proof
goals with pure Presburger arithmetic constraints. The boundedness condition is
naturally satisfied for bit-vector formulas.

Title Suppressed Due to Excessive Length 13

3.3 Craig Interpolation for Non-Linear Constraints

To carry over the Craig interpolation approach from Section 2.3 to non-linear
formulas, interpolating versions of the calculus rules for the ×-predicate are needed.
For this, we follow the approach used in [4] (which in turn resembles the use of
theory lemmas in SMT in general): when translating a proof to an interpolating
proof, we replace applications of the ×-rules with instantiation of an equivalent
theory axiom QAx . Suppose a non-interpolating proof contains a rule application

....
Γ, Γ ′, Γ1 ⊢ ∆1,∆

′,∆ · · ·

....
Γ, Γ ′, Γn ⊢ ∆n,∆

′,∆

Γ, Γ ′ ⊢ ∆′,∆
R

....

(1)

in which Γ ′,∆′ are the formulas assumed by the rule application, Γ,∆ are side
formulas not required or affected by the application, and Γ1,∆1, . . . , Γn,∆n are
newly introduced formulas in the individual branches.

The (unquantified) theory axiom Ax corresponding to the rule application
expresses that the conjunction of the premises has to imply the conclusion; the
quantified theory axiom QAx =def ∀S.Ax in addition contains universal quantifiers
for all constants S ⊆ C occurring in Ax .

Ax =def

n∧
i=1

(∧
Γi →

∨
∆i

)
→

(∧
Γ ′ →

∨
∆′)

Ax and QAx are specific to the application of R: the axioms for two distinct
applications of R will in general be different formulas. QAx is defined in such a way
that it can simulate the effect of R (as in (1)). This is done by introducing QAx

in the antecedent of a sequent, applying the rule ∀-left to instantiate the axiom
with the constants S and obtain Ax , and then applying propositional rules. The
propositional rules ∨-left and ¬-left are used to eliminate implications → (which
are short-hand for ¬,∨), and the rule ∧-right to eliminate the conjunction

∧n
i=1:

∗....
Γ, Γ ′,

∧
Γ ′ →

∨
∆′ ⊢ ∆′,∆

Γ, Γ ′, Γ1 ⊢ ∆1,∆
′,∆ · · · Γ, Γ ′, Γn ⊢ ∆n,∆

′,∆

...

Γ, Γ ′,Ax ⊢ ∆′,∆
∨-left,¬-left,∧-right∗

Γ, Γ ′, ∀S .Ax ⊢ ∆′,∆
∀-left∗

This construction leads to a proof using only the standard rules from Sec-
tion 2.1, which can be interpolated as discussed earlier. Since QAx is a valid for-
mula not containing any constants, it can be introduced in a proof at any point,
and labelled ⌊QAx⌋L or ⌊QAx⌋R on demand.

The obvious downside of this approach is the possibility of quantifiers occur-
ring in interpolants. The interpolating rules ∀-leftL/R (Fig. 2) have to introduce
quantifiers ∀Rt/∃Lt for local symbols occurring in the substituted term t; whether
such quantifiers actually occur in the final interpolant depends on the applied ×-
rules, and on the order of rule application. For instance, with ×-split it is always

14 Peter Backeman et al.

possible to choose the label of QAx so that no quantifiers are needed, whereas ×-eq

might mix symbols from left and right partitions in such a way that quantifiers
become unavoidable. In our implementation we approach this issue pragmatically.
We leave proof search unrestricted, and might thus sometimes get proofs that do
not give rise to quantifier-free interpolants; when that happens, we afterwards ap-
ply QE to get rid of the quantifiers. QE is always possible for bit-vector constraints,
see Section 4.4.4

4 Solving Bit-Vector Constraints

We now define the extension of the base logic to bit-vector constraints. The main
idea of the extension is to represent bit-vectors of width w as integers in the in-
terval {0, . . . , 2w − 1}, and to translate bit-vector operations to the corresponding
operation in Presburger arithmetic (or possible the ×-predicate for non-linear for-
mulas), followed by an integer remainder operation to map the result back to the
correct bit-vector domain. Since the remainder operation tends to be a bottleneck
for interpolation, we keep the operation symbolic and initially consider it as an
uninterpreted predicate bmodb

a . The predicate is only gradually reduced to Pres-
burger arithmetic by applying the calculus rules introduced later in this section.

Formally, we introduce binary predicates Pbv = {bmodb
a | a, b ∈ Z,

a < b}. The semantics of each predicate bmodb
a is to relate any whole number s ∈ Z

to its remainder modulo b− a in the interval {a, . . . , b− 1}:

bmodb
a (s, r) ⇔ a ≤ r < b ∧ ∃z. r = s+ (b− a) · z

⇔ a ≤ r < b ∧ r ≡ s (mod b− a)

We also introduce short-hand notations for the casts to the unsigned and signed
bit-vector domains:

ubmodw =def bmod2w

0 , sbmodw =def bmod2w−1

−2w−1 .

4.1 Translating Bit-Vector Constraints to the Core Language

For the rest of the section, we use the base logic augmented with × and bmodb
a -

predicates as the core language to which bit-vector constraints are translated. For
presentation, the translation focuses on a subset of the arithmetic bit-vector opera-
tions, BVOPa = {bvaddw, bvmulw, bvudivw, bvnegw, zew+w′ , bvulew, bvslew}. An ex-
tension to bit-vector concatenation, extraction, and bit-wise functions is presented
in Section 5. All operations are sub-scripted with the bit-width of the operands;
the zero-extend function zew+w′ maps bit-vectors of width w to width w + w′.
Semantics follows the FixedSizeBitVectors5 theory of the SMT-LIB [36]. Other
arithmetic operations, for instance bvsdivw or bvsmodw, can be handled in the
same way as shown here, though sometimes the number of cases to be considered
is larger.

4 Non-linear integer arithmetic in general does not admit quantifier-free interpolants. For
instance, (x > 1 ∧ x = y2) ∧ x = z2 + 1 is unsatisfiable, but no quantifier-free interpolants
exist, regardless of whether divisibility predicates α | t are allowed or not.

5 http://www.smtlib.org/theories-FixedSizeBitVectors.shtml

http://www.smtlib.org/theories-FixedSizeBitVectors.shtml

Title Suppressed Due to Excessive Length 15

bvaddw(s, t) = r _ ubmodw (s+ t, r)

bvnegw(s) = r _ ubmodw (−s, r)
bvmulw(s, t) = r _ ∃x.

(
×(s, t, x) ∧ ubmodw (x, r)

)
zew+w′ (s) = r _ s = r

bvslew(s, t) _ ∃x, y. (sbmodw (s, x) ∧ sbmodw (t, y) ∧ x ≤ y)

¬bvslew(s, t) _ ∃x, y. (sbmodw (s, x) ∧ sbmodw (t, y) ∧ x > y)

bvulew(s, t) _ s ≤ t

¬bvulew(s, t) _ s > t

bvudivw(s, t) = r _
(
t = 0 ∧ r = 2w − 1

)
∨(

t ≥ 1 ∧ ∃x. (×(t, r, x) ∧ s− t < x ≤ s)
)

Fig. 3 Rules translating bit-vector operations into the core language. The rules only apply in
negative positions.

The translation from bit-vector constraints ϕ to core formulas ϕcore has two
parts: first, BVOPa occurrences in a formula ϕ have to be replaced with equivalent
expressions in the core language; second, since the core language only knows the
sort of unbounded integers, type information has to be made explicit by adding
domain constraints.

BVOPa Elimination. Like in Section 3, we assume that the bit-vector formula ϕ

has already been brought into a flat form by introducing additional constants or
quantified variables: the operations in BVOPa must not occur nested, and functions
only occur in equations of the form f(s̄) = t in negative positions. The translation
from ϕ to ϕ′ is then defined by the rewriting rules in Figure 3. Since the rules for the
predicates bvslew and bvulew distinguish between positive and negative occurrences,
we assume that rules are only applied to formulas in negation normal-form, and
only in negative positions.

The rules for bvaddw, bvnegw, zew+w′ , and bvulew simply translate to the cor-
responding Presburger term, if necessary followed by remainder ubmodw . Multipli-
cation bvmulw is mapped similarly to the ×-predicate defined in Section 3, adding
an existential quantifier to store the intermediate product. Since rules are only
applied in negative positions, the quantified variable can later be replaced with
a Skolem constant. An optimised rule could be defined for the case that one of
the factors is constant, avoiding the use of the ×-predicate. Translation of bvslew
maps the operands to a signed bit-vector domain {−2w−1, . . . , 2w−1−1}, in which
then the arithmetic inequality predicates ≤, > can be used. The rule for unsigned
division bvudivw distinguishes the cases that the divisor t is zero or positive (as
required by SMT-LIB), and maps the latter case to standard integer division.

Domain constraints. Bit-vector variables/constants x of width w occurring in ϕ

are interpreted as unbounded integer variables in ϕcore , which therefore has to
contain explicit assumptions about the ranges of bit-vector variables. We use the
abbreviation inw(x) =def (0 ≤ x < 2w) and define

ϕcore =
(∧

x∈S

inwx(x)
)
→ ϕ′

16 Peter Backeman et al.

where S ⊆ C ∪ X is the set of free variables and constants occurring in ϕ, wx is
the bit-width of x ∈ S, and ϕ′ is the result of applying rules from Figure 3 to ϕ.
Similar constraints are used to express quantification over bit-vectors, for instance
∃x. (inw(x) ∧ . . .) and ∀x. (inw(x) → . . .).

Example 3 Consider challenge/multiplyOverflow.smt2, a problem from SMT-LIB
QF BV containing a bit-vector formula that is known to be hard for most SMT
solvers since it contains both multiplication and division. In experiments, neither
Z3 nor CVC4 could prove the formula within 10min. In our notation, the problem
amounts to showing validity of the following implication, with a, b ranging over
bit-vectors of width 32:

bvule32(b, bvudiv32(2
32 − 1, a)) →

bvule64(bvmul64(ze32+32(a), ze32+32(b)), 2
32 − 1)

As a flat formula, with additional constants c1 of width 32 and c2, c3, c4 of width 64,
the implication takes the form:(

bvudiv32(2
32 − 1, a) = c1 ∧ bvmul64(c3, c4) = c2 ∧

ze32+32(a) = c3 ∧ ze32+32(b) = c4 ∧ bvule32(b, c1)

)
→ bvule64(c2, 2

32 − 1)

The final formula ϕcore is obtained by application of the rules in Figure 3, and
adding domain constraints:

in32(a) ∧ in32(b) ∧ in32(c1) ∧ in64(c2) ∧ in64(c3) ∧ in64(c4) ∧((
a = 0 ∧ c1 = 232 − 1

)
∨(

a ≥ 1 ∧ ∃x.(×(a, c1, x) ∧ 232 − 1− a < x ≤ 232 − 1)
)) ∧

∃z. (×(c3, c4, z) ∧ ubmod64 (z, c2)) ∧ a = c3 ∧ b = c4 ∧ b ≤ c1

 → c2 ≤ 232 − 1

4.2 Preprocessing and Simplification

An encoded formula ϕcore tends to contain a lot of redundancy, in particular nested
or unnecessary occurrences of the bmodb

a predicates. As an important component
of our calculus, and in line with the approach in other bit-vector solvers, we there-
fore apply simplification rules both during preprocessing and during the solving
phase (“inprocessing”). The most important simplification rules are shown in Fig-
ure 4. Our implementation in addition applies rules for Boolean and Presburger
connectives, for instance to inline equations x = t or to propagate inequalities, not
shown here.

The notation Π : ϕ _ ϕ′ expresses that formula ϕ can be rewritten to ϕ′,
given the set Π of formulas as context. The structural rules in the upper half of
Figure 4 define how formulas are traversed, and how the context Π is extended to
Π,Lit ′ when encountering further literals. We apply the structural rules modulo
associativity and commutativity of ∧,∨, and prioritise lit-∧-rw and lit-∨-rw
over the other rules. Simplification is iterated until a fixed-point is reached and
no further rewriting is possible. The connection between rewriting rules and the
sequent calculus is established by the following rules:

Γ, ϕ′ ⊢ ∆

Γ, ϕ ⊢ ∆
rw-left

Γ ⊢ ϕ′,∆

Γ ⊢ ϕ,∆
rw-right

if Γ ∪ {¬ψ | ψ ∈ ∆} : ϕ _ ϕ′

Title Suppressed Due to Excessive Length 17

Π : ϕ _ ϕ′ Π : ψ _ ψ′

Π : ϕ ◦ ψ _ ϕ′ ◦ ψ′ ◦-rw

Π : Lit _ Lit ′ Π,Lit ′ : ϕ _ ϕ′

Π : Lit ∧ ϕ _ Lit ′ ∧ ϕ′
lit-∧-rw

Π : Lit _ Lit ′ Π,¬Lit ′ : ϕ _ ϕ′

Π : Lit ∨ ϕ _ Lit ′ ∨ ϕ′
lit-∨-rw

Π : ϕ _ ϕ′

Π : ¬ϕ _ ¬ϕ′
¬-rw

Π : ϕ _ ϕ′

Π : Qx.ϕ _ Qx.ϕ′
Q-rw

⌊
lbound(Π,s)−a

b−a

⌋
= k =

⌊
ubound(Π,s)−a

b−a

⌋
Π : bmodb

a (s, r) _ s = r + k · (b− a)
bound-rw

s+ (b− a) · t ≺ s

Π : bmodb
a (s, r) _ bmodb

a (s+ (b− a) · t, r)
coeff-rw

bmodb′
a′ (s

′, r′) ∈ Π, (b− a) | k · (b′ − a′),
s+ k · (s′ − r′) ≺ s

Π : bmodb
a (s, r) _ bmodb

a (s+ k · (s′ − r′), r)
bmod-rw

Fig. 4 Simplification rules for bit-vector formulas. In ◦-rw, ϕ and ψ are not literals, and
◦ ∈ {∧,∨}. In lit-∧-rw and lit-∨-rw, the formula Lit is a literal. In Q-rw, x must not occur
in Π, and Q ∈ {∀, ∃}. In coeff-rw, all constants or variables in t also occur in s.

The lower half of Figure 4 shows three of the bit-vector-specific rules. The
bound-rw rule defines elimination of bmodb

a -predicates that do not require any case
splits; the definition of the rule assumes functions lbound(Π, s) and ubound(Π, s)
that derive lower and upper bounds of a term s, respectively, given the current con-
textΠ. The two functions can be implemented by collecting inequalities (and possi-
bly type information available for predicates) inΠ to obtain an over-approximation
of the range of s.

Rule coeff-rw reduces coefficients in bmodb
a (s, r) by adding a multiple of the

modulus b− a to s. The rule assumes a well-founded order ≺ on terms to prevent
cycles during simplification. One way to define such an order is to choose a total
well-founded order ≺ on the union C ∪X of variables and constants, extend ≺ to
expressions α ·x by sorting coefficients as 0 ≺ 1 ≺ −1 ≺ 2 ≺ · · · , and finally extend
≺ to arbitrary terms α1t1 + · · ·+ αntn as a multiset order [25].

The same order ≺ is used in bmod-rw, defining how bmodb
a (s, r) can be rewrit-

ten in the context of a second literal bmodb′

a′ (s′, r′). The rule is useful to optimise

the translation of nested bit-vector operations. Assuming bmodb′

a′ (s′, r′), the value
of s′− r′ is known to be a multiple of b′−a′, and therefore k · (s′− r′) is a multiple
of b − a provided that b − a divides k · (b′ − a′). This implies that the truth value
of bmodb

a (s, r) is not affected by adding k · (s′ − r′) to s.
Our implementation uses various further simplification rules, for instance to

eliminate × or bmodb
a whose result is never used; we skip those for lack of space.

Example 4 Consider bvadd32(bvadd32(a, b), c), which corresponds to the expression
ubmod32 (a+ b, r1) ∧ ubmod32 (r1 + c, r2) in the core language. Using bmod-rw, the
formula can be rewritten to ubmod32 (a+ b, r1) ∧ ubmod32 (a+ b+ c, r2), provided
that a+ b+ c ≺ r1 + c.

18 Peter Backeman et al.

∗....
. . . , a ≥ 1, e < 232, b ≤ c1, d ≥ 232, e− d− c1 + b ≥ 0 ⊢
. . . ,×(a, b, d),×(a, c1, e), a ≥ 1, e < 232, b ≤ c1 , d ≥ 232 ⊢

×-cross

. . . , 0 ≤ d, d ≤ 264 − 233 + 1, d = c2 ⊢
(b)

. . . , 0 ≤ d, d ≤ 264 − 233 + 1, ubmod64 (d, c2) ⊢
rw-left

. . . , in32(a), in32(b),×(a, b, d), ubmod64 (d, c2) ⊢
×-icp

⊢ ϕcore
(a)

Fig. 5 Proof tree for Example 5, with the sequences (a) and (b) of rule applications not shown
in detail.

Example 5 We continue Example 3 and show that ϕcore is valid, focusing on the
a ≥ 1 case of bvudiv32. The proof (Figure 5) consists of three core steps: 1. using
×-icp, from the constraints in32(a), in32(b), ×(a, b, d) the inequalities 0 ≤ d and
d ≤ 264 − 233 + 1 can be derived; 2. therefore, using rw-left and bound-rw, the
literal ubmod64 (d, c2) can be rewritten to d = c2, capturing the fact that 64-bit
multiplication cannot overflow for unsigned 32-bit operands; 3. using ×-cross,
from the inequalities a ≥ 1 and b ≤ c1 we derive (a − 1)(c1 − b) = ac1 − ab − c1 +
b ≥ 0. Using the products ×(a, b, d) and ×(a, c1, e), we can express it linearly as
e− d− c1 + b ≥ 0. The proof branch can then be closed using standard arithmetic
reasoning. The implementation of our procedure can easily find the outlined proof
automatically.

4.3 Splitting Rules for bmodb
a

In general, formulas will of course also contain occurrences of bmodb
a that cannot

be eliminated just by simplification. We introduce two calculus rules for reasoning
about such general literals bmodb

a (s, r). The first rule makes the assumption that
lower and upper bounds of s are available, and are reasonably tight, so that an
explicit case analysis can be carried out; the rule generalises bound-rw to the
situation in which the factors l, u do not coincide:{

Γ, a ≤ r < b, s = r + i · (b− a) ⊢ ∆
}u
i=l

Γ, bmodb
a (s, r) ⊢ ∆

bmod-split

assuming the bounds
⌊ lbound(Π,s)−a

b−a

⌋
= l and

⌊ubound(Π,s)−a
b−a

⌋
= u with Π =

Γ ∪ {¬ψ | ψ ∈ ∆}.
If the bounds l, u are too far apart, the number of cases created by bmod-split

would become unmanageable, and it is better to choose a direct encoding of the
remainder operation in Presburger arithmetic:

Γ, a ≤ r < b, s = r + (b− a) · c ⊢ ∆

Γ, bmodb
a (s, r) ⊢ ∆

bmod-const

where c is assumed to be a fresh constant. Rule bmod-const corresponds to the
encoding chosen in [16].

Title Suppressed Due to Excessive Length 19

In practice, it turns out to be advantageous to prioritise rule bmod-split over
bmod-const, as long as the number of cases does not become too big. This is
because each of the premises of bmod-split tends to be significantly simpler to
solve (and interpolate) than the conclusion; in addition, splitting one bmodb

a literal
often allows subsequent simplifications that eliminate other bmodb

a occurrences. We
investigate experimentally in Section 6.1 how many applications of the rules bmod-
split and bmod-const are needed to prove formulas satisfiable or unsatisfiable,
and show that the numbers are surprisingly low, in particular in the unsatisfiable
case.

4.4 Quantifier Elimination and Craig Interpolation

Since the bit-vector rules in this section are all equivalence transformations, QE
for bit-vectors can be done exactly as described in Section 3.2. As the ranges of
all symbols are now bounded, it is guaranteed that any formula will eventually be
reduced to Presburger arithmetic, so that we obtain complete QE for (arithmetic)
bit-vector constraints.

Similarly, the interpolation approach from Section 3.3 carries over to bit-
vectors, with theory axioms being generated for each of the rules defined in this
section. Since the translation of bit-vector formulas to the core language happens
upfront, also interpolants are guaranteed to be in the core language, and can be
mapped back to bit-vector formulas if necessary (e.g., as in [16]). Interpolants
might contain quantifiers, in which case QE can be applied (as described in the
first paragraph), so that we altogether obtain a complete procedure for quantifier-
free interpolation of arithmetic bit-vector formulas.

In our implementation, we restrict the use of the simplification rules rw-left

and rw-right when computing proofs for the purpose of interpolation. Unre-
stricted use could quickly mix up the vocabularies of the individual partitions
in an interpolation problem A ∧ B, and thus increase the likelihood of quantifiers
in interpolants. Instead we simplify A,B separately upfront using rules in Figure 4,
and apply rw-left, rw-right only when the modified formula ϕ is a literal.

Example 6 We recall the example from Section 1.1, and show how our calculus
finds the simpler interpolant I ′LIA = y3 < y2 for the interpolation problem A ∧ B.
The core step is to turn the application of bmod-split into an explicit axiom; after
slight simplifications, this axiom is:

Ax =

(
ubmodw (y2 + 1, c2) ∧ 3 ≤ y2 < 256 ∧ in8(c2)

)
→(

y2 + 1 = c2 ∨ y2 + 1 = c2 + 256
)

The axiom mentions all assumptions made by the rule, including the bounds 3 ≤
y2 < 256 that determine the number of resulting cases (or, alternatively, the for-
mulas c1 > y3, y2 = c1, c2 ≤ y3, y7 = 3, y7 = c2 from which the bounds derive).
The axiom also includes domain constraints like in8(c2) for occurring symbols,
which later ensures that possible quantifiers in interpolants range over bounded
domains. The quantified axiom is QAx = ∀y2, c2.Ax , and can be used to construct

20 Peter Backeman et al.

an interpolating proof:

· · ·

∗....
⌊c1 > y3⌋L, ⌊y2 = c1⌋L, ⌊c2 ≤ y3⌋R,
⌊y7 = 3⌋R, ⌊y7 = c2⌋R, ⌊y2 + 1 = c2⌋R

⊢ ∅ ▶ y3 < y2 · · ·

⌊Acore⌋L, ⌊Bcore⌋R, ⌊Ax⌋R ⊢ ∅ ▶ y3 < y2
∨-leftR

⌊Acore⌋L, ⌊Bcore⌋R, ⌊QAx⌋R ⊢ ∅ ▶ y3 < y2
∀-leftR

We only show one of the cases, P, resulting from splitting the axiom ⌊Ax⌋R using
the rules from Figure 2. The final interpolant ILAZY = y3 < y2 records the infor-
mation needed from Acore to derive a contradiction in the presence of y2 +1 = c2;
the branch is closed using standard arithmetic reasoning [11].

5 Interpolation in the Presence of Extract and Concat

Two bit-vector operations which are more tricky to translate to integer arithmetic
are the extraction of bits from a larger bit-vector, and the concatenation of two bit-
vectors. This is formalised using the function bvextract[u,l], which cuts out a slice
of u − l + 1 consecutive bits, and the function bvconcatv+w forming a bit-vector
of length v + w. We call the fragment of bit-vector logic containing only these
operations, and positive equalities, the structural fragment of bit-vector theory.

Example 7 Consider the following bit-vectors:

c1 = [0, 0] = 0 c2 = [1, 1] = 3 c3 = [0, 1] = 1

c4 = [0, 0, 1, 1] = 3 c5 = [1, 1, 0, 0] = 12

where a bit-sequence [bn, . . . b0] is represented by the number
∑n

i=0 bi2
i. The fol-

lowing equations hold between those bit-vectors:

bvconcat2+2(c1, c2) = c4 bvconcat2+2(c2, c1) = c5

bvextract[3,2](c4) = c1 bvextract[1,0](c4) = c2

bvextract[2,1](c4) = c3 .

While it is possible to translate extractions and concatenations to integer arith-
metic, it is not always efficient. We show here that it can be more efficient to keep
extractions abstract and only convert at need. This approach can also help to
compute simpler interpolants.

Example 8 We consider the example from [19], a formula over the structural frag-
ment, which we divide into two parts

A = (x[5 : 0] = z ∧ z[5 : 2] = 11)

B = (y[7 : 2] = 6 ∧ x = y)

Title Suppressed Due to Excessive Length 21

7 6 5 4 3 2 1 0

x[8] ∗ ∗ 1 0 1 1 ∗ ∗
y[8] 0 0 0 1 1 0 ∗ ∗

15 14 13 12 11 10 9 . . .

x[16] ∗ ∗ 1 0 1 1 ∗ . . .

y[16] 0 0 0 1 1 0 ∗ . . .

Fig. 6 Illustration of Example 8. The conflict is due to the contradicting assignments to slices
of x and y. The upper table shows the situation with bit-vectors of size 8, the lower one with
size 16.

where the bit-vectors x, y are of width 8, and z is of width 6. The unsatisfiability
of A ∧ B could be proved, as before, by translating the bit-vector constraints to
our core language:

Acore = in8(x) ∧ in6(z) ∧ ubmod6 (x, z) ∧ ∃c1. (in2(c1) ∧ z = 11 · 22 + c1)

Bcore = in8(x) ∧ in8(y) ∧ ∃c2. (in2(c2) ∧ y = 6 · 22 + c2) ∧ x = y

Using the interpolation procedure presented in Section 4, we can compute the
following interpolant:

I = ∃c. (x = 44 + 64c ∨ x = 45 + 64c ∨ x = 46 + 64c ∨ x = 46 + 64c)

The conjunction is unsatisfiable due to the conflicting assignment of a small
slice in x and y, as illustrated in Figure 6. However, when translating to integer
arithmetic the overall structure is lost, and the interpolant contains a lot of re-
dundancy. The situation gets worse with increasing bit-widths. Consider a formula
where the width of x, y are doubled, while the widths of the extractions are kept
constant:

A′ = (x[13 : 8] = z ∧ z[5 : 2] = 11)

B′ = (y[15 : 10] = 6 ∧ x = y)

The same procedure now yields an interpolant of exponentially greater size:

I ′ = ∃c. (x = 4097 + 8192c ∨ x = 4098 + 8192c ∨ · · · ∨ x = 5120 + 8192c)

We will explain in the next sections how more succinct interpolants can be
computed by eliminating the extraction operation only lazily.

5.1 The Structural Fragment

In [19], a polynomial fragment of the bit-vector theory is identified, consisting
of formulas that only contain extractions, concatenations, and positive equalities.
The satisfiability of formulas in the structural fragment is decidable in polynomial
time by a congruence closure procedure over decomposed bit-vectors [18].

Definition 1 The structural fragment consists of bit-vector formulas of the form
ϕ1∧ϕ2∧· · ·∧ϕn where each ϕi is an equation constructed using bit-vector variables,
concrete bit-vectors, and the operators bvextract[u,l] and bvconcatv+w.

22 Peter Backeman et al.

bvextract[u,l](s) = r _ extrul (s, r)

bvconcatw+v(s, t) = r _ inw+v(r) ∧ extrw+v−1
v (r, s) ∧ extrv−1

0 (r, t)

bvnotw(s) = r _ inw(r) ∧
w−1∧
i=0

∃x. (extrii(s, x) ∧ extrii(r, 1− x)

bvandw(s, t) = r _ inw(r) ∧
w−1∧
i=0

∃sb, tb, rb.
(
extrii(s, sb) ∧ extrii(t, tb) ∧ extrii(r, rb)
∧ rb ≤ sb ∧ rb ≤ tb ∧ rb ≥ sb + tb − 1

)

bvorw(s, t) = r _ inw(r) ∧
w−1∧
i=0

∃sb, tb, rb.
(
extrii(s, sb) ∧ extrii(t, tb) ∧ extrii(r, rb)
∧ rb ≥ sb ∧ rb ≥ tb ∧ rb ≤ sb + tb

)

bvxorw(s, t) = r _ inw(r) ∧
w−1∧
i=0

∃sb, tb, rb.
(
extrii(s, sb) ∧ extrii(t, tb) ∧ extrii(r, rb)
∧ ubmod1 (sb + tb, rb)

)

Fig. 7 Rules translating structural and bit-wise operations into the extended core language.
As before, the rules are only applied in negative positions. Note that u, l, v, w are integer
constants.

Note that a formula containing bvconcatv+w can be translated into an equi-
satisfiable formula that only uses bvextract[u,l]. We illustrate the translation with
an example, and introduce the formal rule in Figure 7. Consider the formula
ϕ[bvconcatv+w(s, t)] containing the concatenation of two bit-vectors. The concate-
nation can be eliminated by introducing an existentially quantified variable to
represent the result of the concatenation; the relationship with the arguments is
established using extraction terms:

∃x. (inv+w(x) ∧ bvextract[v+w−1,w](x) = s ∧ bvextract[w−1,0](x) = t ∧ ϕ[x])

To define a formal calculus for the structural fragment, we introduce an ex-

tended core language by adding a further family Pex = {extrul | u, l ∈ N, u ≥ l} of
predicates representing extraction from bit-vectors. Semantically, extrul (s, t) re-
lates s and t if t is the result of extracting the bits u through l from s. This is
formally expressed as the existence of two bit-vectors x, y such that t can be made
equal to s by prepending x and appending y:

extrul (s, t) ⇔ inu−l+1(t) ∧ ∃x, y. (inl(y) ∧ s = x · 2u+1 + t · 2l + y)

Note that the argument s is not bounded, which implies that the definition contains
a bound for the lower slice y, but not for x.

The rewriting rules in Figure 7 define how extraction and concatenation are
translated to the Pex predicates, following the same schema as in Section 4. As a
side-effect of adding bvextract[u,l] and bvconcatw+v, and moving beyond the struc-
tural fragment, the calculus can also reason about the bit-wise operators BVOPbv =
{bvnot, bvand, bvor, bvxor}, by extracting the individual bits of the operands and en-
coding the Boolean semantics using inequalities. The rewriting rules for such an
encoding are given Figure 7 as well, and are also used in our implementation.

5.2 Bit-Vector Decomposition

As demonstrated in Section 1.2, unsatisfiability of formulas can sometimes be
proven by just focusing on the right slice of bit-vectors; the challenge lies in how

Title Suppressed Due to Excessive Length 23

x : 7 6 5 4 3 2 1 0

y : 7 6 5 4 3 2 1 0
z : 5 4 3 2 1 0

↓
x : 7 6 5 4 3 2 1 0

y : 7 6 5 4 3 2 1 0

z : 5 4 3 2 1 0

Fig. 8 Cut point propagation of bit-vectors x, y and z. The top table contains each bit-vector
and the corresponding cut points. Since all bit-vectors are related by some constraints, all cut
points (within the width of the bit-vector) are propagated, e.g., the cut point for y between
bit 2 and 1 is propagated to x.

to decompose the bit-vectors to find the conflicts. Intuitively, there is no need to
split apart bits which are never constrained individually. We follow the procedure
described in [19], and use the notion of cut points for this reason. Cut points of a
bit-vector variable determine the slices that need to be considered, and the points
at which the bit-vectors might have to be decomposed, and are determine by the
boundaries of extraction operations.

More formally, given a formula ϕ in the structural fragment over set S = C∪X
of constants and variables, a cut point configuration is a function C : S → P(N)
satisfying the following properties:

– for each extrul (s, t) literal, it is the case that:
– {l, u+ 1} ⊆ C(s), and
– {i− l | i ∈ C(s) with l ≤ i ≤ u+ 1} = {i ∈ C(t) | i ≤ u− l+ 1}.

– for each equality s = t it is the case that C(s) = C(t).

The set of cut points for all bit-vectors can be obtained by a fix-point com-
putation, which begins with all cut points from extractions, and then propagates
using the equalities until all conditions hold.

Example 9 Translated to our extended core language, the constraints from Exam-
ple 8 are:

A′
core = in8(x) ∧ in6(z) ∧ extr50(x, z) ∧ extr52(z, 11)

B′
core = in8(x) ∧ in8(y) ∧ extr72(y, 6) ∧ x = y

The extraction literals induce immediate cut points for x, y and z, respectively:
{6, 0}, {8, 2}, and {6, 2}. Since x and z are related by the literal extr50(x, z), the cut
point 2 needs to be added to the set for x as well; similarly, due to the equation
x = y, also the cut points {6, 0} have to be added for y, and 8 for x. The alignment
of the bit-vectors is illustrated in Figure 8, and the complete sets of cut points
after propagation are {8, 6, 2, 0}, {8, 6, 2, 0}, and {6, 2, 0}. If the bit-vectors x, y, z
are decomposed according to their cut points, then simple reasoning reveals the
inconsistency between extr52(x, 5), extr

5
2(y, 6), and x = y.

5.3 An Interpolating Calculus for Extractions

A decomposition according to the cut points yields a complete and polynomial
procedure for the structural fragment [19]. We formalise the splitting of bit-vector

24 Peter Backeman et al.

Γ,
⌊∃x1. (extrui (s, x1) ∧ extru−l

i−l (r, x1) ∧ inu−i+1(x1))⌋D
⌊∃x2. (extri−1

l (s, x2) ∧ extri−1−l
0 (r, x2) ∧ ini−1−l(x2))⌋D

⊢ ∆ ▶ I

Γ, ⌊extrul (s, r)⌋D ⊢ ∆ ▶ I
extr-splitD

Γ, ⌊∃x. (inl(x) ∧ ubmodu+1 (s, r2l + x))⌋D ⊢ ∆ ▶ I

Γ, ⌊extrul (s, r)⌋D ⊢ ∆ ▶ I
extr-arithD

Γ ⊢ s1 = s2,∆ Γ, r1 = r2 ⊢ ∆

Γ, extrul (s1, r1), extr
u
l (s2, r2) ⊢ ∆

extr-cc

Γ ⊢ ⌊s1 = s2⌋L,∆ ▶ I Γ, ⌊r1 = r2⌋L ⊢ ∆ ▶ J

Γ, ⌊extrul (s1, r1)⌋L, ⌊extr
u
l (s2, r2)⌋L ⊢ ∆ ▶ I ∨ J

extr-ccLL

Γ ⊢ ⌊s1 = s2⌋R,∆ ▶ I Γ, ⌊r1 = r2⌋R ⊢ ∆ ▶ J

Γ, ⌊extrul (s1, r1)⌋R, ⌊extr
u
l (s2, r2)⌋R ⊢ ∆ ▶ I ∧ J

extr-ccRR

Γ ⊢ ⌊s1 = s2⌋R,∆ ▶ I Γ, ⌊r1 = r2⌋R ⊢ ∆ ▶ J

Γ, ⌊extrul (s1, r1)⌋L, ⌊extr
u
l (s2, r2)⌋R ⊢ ∆ ▶ ∃Ls1r1 .(extr

u
l (s1, r1) ∧ I ∧ J)

extr-ccLR

Γ ⊢ ⌊s1 = s2⌋L,∆ ▶ I Γ, ⌊r1 = r2⌋L ⊢ ∆ ▶ J

Γ, ⌊extrul (s1, r1)⌋R, ⌊extr
u
l (s2, r2)⌋L ⊢ ∆ ▶ ∀Rs1r1 .(¬extrul (s1, r1) ∨ I ∨ J)

extr-ccRL

Γ, ⌊ϕ⌋L ⊢ ∆ ▶ I Γ ⊢ ⌊ϕ⌋R,∆ ▶ J

Γ ⊢ ∆ ▶ (I ∨ ¬ϕ) ∧ J
cutLR

Γ, ⌊ϕ⌋R ⊢ ∆ ▶ I Γ ⊢ ⌊ϕ⌋L,∆ ▶ J

Γ ⊢ ∆ ▶ (I ∧ ϕ) ∨ J
cutRL

Fig. 9 Rules for handling extraction operations in bit-vector formulas. In extr-split and
extr-arith, D ∈ {L,R}. In extr-split, l < i ≤ u. In extr-ccLR, ∃Ls1r1 denotes existential
quantification over all constants occurring in s1 or t1 but not in ΓR ∪ ∆R ∪ {s2, r2}. In
extr-ccRL, ∀Rs1r1 denotes universal quantification over all constants occurring in s1 or t1
but not in ΓL ∪∆L ∪ {s2, r2}. The rules cutLR and cutRL are only allowed for formulas ϕ
in which all constants are common to both ΓL ∪∆L and ΓR ∪∆R.

extractions with an interpolating calculus rule extr-split in Figure 9. Intuitively,
we cut the bit-vector s at point i and introduce two existential variables x1, x2 cor-
responding to the two slices. By constraining the corresponding slices of r according
to the decomposition, we ensure the original equality between the extraction of s
and r. The rule can be generalised to split into several slices at once, allowing for
shorter proofs.

After extracts have been split at the cut points, we rely on congruence closure
to take care of extrul literals, in a similar way as the procedure in [18]. Congruence
closure is in our setting expressed by an axiom schema for functional consistency
of the extrul predicates:

∀s1, s2, r1, r2. (extrul (s1, r1) ∧ extr
u
l (s2, r2) ∧ s1 = s2 → r1 = r2) (2)

The axiom states that two extr-literals will yield the same result if the first argu-
ments coincide, and if the same bits are extracted. Similar axioms for predicate
consistency and functional consistency are used in [4]. To simplify presentation,
we model the instantiation of (2) using the calculus rule extr-cc in Figure 9; the

Title Suppressed Due to Excessive Length 25

figure also gives four interpolating versions of the rule, for the four possible combi-
nations of L/R-labels. The LR/RL rules differ in the label used in their premises.
The rules can be derived by instantiating (2) using either ∀-leftL or ∀-leftR, in
a similar way as in Section 3.3. In practice, and in our implementation, the calcu-
lus rules are used as in classical SMT-style congruence closure: they are triggered
when the first arguments of a pair of extr-literals have become equal.

Extraction operations can also be translated to arithmetic, which is needed
to evaluate extraction from concrete numbers, and when constructing proofs for
formulas that are not in the structural fragment (i.e., that combine extraction with
other bit-vector operations). The rule extr-arith encodes an operation extrul (s, r)
using a modulo constraint to eliminate bits above position u, and division to strip
away bits below position l. We express the division by existentially quantifying the
remainder. A more direct rule to perform evaluation is introduced in Section 5.4.

Example 10 We continue Example 9, and show how an interpolating proof can
be constructed for the conjunction A′

core ∧B′
core. The root sequent of the proof is

⌊A′
core⌋L, ⌊B′

core⌋R ⊢ ∅. In the proof tree shown in Figure 10, we first split the given
formulas using Boolean rules. Then, the literal extr50(x, z) can be decomposed using
our extr-split rule at the cut point 2, and congruence closure is applied to the
literals extr52(z, c1) and extr

5
2(z, 11). We similarly decompose the literal extr72(y, 6)

at cut point 6, and then use extr-arith to reduce extr30(6, c2) to c2 = 6. Finally,
we need a second application of congruence closure, extr-ccLR, to relate the
extractions from x and y.

The resulting interpolant is the formula ∃c.(extr52(x, c)∧c = 11). The quantifier
in the formula stems from the application of extr-ccLR, which transfers the local
symbol c1 from L to R, and thus makes it shared. A quantifier is needed to eliminate
the symbol again from the interpolant. However, as can be seen the quantifier
naturally disappears when translating the interpolant back to functional notation,
which yields the formula bvextract[5,2](x) = 11 in the structural fragment.

It is quite easy to see that our calculus is sound and complete for formulas in the
structural fragment. The calculus does not guarantee, however, that interpolants
computed for formulas in the structural fragment are again in the structural frag-
ment, or that interpolants are quantifier-free. This leads to the question whether
the structural fragment is actually closed under interpolation, i.e., whether every
unsatisfiability conjunction has an interpolant that is again in the fragment. The
answer to this question is positive, and it turns out that our calculus can also be
used to compute such interpolants, if the right strategy is used to construct proofs.

Theorem 1 The structural fragment is closed under interpolation.

Proof We give a simple proof that follows from the fact that our calculus can model
bit-blasting of bit-vector formulas, and builds on work on EUF interpolation in
[3,4]. The existence of more compact interpolants, avoiding the need to blast to
individual bits, can also be shown, but this is slightly more involved.

Suppose A ∧B is an unsatisfiable conjunction in the structural fragment, and
Acore ∧ Bcore the translation to the (extended) core language. Further assume
that x1, . . . , xm are the shared bit-vector constants of A,B, and that w1, . . . , wm are
their bit-widths, respectively. This means that we are searching for an interpolant
in the structural fragment that may only contain the constants x1, . . . , xm. To

26 Peter Backeman et al.

∗....
⌊c1 = c2⌋R, ⌊c1 = 11⌋L, ⌊c2 = 6⌋R, . . . ⊢ ▶ c1 = 11

B
∗

⌊x = y⌋R ⊢ ⌊x = y⌋R ▶ true
closeRR B

⌊c2 = 6⌋R, ⌊extr52(x, c1)⌋L , ⌊extr52(y, c2)⌋R , . . . ⊢ ▶ ∃c.(extr52(x, c) ∧ c = 11)
extr-ccLR

⌊extr52(y, c2)⌋R, ⌊extr30(6, c2)⌋R , ⌊in4(c2)⌋R, . . . ⊢ ▶ I
extr-arithR

⌊c1 = 11⌋L, ⌊extr72(y, 6)⌋R . . . ⊢ ▶ I
extr-splitR, . . .

A
∗

· · · ⊢ ⌊z = z⌋L ▶ false A
⌊extr52(x, c1)⌋L, ⌊extr52(z, c1)⌋L , ⌊in4(c1)⌋L, ⌊extr52(z, 11)⌋L , . . . ⊢ ▶ I

extr-ccLL

⌊∃c. (extr52(x, c) ∧ extr52(z, c) ∧ in4(c))⌋L , ⌊extr52(z, 11)⌋L, . . . ⊢ ▶ I
∃-leftL,∧-left∗L

⌊extr50(x, z)⌋L , ⌊extr52(z, 11)⌋L, ⌊extr72(y, 6)⌋R, ⌊x = y⌋R, . . . ⊢ ▶ I
extr-splitL

⌊A′
core⌋L, ⌊B′

core⌋R ⊢ ▶ I
∧-left∗L,∧-left

∗
R

with I = ∃c.(c = 11 ∧ extr52(x, c)), or in the structural fragment bvextract[5,2](x) = 11.

Fig. 10 Proof tree for the formula A′
core ∧B′

core in Example 10.

model bit-blasting, we augment Acore, Bcore by adding fresh names {bji , c
j
i}i,j for

the individual bits of x1, . . . , xm:

A′
core = Acore ∧

∧
i∈{1,...,m}

j∈{0,...,wi−1}

in1(b
j
i) ∧ extr

j
j (xi, b

j
i)

B′
core = Bcore ∧

∧
i∈{1,...,m}

j∈{0,...,wi−1}

in1(c
j
i) ∧ extr

j
j (xi, c

j
i)

This means that bji/c
j
i is the name of the jth bit of xi in the L/R partition. Note

that a formula Icore is an interpolant of Acore ∧ Bcore iff it is an interpolant of
A′

core ∧ B′
core, because no shared symbols are added, and we can therefore work

with the latter conjunction.

Without loss of generality, we further assume that even every local constant
in A′

core and B′
core occurs as first argument of some extrul -literal, and that every

bit in such constants is extracted by some of the literals. This assumption can
be ensured by adding further literals to the formulas, without changing the set of
possible interpolants.

We then construct a proof for the root sequent ⌊A′
core⌋L, ⌊B′

core⌋R ⊢ ∅ in
our interpolating calculus by systematically applying the calculus rules. Rules are
applied likewise to the L- and the R-formulas, so that we only mention the L-
versions at this point for sake of brevity:

– ∧-leftL to split conjunctions, and ∃-leftL to eliminate quantifiers;
– extr-splitL to split every occurring extr predicate down to the level of indi-

vidual bits;

Title Suppressed Due to Excessive Length 27

– extr-ccLL whenever two extracts ⌊extrjj (s, r)⌋L, ⌊extr
j
j (s, r

′)⌋L for the same
bit occur, followed by arithmetic rules to close the left premise; this generates
an equation ⌊r = r′⌋L;

– extr-ccLL whenever two extracts ⌊extrjj (s, r)⌋L, ⌊extr
j
j (t, r

′)⌋L in combination
with an equation ⌊s = t⌋L occur, followed by an application of closeLL to
close the left premise; again, this generates an equation ⌊r = r′⌋L;

– extr-arithL whenever an extract ⌊extrjj (α, r)⌋L from a concrete number α ∈ Z
occurs, followed by arithmetic rules to simplify the generated formula to an
equation ⌊r = 0⌋L or ⌊r = 1⌋L;

– extr-arithL whenever an extract ⌊extr00(s, r)⌋L in combination with the do-
main constraint in1(s) occurs, i.e., when the single bit of a bit-vector of width 1
is extracted, followed by arithmetic rules to simplify the generated formula to
an equation ⌊r = s⌋L.

After those rule applications, we can focus on the obtained bit-level equations
in the proof goal: on equations ⌊s = t⌋D or ⌊s = α⌋D in which s, t have width 1
(i.e., in1(s) and in1(t)) and α ∈ {0, 1}, with D ∈ {L,R}. By construction, the set
of L-labelled bit-level equations is equi-satisfiable to the original formula A′

core,
and the R-labelled equations are equi-satisfiable to B′

core, so that we can continue
constructing a bit-level proof using the equations.

Since the conjunction A′
core ∧ B′

core is by assumption unsatisfiable, there are
three possible cases: (i) the equations labelled with L are by themselves unsatisfi-
able, the interpolant is false, and the proof can be closed by applying arithmetic
rules; (ii) symmetrically, the equations labelled with R are unsatisfiable, and the
interpolant is true; or (iii) the equations are unsatisfiable only in combination.

In case (iii), there has to be a chain of equations, alternating between L- and
R-equations, that witnesses unsatisfiability. There are several symmetric cases, of
which we only consider one:

0 = · · · = bj1i1︸ ︷︷ ︸
L−equations

.
= cj1i1 = · · · = cj2i2︸ ︷︷ ︸

R−equations

.
= bj2i2 = · · · = bj3i3︸ ︷︷ ︸

L−equations

.
= · · · .= cjkik = · · · = 1︸ ︷︷ ︸

R−equations

(3)

In the other cases, the chain can start in R and end in L, or start and end
in the same partition. The dotted equations bji

.
= cji are implied by the lit-

eral ⌊extrjj (xi, b
j
i)⌋L, ⌊extr

j
j (xi, c

j
i)⌋R, but do not exist explicitly in the proof goal.

From (3), it is easy to read off an interpolant for A∧B in the structural fragment
by summarising the L-chains:

I = bvextract[j1,j1](xi1) = 0 ∧
k−1∧
l=2

bvextract[jl,jl](xil) = bvextract[jl+1,jl+1](xil+1
)

Clearly, I follows from A, and I ∧B is unsatisfiable due to (3).

To construct an interpolant mechanically in our calculus, there are several
strategies. The simplest one is to apply the interpolating cut-rule cutRL to each
the formulas extrj1j1 (xi1 , 0) and { ∃z. (extrjljl (xil , z) ∧ extr

jl+1

jl+1
(xil+1

, z)) }k−1
l=2 , which

yields an interpolant Icore in the core language that corresponds to the structural
interpolant I shown above. ⊓⊔

28 Peter Backeman et al.

5.4 A Rewriting Rule for Constant Extraction

Given an extraction extrul (s, r) and bounds on s, it is in some cases possible to
determine value of extracted bits. For example, the longest prefix on which the
lower and upper bound agree is guaranteed to be present in any consistent value
of s. Therefore, extractions that overlap with that prefix yield some bit values of
the extraction without knowing the exact value of s. We allow rewriting if the
extraction operator falls entirely within the common prefix:

(lbound(Π, s) xor ubound(Π, s)) < 2l∧
c = (lbound(Π, s) rem 2u) div 2l ∧ 0 ≤ c < 2

Π : extrul (s, r) _ r = c
extr-const

where rem and div are the integer remainder and division, respectively. The rule
extr-const allows in particular evaluation of extractions from constant bit-vectors.

5.5 Splitting of Disequalities

As shown above, proofs can be closed by finding contradicting assignments to (a
slice of) a bit-vector. In general, formulas can also contain bit-vector disequali-
ties, i.e., negative equalities between bit-vectors. As an optimisation, disequalities
can be split using the notion of cut points as well. Given a formula with a dise-
quality s ̸= t, we extend the notion of cut point configurations (Section 5.2) by
also propagating between s and t. For a cut point i ∈ C(s) = C(t), we can then
replace the disequality with a disjunction of two disequalities, as expressed by the
following rule:

Γ, inw(s), inw(t), inw−i(c), inw−i(d), extr
w−1
i (s, c), extrw−1

i (t, d) ⊢ c = d,∆

Γ, inw(s), inw(t), ini(c), ini(d), extr
i−1
0 (s, c), extri−1

0 (t, d) ⊢ c = d,∆

Γ, inw(s), inw(t) ⊢ s = t,∆
̸=-split

The constants c, d must be fresh and not occur in the conclusion in this rule.

6 Experiments

To evaluate the effectiveness of the approach, the procedures described in this
article have been implemented in the Princess theorem prover6 [25]. The imple-
mentation of the full SMT-LIB theory of bit-vectors in Princess is still an ongoing
effort, and at this point includes fairly refined versions of the calculi for non-linear
arithmetic (Section 3) and for arithmetic bit-vector operators (Section 4). The im-
plementation of the calculus for the structural fragment (Section 5) has been added
more recently, and still lacks many optimisations that could be applied. Support
for bit-wise operations (like bvand) is also quite näıve at the moment, and simply
bit-blasts each bit-wise operation separately by introducing bvextract[i,i] terms for
the individual bits, as shown in Figure 7. A more refined encoding would choose,
for each sub-expression, whether the arithmetic encoding or bit-blasting should

6 http://www.philipp.ruemmer.org/princess.shtml

http://www.philipp.ruemmer.org/princess.shtml

Title Suppressed Due to Excessive Length 29

be applied, but this refinement is left for future work. The implementation also
supports the SMT-LIB shift operators, which are handled by splitting over the
possible values of the second argument. The SMT-LIB rotation operators are not
supported yet; those operators are over-approximated as uninterpreted functions,
which means that it might be possible to prove problems involving the operators
unsatisfiable, but not satisfiable.

All experiments were done on an AMD Opteron 2220 SE machine, running 64-
bit Linux and Java 1.8. Runtime was limited to 10min wall clock time, and heap
space to 2GB. We used Princess version 2019-10-02 for all experiments. Where
runtimes are reported, we use wall clock time.

We evaluate the performance of our approach in three different ways:

– Section 6.1: performance of satisfiability queries on quantifier-free bit-vector
formulas (SMT-LIB QF BV), in comparison to the state-of-the-art solvers Z3
4.8.0 [37] and CVC4 1.6 [38].

– Section 6.2: performance of satisfiability queries on bit-vector formulas with
quantifiers (SMT-LIB BV), again with comparison to Z3 and CVC4.

– Section 6.3: applicability of the interpolation procedure for software model
checking, using the integration in the Horn solver Eldarica. We compare to
the software model checker CPAchecker 1.7 [39], which internally uses Math-

SAT 5 [20] and the interpolation method from [16].

6.1 Satisfiability Queries on Quantifier-Free Formulas

While our procedure is not specifically designed for just checking satisfiability of
formulas, it is nevertheless interesting to evaluate how the approach performs on
problems from the QF BV category of the SMT-LIB. Results for this category are
given in Table 1, and show that our implementation can overall solve a decent
number of benchmarks, but is not competitive with Z3 and CVC4 on most of the
benchmark families. As a general trend, and unsurprisingly, it can be observed that
our lazy arithmetic encoding works relatively well for problems that use arithmetic
bit-vector operators, but does not pay off for problems that are mostly Boolean,
or problems involving bit-wise operators.

Our implementation can solve the “challenge/multiplyOverflow.smt2” problem
discussed in Example 3, and it performs particularly well on the “brummayer-
biere4” and “pspace” families, which contain benchmarks with large bit-widths,
with variables with up to 30 000 bits. This is to be expected, since our arithmetic
encoding is essentially agnostic about the bounds of bit-vector variables, so that
the complexity of a problem hardly changes when adding more bits.

The family “bruttomesso/core” consists of SMT-LIB problems in the structural
fragment from Section 5 (with additional Boolean structure). Compared to the
implementation described in the FMCAD 2018 paper [17], the performance on
those problems has improved significantly as a result of adding the procedure
described in Section 5. In 2018, only 8 benchmarks from the “core” family could
be solved, compared to 142 in the new version. This is still lower than the results
for Z3 and CVC4, which is likely due to more efficient Boolean reasoning.

We also investigated how often the rules ×-split, bmod-split, and bmod-const

for splitting and eliminating predicates were applied on the benchmarks. We first
determined how many of the problems required the application of the rules at all:

30 Peter Backeman et al.

Table 1 Performance on SMT-LIB QF BV Problems. For each row, the first/second value
gives sat/unsat problems. Experiments were done with Princess 2019-10-02, default settings.

Family
Princess Z3 CVC4

Solved Time (s) Solved Time (s) Solved Time (s)
2.-BuchwaldFried 0/1 -/292 0/1 -/0.7
2.-Hansen-Check 1/2 0.9/0.7 1/2 0.0/0.0 1/2 0.0/0.0
asp 1/3 9.8/14.5 202/68 86.5/67.6 104/22 130.5/82.4
RWS 16/0 16.5/- 16/0 34.0/-
VS3 2/0 217/-
bench ab 284/0 2.2/- 285/0 0.0/- 285/0 0.0/-
bmc-bv 10/8 5.3/45.0 15/15 2.2/13.6 15/12 7.5/35.8
bmc-bv-svcomp14 0/17 -/65.5 8/56 1.5/6.0 8/54 67.1/47.2
brummayerbiere 0/6 -/40.6 0/40 -/30.7 0/37 -/37.6
brummayerbiere2 0/1 -/181 4/25 46.1/90.4 6/43 61.3/54.6
brummayerbiere3 1/0 574/- 5/37 112/97.5 6/12 0.7/85.9
brummayerbiere4 9/0 32.4/- 10/0 0.0/-
bruttomesso
.../simple processor 0/1 -/38.1 0/64 -/53.1 0/64 -/1.2
.../core 0/142 -/56.3 0/672 -/1.2 0/672 -/16.1
.../lfsr 0/225 -/69.9 0/240 -/16.8
calypto 1/2 276/4.7 4/7 0.5/8.6 4/10 13.2/4.3
challenge 0/1 -/1.4
check2 3/2 1.2/0.9 3/3 0.0/0.0 3/3 0.0/0.0
crafted 2/18 1.0/2.6 2/19 0.0/0.0 2/19 0.0/0.0
dwp formulas 136/175 12.3/6.4 154/178 0.0/0.0 154/178 0.0/0.0
ecc 0/8 -/0.1 0/8 -/1.9
fft 5/4 40.8/212 1/0 5.7/-
float 0/1 -/270 59/53 116/89.6 38/28 75.6/131
galois 0/1 -/0.2 0/1 -/0.4
gulwani-pldi08 6/0 14.8/- 6/0 35.2/-
log-slicing 0/51 -/287 0/17 -/352
mcm 36/16 122/232 14/0 40.4/-
pspace 21/42 1.4/1.3 0/13 -/366 21/42 0.0/0.0
rubik 3/4 40.1/21.5 0/2 -/73.1
sage 6601/14658 8.2/23.6 8077/18530 0.3/0.1 8077/18530 0.3/1.7
spear
.../openldap v2.3.35 3/0 0.1/- 5/0 138/-
.../samba v3.0.24 34/0 46.6/- 1373/13 8.8/2.4 1343/13 19.9/16
.../zebra v0.95a 9/0 16.3/- 9/0 1.9/- 9/0 4.0/-
.../xinetd v2.3.14 0/2 -/2.4 0/2 -/1.4 0/2 -/1.6
.../cvs v1.11.22 0/5 -/5.3 24/5 4.9/7.4 24/5 14.4/4.5
.../wget v1.10.2 5/0 8.1/- 38/4 60.7/3.7 36/4 74.8/9.1
.../inn v2.4.3 163/0 14.2/- 219/0 13.7/- 204/0 29.1/-
stp 1/0 22.4/- 1/0 288/-
stp samples 48/35 114/27.9 151/273 0.0/0.0 151/273 0.3/0.5
tacas07 2/0 6.9/- 3/0 1.0/- 3/2 22.1/186
uclid/catchconv 0/16 -/35.5 262/152 2.2/0.9 262/152 7.79/9.6
uclid/tcas 0/2 -/1.4 0/2 -/0.0 0/2 -/0.1
uclid c. smtcomp09 0/6 -/218 0/6 -/383
uum 0/2 -/5.6 0/1 -/2.2
wienand-cav2008
.../Booth 0/2 -/12.0 0/2 -/16.6
.../Distrib 0/6 -/2.9 0/6 -/0.0 0/6 -/0.0
.../Commute 0/3 -/4.0 0/6 -/0.0 0/6 -/0.0
Total
SAT 7331 9.14 10980 4.69 10799 5.53
UNSAT 15148 23.7 20565 3.19 20471 3.42

Title Suppressed Due to Excessive Length 31

Fig. 11 Scatter plot comparing the number of applications of the rules bmod-split and bmod-
const on QF BV benchmarks.

Total solved bmod-split bmod-const ×-split

SAT 7331 2699 268 334

UNSAT 15148 647 130 44

The statistics show that a large number of the benchmarks can indeed be solved
without those rules. This is in particular the case for unsatisfiable problems, for
which it is apparently largely sufficient to work with the simplification rules from
Figure 4, in combination with the rules for Presburger arithmetic, (non-splitting)
multiplication, and extraction. In Figure 11 we compare the required number of
applications of bmod-split and bmod-const for the individual benchmarks; the
scatter plot shows that often a small number of rule applications is sufficient.

The runtimes reported in Table 1 for Princess are somewhat higher than those
of Z3 and CVC4, which can partly be explained by the fact that Princess is entirely
implemented in Scala, and runs on a JVM. This results in repeated overhead
for starting up the JVM and for just-in-time compilation. In actual applications,
for instance software model checking as discussed in Section 6.3, normally many
queries are handled without restarts in between, and the amortised overhead is
smaller.

6.2 Satisfiability Queries on Formulas with Quantifiers

We evaluate the effectiveness of our quantifier elimination approach on problems
from the BV category of SMT-LIB. In order to check whether a quantified bit-
vector formula is satisfiable, QE often does not have to be run to completion,
instead the elimination approach from Section 2.2 can be stopped as soon as a
statement about satisfiability of the resulting formula can be made. This incremen-
tal approach to solving quantified formulas has been implemented in Princess for
Presburger arithmetic, and in combination with our lazy encoding for bit-vectors
also directly applies to quantified bit-vector formulas.

Results on the SMT-LIB BV benchmarks are given in Table 2. Our procedure
can solve a similar number of problems as Z3 and CVC4 on many of the BV

32 Peter Backeman et al.

Table 2 Performance on SMT-LIB BV problems. For each family, the first/second row gives
sat/unsat problems. Several of the families contains benchmarks with unknown status; for
those families only the total number of benchmarks is specified. Experiments were done with
Princess 2019-10-02 and option -portfolio=bv.

Category Problems
Princess Z3 CVC4

Solved Time (s) Solved Time (s) Solved Time (s)

Automizer
16 16 5.7 16 0.1 14 0.1
137 137 7.5 137 0.0 137 0.3

keymaera 4035
3 5.6 108 6.9 34 1.0

3754 1.2 3923 0.3 3921 0.1

psyco
132 4 24.0 132 0.1 132 1.5
62 3 90.8 62 0.2 62 0.5

tptp
17 16 1.2 17 0.0 17 0.0
56 54 1.3 56 0.0 56 0.0

RND 100
5 5.2 40 6.9 24 39.5
2 2.3 28 6.7 22 13.2

RNDPRE 130
13 30.6 20 19.0 22 26.9
15 47.4 36 14.1 26 29.3

model
144 138 8.3 144 0.0 73 10.8
0 0 0 0

Heizmann 131
17 32.9 15 37.8 18 18.1
45 37.7 17 50.7 108 8.3

ranking 60
9 8.4 34 4.4 32 1.5
4 10.2 19 19.5 13 0.4

fixpoint 131
34 16.0 36 0.5 54 14.2
30 55.8 73 0.6 75 2.3

Total 5151
255 11.6 562 3.9 420 8.8
4044 2.5 4351 0.7 4420 0.6

families, although the total number of problems solved is still lower than for Z3 and
CVC4. Like for QF BV, the results confirm that the encoding of bit-vectors into
arithmetic is more effective for problems that are arithmetic in nature (e.g., the
families “Automizer,” “model,” and “Heizmann”), than for more combinatorial
problems (e.g., “psyco”). In general, quantified bit-vector problems tend to be
smaller and harder than quantifier-free problems, which leads to a situation where
it is essential to have the right heuristics and optimisations in place; in this respect
our implementation is clearly still lagging behind Z3 and CVC4.

In the experiments, we used a simple portfolio mode enabled by the option
-portfolio=bv. This mode is inspired by the observation that a closed bit-vector
formula ϕ (i.e., a formula without free variables or uninterpreted predicates) can
be shown to be satisfiable also be proving that the negation ¬ϕ is unsatisfiable, and
vice versa. Experiments showed that often one of ϕ or ¬ϕ is significantly simpler
to solve than the other, but that it is difficult to predict the easier one; in the
portfolio mode the prover therefore simultaneously tries to solve ϕ and ¬ϕ.

6.3 Interpolation and Verification of C Programs

The main purpose of our procedure is the computation of Craig interpolants for bit-
vector formulas. Unfortunately, comparing and evaluating interpolation procedures
is relatively tricky, since the properties that can be measured easily (e.g., the size,
shape, or strength of interpolants, or the time required to extract interpolants) are
ultimately only of limited importance in applications. The decisive property that

Title Suppressed Due to Excessive Length 33

Table 3 Comparison of Eldarica configurations math and ilp32. For each category, the
table shows the number of safe/unsafe results, and for the solved cases the average time, the
required number of CEGAR iterations, and the average size of computed interpolants. For ∗,
after removing an outlier the number is 1.1, and ∗∗ becomes 1.3.

Category Programs
Eldarica math Eldarica ilp32

Solved Time (s) Iter. I. Size Solved Time (s) Iter. I. Size

HOLA 46
43 5.3 4.1 1.1 21 7.1 4.8 2.0
0 5 17.3 41.0 1.3

llreve 21
16 9.8 13.0 1.3 8 13.4 14.8 2.0
5 7.6 6.8 1.0 5 120.6 8.6 427.5∗

VeriMAP 155
133 4.4 2.4 1.0 100 3.8 1.5 1.2
21 6.7 4.2 1.0 39 14.2 7.4 1.4

SVCOMP 329
107 53.7 22.3 1.0 89 65.7 21.6 1.4
78 93.5 41.0 1.0 70 66.7 30.7 1.2

Total 551
299 22.5 10.3 1.1 218 29.8 10.5 1.5
104 71.8 31.9 1.0 119 49.7 21.2 23.7∗∗

Table 4 Comparison of Eldarica configuration ilp32 and CPAchecker. For each category,
the table shows the number of safe/unsafe results, and for the solved cases the average time,
and the required average number of CEGAR iterations.

Category Programs
Eldarica ilp32 CPAchecker -32

Solved Time (s) Iter. Solved Time (s) Iter.

HOLA 46
21 7.1 4.8 12 80.8 20.1
5 17.3 41.0 4 8.5 7.0

llreve 21
8 13.4 14.8 7 19.5 14.7
5 120.6 8.6 5 33.8 7.0

VeriMAP 155
100 3.8 1.5 87 9.4 3.3
39 14.2 7.4 33 20.9 6.1

SVCOMP 329
89 65.7 21.6 74 37.5 12.1
70 66.7 30.7 126 49.0 9.0

Total 551
218 29.8 10.5 180 26.1 8.5
119 49.7 21.2 168 42.1 8.3

makes interpolants useful is the ability to generalise, which is hard to measure
syntactically. Adding to this, there is no standard set of interpolation benchmarks
that could be used, and the interpolation queries that occur in model checking
can differ from run to run. In model checking, moreover interpolation queries
are interdependent: the results of earlier queries in a run will affect the later
interpolation queries being generated.

We therefore decided to evaluate in an application-oriented way, by integrat-
ing our interpolation procedure into a model checker and measuring its ability to
verify safety properties of C programs with machine integer semantics. As model
checker we use Eldarica version 2.0.27 [40], a Horn clause-based model checker
that uses Cartesian predicate abstraction and the CEGAR algorithm. Eldarica
was already previously tightly integrated with Princess, and was in the scope of
this work extended to also handle Horn clauses over bit-vectors. Since Eldarica

internally uses the Princess data-structures to store Horn clauses, we could im-
plement the translation from bit-vectors to our core language (Section 4.1) as a
preprocessing step that is applied to all Horn clauses upfront. This means that the
actual model checking engine operates purely on expressions in the core language,

7 https://github.com/uuverifiers/eldarica

https://github.com/uuverifiers/eldarica

34 Peter Backeman et al.

Fig. 12 Comparison of the Eldarica run-
time in seconds for math and ilp32 semantics.

Fig. 13 Eldarica vs. CPAchecker runtime
in seconds for ilp32 semantics.

and all interpolation queries and implication checks stay within the core language;
the need to translate back and forth between bit-vector formulas and core language
is eliminated. As an obvious downside of this approach, however, it is no longer
easily possible to replace the interpolation procedure with other solvers.

Benchmarks. For the experiments, we used the built-in C parser of Eldarica,
and work with the benchmark set of 551 C programs already used in [41] for
evaluating different predicate generation strategies. The programs stem from a
variety of sources, including the SV-COMP 2016 categories “Integers and Control
Flow” and “Loops,” and were selecting by taking all programs that do not include
arrays or heap data structures (i.e., only arithmetic operations). The verification
task consisted in showing that safety assertions included in the programs can
never fail. For the experiment, we interpret the programs as operating either on
the unbounded mathematical integers (math, Eldarica option -arithMode:math),
or on signed 32-bit bit-vectors (ilp32, Eldarica option -arithMode:ilp32) with
wrap-around semantics. Eldarica was otherwise run with default settings, which
means that it also applies the interpolation abstraction technique from [42].

Comparison math vs. ilp32. The results for math and ilp32 semantics are given in
Table 3 and Figure 12. It has to be pointed out that the status of the programs
depends on the chosen semantics: for instance, the 46 HOLA programs [43] are all
known to be safe in mathematical semantics, but several of the programs turn out
to be unsafe in bit-vector semantics due to the possibility of overflow. Eldarica
can consistently verify safety of more programs in math than in ilp32, but it can
disprove safety in more of the ilp32 cases. The total number of solved cases is
higher in math than in ilp32, but ilp32 is quite close (403 vs. 337); given the
higher complexity of the bit-vector semantics, this is an encouraging result. The
scatter plot in Figure 12 shows that the runtimes for the two semantics are strongly
correlated, and while ilp32 is on average slower thanmath the difference is relatively
small.

Table 3 also shows that the number of CEGAR iterations is comparable for
math and ilp32, while the size of interpolants (measured as the average number of

Title Suppressed Due to Excessive Length 35

sub-formulas of interpolants) is bigger for ilp32 than for math, but usually by less
than a factor of 2. The exception is the category “llreve/unsafe,” where drastically
bigger interpolants are computed for ilp32 than for math. Inspecting this case,
we found that there was a single benchmark in “llreve” that was solved after
579 seconds with interpolants of size 2133; when removing this outlier, the average
interpolant size for “llreve/unsafe” is only 1.1.

Comparison with CPAchecker. As comparison, we also ran the model checker
CPAchecker 1.7 [39], using options -predicateAnalysis -32 and MathSAT 5 [20]
as solver. MathSAT 5 uses the interpolation method from [16]. The results are
given in Table 4 and Figure 13. Our method is competitive with CPAchecker

on all considered categories: Eldarica with ilp32 can consistently prove more
programs safe, whereas CPAchecker can show more programs unsafe, with a
lower number of CEGAR iterations. We suspect that the use of large-block en-
coding [44] in CPAchecker is responsible for this phenomenon, and indeed makes
CPAchecker very effective for bug finding. The runtimes of the systems are on
average close, but the scatter plot in Figure 13 shows no clear trend.

Altogether, we remark that we are comparing different verification systems
here: although both Eldarica and CPAchecker apply CEGAR and interpola-
tion, there are many factors affecting the results. What the experiments do show,
however, is that the interpolation method proposed in this paper can be used to
create a software model checker that is competitive with the state of the art.

7 Conclusions

We have presented a new calculus for Craig interpolation and quantifier elimi-
nation in bit-vector arithmetic. Furthermore, we have shown how to efficiently
integrate reasoning over the structural fragment. While the experimental results
in model checking are already promising, we believe that there is still a lot of
room for extension and improvement of the approach. This includes more pow-
erful propagation and simplification rules, and more sophisticated strategies to
apply the splitting rules ×-split and bmod-split. Future work also includes more
efficient use of bounds, and a strategy to employ bit-blasting directly to whole
sub-expressions when deemed more efficient.

References

1. K. L. McMillan, An interpolating theorem prover, Theor. Comput. Sci. 345 (1) (2005).
2. V. D’Silva, M. Purandare, G. Weissenbacher, D. Kroening, Interpolant strength, in: VM-

CAI, LNCS, Springer, 2010.
3. A. Fuchs, A. Goel, J. Grundy, S. Krstić, C. Tinelli, Ground interpolation for the theory

of equality, in: TACAS, LNCS, Springer, 2009.
4. A. Brillout, D. Kroening, P. Rümmer, T. Wahl, Beyond quantifier-free interpolation in

extensions of Presburger arithmetic, in: VMCAI, LNCS, Springer, 2011, pp. 88–102.
5. K. L. McMillan, Quantified invariant generation using an interpolating saturation prover,

in: C. R. Ramakrishnan, J. Rehof (Eds.), Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 2008, Vol. 4963 of Lecture Notes in Computer Science,
Springer, 2008, pp. 413–427.

6. L. Kovács, A. Voronkov, Interpolation and symbol elimination, in: CADE, 2009, pp. 199–
213.

36 Peter Backeman et al.

7. M. P. Bonacina, M. Johansson, On interpolation in automated theorem proving, J. Autom.
Reasoning 54 (1) (2015) 69–97. doi:10.1007/s10817-014-9314-0.

8. D. Kapur, R. Majumdar, C. G. Zarba, Interpolation for data structures, in:
SIGSOFT’06/FSE-14, ACM, New York, NY, USA, 2006, pp. 105–116. doi:http://doi.
acm.org/10.1145/1181775.1181789.

9. H. Hojjat, P. Rümmer, Deciding and interpolating algebraic data types by reduction, in:
T. Jebelean, V. Negru, D. Petcu, D. Zaharie, T. Ida, S. M. Watt (Eds.), 19th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC
2017, Timisoara, Romania, September 21-24, 2017, IEEE Computer Society, 2017, pp.
145–152. doi:10.1109/SYNASC.2017.00033.

10. L. Dai, B. Xia, N. Zhan, Generating non-linear interpolants by semidefinite program-
ming, in: N. Sharygina, H. Veith (Eds.), Computer Aided Verification - 25th Inter-
national Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceed-
ings, Vol. 8044 of Lecture Notes in Computer Science, Springer, 2013, pp. 364–380.
doi:10.1007/978-3-642-39799-8_25.

11. A. Brillout, D. Kroening, P. Rümmer, T. Wahl, An interpolating sequent calculus for
quantifier-free Presburger arithmetic, Journal of Automated Reasoning 47 (2011) 341–
367.

12. A. Griggio, T. T. H. Le, R. Sebastiani, Efficient interpolant generation in satisfiability
modulo linear integer arithmetic, Logical Methods in Computer Science 8 (3) (2010).
doi:10.2168/LMCS-8(3:3)2012.

13. R. Bruttomesso, S. Ghilardi, S. Ranise, Quantifier-free interpolation of a theory of arrays,
Logical Methods in Computer Science 8 (2) (2012). doi:10.2168/LMCS-8(2:4)2012.

14. N. Totla, T. Wies, Complete instantiation-based interpolation, J. Autom. Reasoning 57 (1)
(2016) 37–65. doi:10.1007/s10817-016-9371-7.

15. J. Hoenicke, T. Schindler, Efficient interpolation for the theory of arrays, CoRR
abs/1804.07173 (2018). arXiv:1804.07173.

16. A. Griggio, Effective word-level interpolation for software verification, in: P. Bjesse, A. Slo-
bodová (Eds.), International Conference on Formal Methods in Computer-Aided Design,
FMCAD ’11, Austin, TX, USA, October 30 - November 02, 2011, FMCAD Inc., 2011, pp.
28–36.

17. P. Backeman, P. Rümmer, A. Zeljic, Bit-vector interpolation and quantifier elimination
by lazy reduction, in: Bjørner and Gurfinkel [45], pp. 1–10. doi:10.23919/FMCAD.2018.
8603023.

18. D. Cyrluk, O. Möller, H. Rueß, An efficient decision procedure for the theory of fixed-
sized bit-vectors, in: O. Grumberg (Ed.), Computer Aided Verification, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1997, pp. 60–71.

19. R. Bruttomesso, N. Sharygina, A scalable decision procedure for fixed-width bit-vectors,
in: Proceedings of the 2009 International Conference on Computer-Aided Design, ICCAD
’09, ACM, New York, NY, USA, 2009, pp. 13–20. doi:10.1145/1687399.1687403.
URL http://doi.acm.org.ezproxy.its.uu.se/10.1145/1687399.1687403

20. A. Cimatti, A. Griggio, B. J. Schaafsma, R. Sebastiani, The MathSAT5 SMT solver, in:
TACAS, Vol. 7795 of LNCS, 2013.

21. S. Asadi, M. Blicha, G. Fedyukovich, A. E. J. Hyvärinen, K. Even-Mendoza, N. Shary-
gina, H. Chockler, Function summarization modulo theories, in: G. Barthe, G. Sutcliffe,
M. Veanes (Eds.), LPAR-22. 22nd International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, Awassa, Ethiopia, 16-21 November 2018, Vol. 57 of
EPiC Series in Computing, EasyChair, 2018, pp. 56–75.

22. D. Kroening, G. Weissenbacher, Lifting propositional interpolants to the word-level, in:
FMCAD, IEEE Computer Society, 2007, pp. 85–89.

23. D. Kroening, G. Weissenbacher, An interpolating decision procedure for transitive relations
with uninterpreted functions, in: Haifa Verification Conference, Vol. 6405 of Lecture Notes
in Computer Science, Springer, 2009, pp. 150–168.

24. Y. Ho, P. Chauhan, P. Roy, A. Mishchenko, R. K. Brayton, Efficient uninterpreted function
abstraction and refinement for word-level model checking, in: R. Piskac, M. Talupur (Eds.),
2016 Formal Methods in Computer-Aided Design, FMCAD 2016, Mountain View, CA,
USA, October 3-6, 2016, IEEE, 2016, pp. 65–72. doi:10.1109/FMCAD.2016.7886662.

25. P. Rümmer, A constraint sequent calculus for first-order logic with linear integer arith-
metic, in: LPAR, Vol. 5330 of LNCS, Springer, 2008, pp. 274–289.

26. M. C. Fitting, First-Order Logic and Automated Theorem Proving, 2nd Edition, Springer-
Verlag, New York, 1996.

https://doi.org/10.1007/s10817-014-9314-0
https://doi.org/http://doi.acm.org/10.1145/1181775.1181789
https://doi.org/http://doi.acm.org/10.1145/1181775.1181789
https://doi.org/10.1109/SYNASC.2017.00033
https://doi.org/10.1007/978-3-642-39799-8_25
https://doi.org/10.2168/LMCS-8(3:3)2012
https://doi.org/10.2168/LMCS-8(2:4)2012
https://doi.org/10.1007/s10817-016-9371-7
http://arxiv.org/abs/1804.07173
https://doi.org/10.23919/FMCAD.2018.8603023
https://doi.org/10.23919/FMCAD.2018.8603023
http://doi.acm.org.ezproxy.its.uu.se/10.1145/1687399.1687403
https://doi.org/10.1145/1687399.1687403
http://doi.acm.org.ezproxy.its.uu.se/10.1145/1687399.1687403
https://doi.org/10.1109/FMCAD.2016.7886662

Title Suppressed Due to Excessive Length 37

27. J. Y. Halpern, Presburger arithmetic with unary predicates is Π1
1 complete, Journal of

Symbolic Logic 56 (1991).
28. R. Nieuwenhuis, A. Oliveras, C. Tinelli, Solving SAT and SAT modulo theories: From an

abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T), Journal of the ACM
53 (6) (2006) 937–977.

29. A. Reynolds, T. King, V. Kuncak, Solving quantified linear arithmetic by counterexample-
guided instantiation, Formal Methods in System Design 51 (3) (2017) 500–532.

30. W. Craig, Linear reasoning. A new form of the Herbrand-Gentzen theorem, The Journal
of Symbolic Logic 22 (3) (1957) 250–268.

31. S. Lang, Algebra (3. ed.), Addison-Wesley, 1993.
32. B. Buchberger, An algorithm for finding the basis elements in the residue class ring modulo

a zero dimensional polynomial ideal, Ph.D. thesis (3 2006).
33. P. Van Hentenryck, D. McAllester, D. Kapur, Solving polynomial systems using a branch

and prune approach, SIAM J. Numer. Anal. 34 (2) (1997) 797–827.
34. J. Warren A. Hunt, R. B. Krug, J. S. Moore, Linear and nonlinear arithmetic in ACL2.,

in: Proceedings, Correct Hardware Design and Verification Methods, 12th IFIP WG 10.5
Advanced Research Working Conference, Vol. 2860 of LNCS, Springer, 2003, pp. 319–333.

35. C. Borralleras, S. Lucas, A. Oliveras, E. Rodŕıguez-Carbonell, A. Rubio, SAT modulo
linear arithmetic for solving polynomial constraints, J. Autom. Reasoning 48 (1) (2012)
107–131.

36. C. Barrett, P. Fontaine, C. Tinelli, The SMT-LIB Standard: Version 2.6, Tech. rep., De-
partment of Computer Science, The University of Iowa, available at www.SMT-LIB.org
(2017).

37. L. M. de Moura, N. Bjørner, Z3: An efficient SMT solver, in: TACAS, Vol. 4963 of LNCS,
Springer, 2008, pp. 337–340.

38. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds,
C. Tinelli, CVC4, in: CAV, Vol. 6806 of LNCS, Springer, 2011, pp. 171–177. doi:10.1007/
978-3-642-22110-1_14.

39. D. Beyer, M. E. Keremoglu, CPAchecker: A tool for configurable software verification,
CoRR abs/0902.0019 (2009). arXiv:0902.0019.

40. H. Hojjat, P. Rümmer, The ELDARICA Horn solver, in: Bjørner and Gurfinkel [45], pp.
1–7. doi:10.23919/FMCAD.2018.8603013.

41. Y. Demyanova, P. Rümmer, F. Zuleger, Systematic predicate abstraction using vari-
able roles, in: C. Barrett, M. Davies, T. Kahsai (Eds.), NASA Formal Methods - 9th
International Symposium, NFM 2017, Moffett Field, CA, USA, May 16-18, 2017, Pro-
ceedings, Vol. 10227 of Lecture Notes in Computer Science, 2017, pp. 265–281. doi:
10.1007/978-3-319-57288-8_18.

42. J. Leroux, P. Rümmer, P. Subotic, Guiding Craig interpolation with domain-specific ab-
stractions, Acta Inf. 53 (4) (2016) 387–424. doi:10.1007/s00236-015-0236-z.

43. I. Dillig, T. Dillig, B. Li, K. L. McMillan, Inductive invariant generation via abductive in-
ference, in: A. L. Hosking, P. T. Eugster, C. V. Lopes (Eds.), Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming Systems Languages
& Applications, OOPSLA, ACM, 2013, pp. 443–456. doi:10.1145/2509136.2509511.

44. D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, R. Sebastiani, Software model check-
ing via large-block encoding, in: Proceedings of 9th International Conference on Formal
Methods in Computer-Aided Design, FMCAD 2009, 15-18 November 2009, Austin, Texas,
USA, IEEE, 2009, pp. 25–32. doi:10.1109/FMCAD.2009.5351147.

45. N. Bjørner, A. Gurfinkel (Eds.), 2018 Formal Methods in Computer Aided Design, FM-
CAD 2018, Austin, TX, USA, October 30 - November 2, 2018, IEEE, 2018.

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
http://arxiv.org/abs/0902.0019
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1007/978-3-319-57288-8_18
https://doi.org/10.1007/978-3-319-57288-8_18
https://doi.org/10.1007/s00236-015-0236-z
https://doi.org/10.1145/2509136.2509511
https://doi.org/10.1109/FMCAD.2009.5351147

	Introduction
	Preliminaries: The Base Logic
	Solving Non-Linear Constraints
	Solving Bit-Vector Constraints
	Interpolation in the Presence of Extract and Concat
	Experiments
	Conclusions

