
Ranking Function Synthesis
for Bit-Vector Relations?

Byron Cook1, Daniel Kroening2, Philipp Rümmer2, and
Christoph M. Wintersteiger3

1 Microsoft Research, UK
2 Oxford University, UK

3 ETH Zurich, Switzerland

Abstract. Ranking function synthesis is a key aspect to the success of
modern termination provers for imperative programs. While it is well-
known how to generate linear ranking functions for relations over (math-
ematical) integers or rationals, efficient synthesis of ranking functions for
machine-level integers (bit-vectors) is an open problem. This is partic-
ularly relevant for the verification of low-level code. We propose several
novel algorithms to generate ranking functions for relations over ma-
chine integers: a complete method based on a reduction to Presburger
arithmetic, and a template-matching approach for predefined classes of
ranking functions based on reduction to SAT- and QBF-solving. The util-
ity of our algorithms is demonstrated on examples drawn from Windows
device drivers.

1 Introduction

Modern termination provers for imperative programs compose termination ar-
guments by repeatedly invoking ranking function synthesis tools. Such synthesis
tools are available for numerous domains, including linear and non-linear sys-
tems, and data structures. Thus, complex termination arguments can be con-
structed that reason simultaneously about the heap as well as linear and non-
linear arithmetic.

Efficient synthesis of ranking functions for machine-level bit-vectors, how-
ever, has remained an open problem. Today, the most common approach to
create ranking functions over machine integers is to use tools actually designed
for rational arithmetic. Because such tools do not faithfully model all properties
of machine integers, it can happen that invalid ranking functions are generated
(both for terminating and for non-terminating programs), or that existing rank-
ing functions are not found. Both phenomena can lead to incompleteness of
termination provers: verification of actually terminating programs might fail.

? Supported by the Swiss National Science Foundation grant no. 200021-111687, by
the Engineering and Physical Sciences Research Council (EPSRC) under grant
no. EP/G026254/1, by the EU FP7 STREP MOGENTES, and by the EU ARTEMIS
CESAR project.

This paper considers the termination problem as well as the synthesis of rank-
ing functions for programs written in languages like ANSI-C, C++, or Java. Such
languages typically provide bit-vector arithmetic over 16, 32, or 64 bit words,
and usually support both unsigned and signed datatypes (represented using the
2’s complement). We present two new algorithms to generate ranking functions
for bit-vectors: (i) a complete method based on a reduction to Presburger arith-
metic, and (ii) a template-matching approach for predefined classes of ranking
functions, including an extremely efficient SAT-based method. We quantify the
performance of these new algorithms using examples drawn from Windows device
drivers. Our algorithms are compared to the linear ranking function synthesis
engine Rankfinder, which uses rational arithmetic.

Programs using only machine integers can also be proved terminating without
ranking functions. Therefore, we also compare the performance of our methods
with one approach not based on ranking functions, the rewriting of termination
properties to safety properties according to Biere et al. [5].

Our results indicate that, on practical examples, the presented new methods
clearly surpass the known methods in terms of precision and performance.

This paper is organised as follows: in Sect. 2, we provide motivating ex-
amples, briefly explain the architecture of termination provers and define the
set of considered programs. In Sect. 3, a known, linear programming based ap-
proach for ranking function synthesis is analysed. Subsequently, a new extension
to this method is presented that handles bit-vector programs soundly. Sect. 3.3
presents two approaches based on template-matching for predefined classes of
ranking functions. In Sect. 4, the results of an experimental evaluation of all new
methods are given and compared to results obtained through known approaches.

2 Termination of Bit-Vector Programs

We start by discussing two examples extracted from Windows device drivers that
illustrate the difficulty of termination checking for low-level code. Both examples
will be used in later sections to illustrate our methods.

The first example (Fig. 1) iterates for as many times as there are bits set in
i. Termination of the loop can be proven by finding a ranking function, which
is a function into a well-founded domain that monotonically decreases in each
loop iteration. To find a ranking function for this example, it is necessary to take
the semantics of the bit-wise AND operator & into account, which is not easily
possible in arithmetic-based ranking function synthesis tools (see Sect. 3.1). A
possible ranking function is the linear function m(i) = i, because the result of
i & (i-1) is always in the range [0, i− 1]: the value of m(i) decreases with
every iteration, but it can not decrease indefinitely as it is bounded from below.

The second program (Fig. 2) is potentially non-terminating, because the
variable nLoop might be initialised with a value that is not a multiple of 4,
so that the loop condition is never falsified. For a correct analysis, it is neces-
sary to know that integer underflows do not change the remainder modulo 4.
Ignoring overflows, but given the information that the variable nLoop is in the

2

unsigned char i;

while (i!=0)

i = i & (i-1);

Fig. 1. Code fragment of Windows driver kernel/agplib/init.c
(#40 in our benchmarks).

unsigned long ulByteCount;

for (int nLoop = ulByteCount;

nLoop; nLoop -= 4) { [...] }

Fig. 2. Code fragment of Windows device driver audio/gfxswap.xp/filter.cpp
(#14 in our benchmarks).

range [−231, 231 − 1] and is decremented in every iteration, a ranking function
synthesis tool might incorrectly produce the ranking function nLoop.

2.1 Syntax and Semantics of Bit-Vector Programs

In order to simplify presentation, we abstract from the concrete language and
datatypes and introduce a simpler category of bit-vector programs. Real-world
programs can naturally be reduced to our language, which is in practice done
by the Model Checker (possibly also taking care of data abstractions, etc).

We assume that bit-vector programs consist of only a single loop (endlessly
repeating its body), possibly preceded by a sequence of statements (the stem).4

Apart from this, our program syntax permits guards (assume (t)), sequential
composition (β; γ), choice (β 2 γ), and assignments (x := t). Programs operate
on global variables x ∈ X , each of which ranges over a set Bα(x) of bit-vectors of
width α(x) > 0. The syntactic categories of programs, statements, and expres-
sions are defined by the following grammar:

〈Prog〉 ::= 〈Stmt〉 repeat { 〈Stmt〉 }

〈Stmt〉 ::= skip || assume (〈Expr〉) || 〈Stmt〉; 〈Stmt〉 || 〈Stmt〉 2 〈Stmt〉 || x := 〈Expr〉

〈Expr〉 ::= 0n || 1n || · · · || ∗n || x || castn(〈Expr〉) || ¬〈Expr〉 || 〈Expr〉 ◦ 〈Expr〉

Because the width of variables is fixed and does not change during program
execution, it is not necessary to introduce syntax for variable declarations. Ex-
pressions 0n, 1n, . . . are bit-vector literals of width n, the expression ∗n non-
deterministically returns an arbitrary bit-vector of width n, and the opera-
tor castn changes the width of a bit-vector (cutting off the highest-valued bits,
or filling up with zeros as highest-valued bits). The semantics of bitwise nega-
tion ¬, and of the binary operators ◦ ∈ {+,×,÷,=, <s, <u, & , | ,�,�} is as

4 This is not a restriction, as will become clear in the next section.

3

usual.5 When evaluating the arithmetic operators +,×,÷,�,�, both operands
are interpreted as unsigned integers. In the case of the strict ordering relation <s
(resp., <u) the operands are interpreted as signed integers in 2’s complement
format (resp., as unsigned integers).

We write t : n to denote that the expression t is correctly typed and denotes
a bit-vector of width n. In the rest of the paper, we always assume that programs
are type-correct.

The state space of programs defined over a (finite) set X of bit-vector vari-
ables with widths α is denoted by S, and consists of all mappings from X to bit-
vectors of the correct width: S = {f ∈ X → B+ | f(x) ∈ Bα(x) for all x ∈ X}.
The transition relation defined by a statement β is denoted by Rβ ⊆ S × S.
In particular, we define the transition relation for sequences as Rβ1;β2(s, s′) ≡
∃s′′ . Rβ1(s, s′′) ∧Rβ2(s′′, s′).

Example. We consider the program given in Fig. 2. Using unsigned arithmetic
(and −4 ≡ 232 − 4 mod 232), the bit-vector program for a single loop iteration
is

assume (nLoop 6= 0); nLoop := nLoop + (232 − 4) (1)

Complexity. We say that a bit-vector program β repeat { γ } terminates if there is
no infinite sequence of states a0, a1, a2, . . . ∈ S with Rβ(a0, a1) and Rγ(ai, ai+1)
for all i > 0. The termination problem for bit-vector programs is decidable:

Lemma 1. Deciding termination of bit-vector programs is PSPACE-complete
in the program length6 plus

∑
x∈X α(x), i.e., the size of the program’s available

memory.

Practically, the most successful termination provers are based on incomplete
methods that try to avoid this high complexity, by such means as the generation
of specific kinds of ranking functions (like functions that are linear in program
variables). The general strategy of such provers is described in the next section.

2.2 Binary Reachability Analysis and Ranking Functions

Definition 1 (Ranking function). Suppose (D,≺) is a well-founded, strictly
partially ordered set, and R ⊆ U × U is a relation over a non-empty set U . A
ranking function for R is a function m : U → D such that:

for all a, b ∈ U : R(a, b) implies m(b) ≺ m(a).

Of particular interest in the context of this paper is the well-founded domain of
natural numbers (N, <). In general, we can directly conclude:

Lemma 2. If a (global) ranking function exists for the transition relation R of
a program β, then β terminates.
5 Adding further operations, e.g., bit-vector concatenation, is straightforward.
6 The number of characters in the program text. We assume that a unary representa-

tion is used for the index n of the operators 0n, 1n, . . . , ∗n, and castn.

4

The problem of deciding termination of a program may thus be stated as a
problem of ranking function synthesis. By the disjunctive well-foundedness theo-
rem [15], this is simplified to the problem of finding a ranking function for every
path through the program. The ranking functions found for all n paths are used to
construct a global, disjunctive ranking relation M(a, b) =

∨n
i=1mi(b) ≺ mi(a).

A technique that puts this theorem to use is Binary Reachability Analy-
sis [8,9]. In this approach, termination of a program is first expressed as a safety
property [5], initially assuming that the program does not terminate. Conse-
quently, a (software) Model Checker is applied to obtain a counterexample to
termination, i.e., an example of non-termination. This counterexample contains
a stem that describes how to reach a loop in the program, and a cycle that
follows a path π through the loop, finally returning to the entry location of the
loop. What follows is an analysis solely concerned with the stem and π, which
is why we may safely restrict ourselves to single-loop programs here.

The next step in the procedure is to synthesise a ranking function for π,
which can be seen as a new, smaller, and loop-free program that does not contain
choice operators. Semantically, π is interpreted as a relation Rπ(x, x′) between
program states x, x′. If a ranking function mπ is found for this relation, the
original safety property is weakened to exclude all paths of the program that
satisfy the ranking relation mπ(x′) ≺ mπ(x), and the process starts over. If no
further non-terminating paths are found, termination of the program is proven.

3 Ranking Functions for Bit-Vector Programs

We introduce new methods based on integer linear programming, SAT-solving,
and QBF-solving to synthesise ranking functions for paths in a bit-vector pro-
gram. Before that, we give a short overview of the derivation of ranking functions
using linear programming, which is the starting point for our methods.

3.1 Synthesis of Ranking Functions by Linear Programming

The approach to generate ranking functions that is used in binary reachabil-
ity engines like Terminator [9] and ARMC [16] was developed by Podelski et
al. [14]. In this setting, ranking functions are generated for transition rela-
tions R ⊆ Qn ×Qn that are described by systems of linear inequalities:

R(x, x′) ≡ Ax+A′x′ ≤ b (A,A′ ∈ Qk×n, b ∈ Qk)

where x, x′ ∈ Qn range over vectors of rationals. Bit-vector relations have to
be encoded into such systems, which usually involves an over-approximation
of program behaviour. The derived ranking functions are linear and have the
codomain D = {z ∈ Q | z ≥ 0}, which is ordered by y ≺ z ≡ y + δ ≤ z for some
rational δ > 0. Ranking functions m : Qn → D are represented as m(x) = rx+ c,
with r ∈ Qn a row vector and c ∈ Q. Such a function m is a ranking function
with the domain (D,≺) if and only if the following condition holds:

for all x, x′ ∈ Qn : R(x, x′) implies rx+ c ≥ 0 ∧ rx′ + c ≥ 0 ∧ rx′ + δ ≤ rx (2)

5

Coefficients r for which this implication is satisfied can be constructed using
Farkas’ lemma, of which the ‘affine’ form given in [19] is appropriate. Using this
lemma, a necessary and sufficient criterion for the existence of linear ranking
functions can be formulated:

Theorem 1 (Existence of linear ranking functions [14]). Suppose that
R(x, x′) ≡ Ax+A′x′ ≤ b is a satisfiable transition relation. R has a linear rank-
ing function m(x) = rx+ c iff there are non-negative vectors λ1, λ2 ∈ Qk s.t.:

λ1A
′ = 0, (λ1 − λ2)A = 0, λ2(A+A′) = 0, λ2b < 0.

In this case, m can be chosen as λ2A
′x+ (λ1 − λ2)b.

This criterion for the existence of linear ranking functions is necessary and
sufficient for linear inequalities on the rationals, but only sufficient over the
integers or bit-vectors: there are relations R(x, x′) ≡ Ax+A′x′ ≤ b for which
linear ranking functions exist, but the criterion fails, e.g.:

R(x, x′) ≡ x ∈ [0, 4] ∧ x′ ≥ 0.2x+ 0.9 ∧ x′ ≤ 0.2x+ 1.1 .

Restricting x and x′ to the integers, this is equivalent to x = 0 ∧ x′ = 1 and can
be ranked by m(x) = −x+ 1. Over the rationals, the program defined by the
inequalities does not terminate, which implies that no ranking function exists
and the criterion of Theorem 1 fails.

3.2 Synthesis of Ranking Functions by Integer Linear Programming

To extend the approach from Sect. 3.1 and fully support bit-vector programs,
we first generalise Theorem 1 to disjunctions of systems of inequalities over the
integers. We then define an algorithm to synthesise linear ranking functions for
programs defined in Presburger arithmetic, which subsumes bit-vector programs.

Linear ranking functions over the integers. In order to faithfully encode
bit-vector operations like addition with overflow (describing non-convex transi-
tion relations), it is necessary to consider also disjunctive transition relations R:

R(x, x′) ≡
l∨
i=1

Aix+A′ix
′ ≤ bi (3)

where l ∈ N, Ai, A′i ∈ Zk×n, bi ∈ Zk, and x, x′ ∈ Zn range over integer vectors.
Linear ranking functions for such relations can be constructed by solving an
implication like (2) for each disjunct of the relation, as shown below. There is
one further complication, however: Farkas’ lemma, which is the main ingredient
for Theorem 1, is in general not complete for inequalities over the integers.

Farkas’ lemma is complete for integral systems, however: Ax+A′x′ ≤ b is
called integral if the polyhedron {

(
x
x′

)
∈ Q2n | Ax+A′x′ ≤ b} coincides with its

integral hull (the convex hull of the integer points contained in it). Every system
of inequalities can be transformed into an integral system with the same integer
solutions, although this might increase the size of the system exponentially [19].

6

Lemma 3. Suppose R(x, x′) ≡
∨l
i=1Aix+A′ix

′ ≤ bi is a transition relation in
which each disjunct is satisfiable and integral. R has a linear ranking func-
tion m(x) = rx+ c if and only if there are non-negative vectors λi1, λ

i
2 ∈ Qk for

i ∈ {1, . . . , l} such that:

λi1A
′
i = 0, λi2(Ai +A′i) = 0, λi2bi < 0, (λi1 − λi2)Ai = 0, λi2A

′
i = r. (4)

Ranking functions for Presburger arithmetic. Presburger arithmetic (PA)
is the first-order theory of integer arithmetic without multiplication [17]. We de-
scribe a complete procedure to generate linear ranking functions for PA-defined
transition relations by reduction to Lem. 3.7

Suppose a transition relation R(x, x′) is defined by a Presburger formula.
Because PA allows quantifier elimination [17], it can be assumed that R(x, x′)
is a quantifier-free Boolean combination of equations, inequalities, and divisibil-
ity constraints ε | (cx+ dx′ + e). Divisibility constraints are introduced during
quantifier elimination and state that the value of the term cx+ dx′ + e (with
c, d ∈ Zn, e ∈ Z) is a multiple of the positive natural number ε ∈ N+.

In order to apply Lem. 3, we eliminate divisibility constraints from R(x, x′)
as explained in detail below. This is possible by introducing auxiliary program
variables y, y′: we will transform R(x, x′) to a formula R′(x, y, x′, y′) without
divisibility constraints, such that ∃y, y′.R′(x, y, x′, y′) ≡ R(x, x′). The transfor-
mation increases the size of the PA formula only polynomially.

By rewriting to disjunctive normalform, replacing equations s = t with in-
equalities s ≤ t ∧ t ≤ s, the relation R′(x, y, x′, y′) can be stated as in (3):

R′(x, y, x′, y′) ≡
l∨
i=1

Ai

(
x

y

)
+A′i

(
x′

y′

)
≤ bi

We can then apply Lem. 3 to R′ to derive a linear ranking function m′(x, y).
To ensure that no auxiliary variables y occur in m′(x, y) (i.e., m′(x, y) = m(x)),
equations are added to (4) that constrain the corresponding entries of r to zero.

Replacing divisibility constraints by disjunctions of equations. The following
equivalences are used in the transformation from R(x, x′) to R′(x, y, x′, y′):

ε | (cx+ dx′ + e) ≡ ε
∣∣∣ (cx− ε⌊cx

ε

⌋
+ dx′ − ε

⌊dx′
ε

⌋
+ e
)

(5)

≡
∨
i∈Z

0≤i·ε−e<2ε

i · ε− e = cx− ε
⌊cx
ε

⌋
+ dx′ − ε

⌊dx′
ε

⌋
(6)

≡ ∃yc, y′d.
(

0 ≤ cx− εyc < ε ∧ 0 ≤ dx′ − εy′d < ε
∧ (
∨

0≤i·ε−e<2ε i · ε− e = cx− εyc + dx′ − εy′d)

)
(7)

7 The procedure can also derive ranking functions that contain integer division ex-
pressions b t

ε
c for some ε ∈ Z, but it is not complete for such functions. Assuming

that a polynomial method is used to solve (4), the complexity of our procedure is
singly exponential.

7

Equivalence (5) holds because divisibility is not affected by subtracting multi-
ples of ε on the right-hand side, while (6) expresses that the value of the term
cx− εb cxε c+ dx′ − εbdx

′

ε c lies in the right-open interval [0, 2ε). Therefore, the
divisibility constraints of (5) are equivalent to a disjunction of exactly two equa-
tions. Finally, the integer division expressions b cxε c can equivalently be expressed
using existential quantifiers in (7).

To avoid the introduction of new quantifiers, the quantified variables yc, y′d
are treated as program variables. Whenever a constraint ε | (cx+ dx′ + e) oc-
curs in R(x, x′), we introduce new pre-state variables yc, yd and post-state vari-
ables y′c, y

′
d that are defined by adding conjuncts to R(x, x′):

R′(x, yc, yd, x′, y′c, y
′
d) ≡ R(x, x′)∧ 0 ≤ cx− εyc < ε ∧ 0 ≤ dx− εyd < ε

∧ 0 ≤ cx′ − εy′c < ε ∧ 0 ≤ dx′ − εy′d < ε

In R′(x, yc, yd, x′, y′c, y
′
d), the constraint ε | (cx+ dx′ + e) can then be replaced

with a disjunction
∨

0≤i·ε−e<2ε i · ε− e = cx− εyc + dx′ − εy′d as in (7). Iterating
this procedure eventually leads to a transition relation R′(x, y, x′, y′) without
divisibility judgements, such that ∃y, y′.R′(x, y, x′, y′) ≡ R(x, x′).

Representation of bit-vector operations in PA. Presburger arithmetic is
expressive enough to capture the semantics of all bit-vector operations defined
in Sect. 2, so that ranking functions for bit-vector programs can be generated
using the method from the previous section. For instance, the semantics of a
bit-vector addition s+ t can be defined in weakest-precondition style as:

wp(x := s+ t, φ) = wp
(
y1 := s; y2 := t,
∃x.(0 ≤ x < 2n ∧ 2n | (x− y1 − y2) ∧ φ)

)
where s : n, t : n denote bit-vectors of length n, and y1, y2 are fresh variables. The
existentially quantified formula assigns to x the remainder of y1 + y2 modulo 2n.

A precise translation of non-linear operations like × and & can be done by
case analysis over the values of their operands, which in general leads to formulae
of exponential size, but is well-behaved in many cases that are practically relevant
(e.g., if one of the operands is a literal). Such an encoding is only possible because
the variables of bit-vector programs range over finite domains of fixed size.

Example. We encode the bit-vector program (1) corresponding to Fig. 2 in PA:

nLoop 6= 0 ∧ 232 | (nLoop′ − nLoop − 232 + 4)

∧ 0 ≤ nloop < 232 ∧ 0 ≤ nloop′ < 232

From the side conditions, we can read off that the term nLoop′ − nLoop − 232 + 4
has the range [5− 233, 3], so that the divisibility constraint can directly be split
into two equations (auxiliary variables as in (7) are unnecessary in this particular
example). With further simplifications, we can express the transition relation as:(

nLoop′ = nLoop − 4 ∧ 0 ≤ nloop′ ∧ nloop < 232
)

∨
(
nLoop′ = nLoop + 232 − 4 ∧ 0 < nloop ∧ nloop′ < 232

)
8

It is now easy to see that each disjunct is satisfiable and integral, which means
that Lem. 3 is applicable. Because the conditions (4) are not simultaneously
satisfiable for all disjuncts, no linear ranking function exists for the program.

3.3 Synthesis of Ranking Functions from Templates

A subset of the ranking functions for bit-vector programs can be identified by
templates of a desired class of functions with undetermined coefficients. In order
to find the coefficients, we consider two methods: (i) an encoding into quantified
Boolean formulas (QBF) to check all suitable values, and (ii) a propositional
SAT-solver to check likely values.

We primarily consider linear functions of the program variables. Let x =
(x1, . . . , x|X |) be a vector of program variables and associate a coefficient ci with
each xi ∈ X . The coefficients constitute the vector c = (c1, . . . , c|X |). We can
then construct the template polynomial

p(c, x) :=
|X |∑
i=1

(ci × castw(xi))

with the bit-width w ≥ maxi(α(xi)) + dlog2(|X |+ 1)e and α(ci) = w, chosen
such that no overflows occur during summation. The following theorem provides
a bound on w that guarantees that ranking functions can be represented for all
programs that have linear ranking functions.

Theorem 2. There exists a linear ranking function on path π with transition
relation Rπ(x, x′), if

∃c ∀x, x′ . Rπ(x, x′)⇒ p(c, x′) <s p(c, x) . (8)

Vice versa, if there exists a linear ranking function for π, then Eq. (8) must be
valid whenever

w ≥ maxi(α(xi)) · (|X | − 1) + |X | · log2 |X |+ 1 .

It is straightforward to flatten Eq. (8) into QBF. Thus, a QBF solver that
returns an assignment for the top-level existential variables is able to compute
suitable coefficients. Examples of such solvers are Quantor [4], sKizzo [3], and
Squolem [13]. In our experiments, we use an experimental version of QuBE [11].

Despite much progress, the capacity of QBF solvers has not yet reached the
level of propositional SAT solvers. We therefore consider the following simplistic
way to enumerate coefficients: we restrict all coefficients to α(ci) = 2 and we
fix a concrete assignment γ(c) ∈ {0, 1, 3} to the coefficients (corresponding to
{−1, 0, 1} in 2’s complement). Negating and applying γ transforms Equation 8
into

¬∃x, x′ . Rπ(x, x′) ∧ ¬(p(γ(c), x′) <s p(γ(c), x)) , (9)

which is a bit-vector (or SMT-BV) formula that may be flattened to a purely
propositional formula in the straightforward way. The formula is satisfiable iff

9

1 2 3 4 5 6 7 8 9 10 11 12 13 Loop

list list unr. i++ unr. unr. unr. unr. wait unr. unr. i++ list Type

126 85 687 248 340 298 253 844 109 375 333 3331 146 CE Time [sec]

0.5 0.1 – 0.7 – – – – 0.4 – – 2.2 0.4 Synth. Time [sec]

× × X MO X X X X × X X MO × Terminates?

Table 1. The behaviour on the loops of a keyboard driver.

p is not a genuine ranking function. Thus, we enumerate all possible γ until
we find one for which Equation 9 is unsatisfiable, which means that p(γ(c), x)
must be a genuine ranking function on π. Even though there are 3|X | possible
combinations of coefficient values to test, this method performs surprisingly well
in practice, as demonstrated by our experimental evaluation in Sect. 4.

Example. We consider the program given in Fig. 1. The only variable in the pro-
gram is i, and it is 8 bits wide. We construct the polynomial p(c, i) = c× cast9(i)
with α(c) = 9. For the only path through the loop in this example, the transition
relation Rπ(i, i′) is i 6= 0 ∧ i′ = i & (i− 1). Solving the resulting formula

∃c∀i, i′ . Rπ(i, i′)⇒ p(c, i′) <s p(c, i)

with a QBF-Solver does not return a result within an hour. We thus rewrite the
formula according to Equation 9 and obtain

¬∃i, i′ . Rπ(i, i′) ∧ ¬(p(c, i′) <s p(c, i))

which we solve (in a negligible amount of runtime) for all choices of c ∈ {0, 1, 3}.
The formula is unsatisfiable for c = 1, and we conclude that cast9(i) is a suitable
ranking function. In this particular example, it is possible to omit the cast.

4 Experiments

4.1 Large-scale benchmarks

Following Cook et al. [9], we implemented a binary reachability analysis engine
to evaluate our ranking synthesis methods. Our implementation uses SATABS as
the reachability checker [7], which implements SAT-based predicate abstraction.
Our benchmarks are device drivers from the Windows Driver Development Kit
(WDK).8 The WDK already includes verification harnesses for the drivers. We
use goto-cc9 to extract model files from a total of 87 drivers in the WDK.

Most of the drivers contain loops over singly and doubly-linked lists, which
require an arithmetic abstraction. This abstraction can be automated by existing
shape analysis methods (e.g., the one recently presented by Yang et al. [20]).
8 Version 6, available at http://www.microsoft.com/whdc/devtools/wdk/
9 http://www.cprover.org/goto-cc/

10

Slicing the input. Just like Cook et al. [9], we find that most of the runtime is
spent in the reachability checker (more than 99%), especially after all required
ranking functions have been synthesised and no more counterexamples exist. To
reduce the resource requirements of the Model Checker, our binary reachability
engine analyses each loop separately and generates an inter-procedural slice [12]
of the program, slicing backwards from the termination assertion. In addition, we
rewrite the program into a single-loop program, abstracting from the behaviour
of all other loops.10 With this (abstracting) slicer in place, we find that absolute
runtime and memory requirements are reduced dramatically.

As our complete data on Windows drivers is voluminous, we present a typical
example in detail. The full dataset is available online.11 The keyboard class driver
in the WDK (kbdclass) contains a total of 13 loops in a harness (SDV FLAT
HARNESS) that calls all dispatch functions nondeterministically.

Table 1 describes the behaviour of our engine on this driver. For every loop
we list the type (list iteration, i++, unreachable, or ‘wait for device’), the time it
takes to find a potentially non-terminating path (‘CE Time’), the time required
to find a ranking function using our SAT template from Sect. 3.3 (‘Synth. Time’,
where applicable), and the final result. In the last row, ‘MO’ indicates a memory-
out after consuming 2 GB of RAM while proving that no further counterexamples
to termination exist. The entire analysis of this driver requires 2 hours.12

We were able to isolate a possible termination problem in the USB driver
bulkusb that may result in the system being blocked. The driver requests an inter-
face description structure for every device available by calling an API function.
It increments the loop counter if this did not return an error. The API function,
however, may return NULL if no interface matches the search criteria, resulting
in the loop counter not being incremented. Since numberOfInterfaces is a local
(non-shared) variable of the loop, the problem would persist in a concurrent
setting, where a device may be disconnected while the loop is executed.

4.2 Experiments on smaller examples

The predominant role of the reachability engine on our large-scale experiments
prevents a meaningful comparison of the utility of the various techniques for
ranking function synthesis. For this reason, we conducted further experiments
on smaller programs, where the behaviour of the reachability engine has less
impact. We manually extracted 61 small benchmark programs from the WDK
drivers. Most of them contain bit-vector operations, including multiplication,
and some of them contain nested loops. All benchmarks were manually sliced by
10 Following the hypothesis that loop termination seldom depends on complex variables

that are possibly calculated by other loops, our slicing algorithm replaces all assign-
ments that depend on five or more variables with non-deterministic values, and all
loops other than the analysed one with program fragments that havoc the program
state (non-deterministic assignments to all variables that might change during the
execution of the loop).

11 http://www.cprover.org/termination/
12 All experiments were run on 8-core Intel Xeon 3 GHz machines with 16 GB of RAM.

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Manual Insp. L L L L N N N L T N T L L N T L L L L L T L L L L L L N T L T
SAT # # # # # # # # # # # # #
Seneschal # # – # # # # # # – # # # – #
Rankfinder # # # # # G# # # # G# G# # # # # G# # – # #
QBF [-1,+1] – – # # – – – # – – – – – – – – – – – – – – – # – #
QBF P (c, x) – – – – – – – – – – – – – – – – – – – – – – – – – – –
Biere et al. [5] – – – – – – – – # – – – – – – – – – – – – – # – –
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
Manual Insp. T L L N L T L L L L L L N T L L T T T L T T N L L L L L N T
SAT # # # # # # # # # # # # # #
Seneschal # # # # # # # # # # # # – # –
Rankfinder # # # G# # # # # # # # – # – # # # #
QBF [-1,+1] # – – – – – – – – – # – – – # # # – – – – – – – # –
QBF P (c, x) – – – – – – – – – – – – # – – – – – – – – – – – – – – – –
Biere et al. [5] – – – – – – – – – – – – – – – – – – – – – #

 – Termination was proven T – Terminating (non-linear)
– (Possibly) Non-terminating L – Terminating, and linear
G# – Incorrect under bit-vector semantics ranking functions exist.
– – Memory or time limits exhausted N – Non-terminating

Table 2. Experimental results on 61 benchmarks drawn from Windows device drivers.

removing all source code that does not affect program termination (much like an
automated slicer, but more thoroughly). We also employ the same abstraction
technique as described in the previous section. All but ten of the benchmark
programs terminate. The time limit in these benchmarks was 3600 s, and the
memory consumption was limited to 2 GB.

To evaluate the integer linear programming method described in Sect. 3.2, we
developed the prototype Seneschal.13 It is based on the prover Princess [18] for
Presburger arithmetic with uninterpreted predicates and works by (i) translating
a given bit-vector program into a PA formula, (ii) eliminating the quantifiers in
the formula, (iii) flattening the formula to a disjunction of systems of inequalities,
and (iv) applying Lem. 3 to compute ranking functions. Seneschal does currently
not, however, transform systems of inequalities to integral systems, which means
that it is a sound but incomplete tool; the experiments show that transformation
to integral systems is unnecessary for the majority of the considered programs.

Table 2 summarizes the results. The first column indicates the result ob-
tained by manual inspection, i.e., if a specific benchmark is terminating, and if
so whether there is a linear ranking function to prove this. The other columns
represent the following ranking synthesis approaches: SAT is the coefficient enu-
meration approach from Sect. 3.3; Seneschal is the integer linear programming
approach from Sect. 3.2; Rankfinder is the linear programming approach over ra-
tionals from Sect. 3.1; QBF [-1,+1] is a QBF template approach from Sect. 3.3
with coefficients restricted to [−1,+1], such that the template represents the
same ranking functions as the one used for the SAT enumeration approach. QBF
P (c, x) is the unrestricted version of this template. Note that two benchmarks
(#27 and #34) are negatively affected by our slicer: due to the abstraction,

13 http://www.philipp.ruemmer.org/seneschal.shtml

12

no linear ranking functions are found. On the original programs, the SAT-based
approach and Seneschal find suitable ranking functions, on benchmark #34 how-
ever, the Model Checker times out afterwards.

Comparing the various techniques, we conclude that the simple SAT-based
enumeration is most successful in synthesising useful ranking functions. It is able
to prove 34 out of 51 terminating benchmarks and reports 27 as non-terminating.
It does not time out on any instance.

Seneschal shows the second best performance: it proves 31 programs as ter-
minating, almost as many as the SAT-based template approach. It reports 25
benchmarks as non-terminating and times out on 5.

For the experiments using Rankfinder14, the bit-vector operators +, × with
literals, =, <s and <u are approximated by the corresponding operations on the
rationals, whereas nonexistence of ranking functions is reported for programs
that use any other operations. Furthermore, we add constraints of the form
0 ≤ v < 2n, where n is the bit-width of v, restricting the range of pre-state
variables. This results in 23 successful termination proofs, and 35 cases of alleged
non-termination. In three cases, the Model Checker times out on proving the final
property, and in 5 cases Rankfinder returns an unsuitable ranking function.

For the two QBF techniques we used an experimental version of QuBE,
which performed better than sKizzo, Quantor, and Squolem. The constrained
template (QBF [−1,+1]) is still able to synthesise some useful ranking functions
within the time limit. It proves 9 benchmarks terminating and reports 11 as non-
terminating. The unconstrained approach (QBF P (c, x)), however, proves only
5 programs terminating and one non-terminating, with the QBF-Solver timing
out on all other benchmarks.

We also implemented the approach suggested by Biere et al. [5] (bottom
row of Table 2), which does not require ranking functions, but instead proves
that an entry state of the loop is never revisited. Generally, these assertions
are difficult for SATABS. While this method is able to show only 14 programs
terminating, there are 4 benchmarks (#31, #45, #50, and #61) that none of
the other methods can handle as they require non-linear ranking functions.

Our benchmark suite, all results with added detail, and additional experi-
ments are available online at http://www.cprover.org/termination/.

5 Related work

Numerous efficient methods are now available for the purpose of finding ranking
functions (e.g., [1, 6, 10, 14]). Some tools are complete for the class of ranking
functions for which they are designed (e.g., [14]), others employ a set of heuristics
(e.g., [1]). Until now, no known tool supported machine-level integers.

Bradley et al. [6] give a complete search-based algorithm to generate linear
ranking functions together with supporting invariants for programs defined in
Presburger arithmetic. We propose a related constraint-based method to syn-
thesise linear ranking functions for such programs. It is worth noting that our
14 http://www.mpi-inf.mpg.de/~rybal/rankfinder/

13

method is a decision procedure for the existence of linear ranking functions in
this setting, while the procedure in [6] is sound and complete, but might not
terminate when applied to programs that lack linear ranking functions. An ex-
perimental comparison with Bradley et al.’s method is future work.

Ranking function synthesis is not required if the program is purely a finite-
state system. In particular, Biere, Artho and Schuppan describe a reduction
of liveness properties to safety by means of a monitor construction [5]. The
resulting safety checks require a comparison of the entire state vector whereas the
safety checks for ranking functions refer only to few variables. Our experimental
results indicate that the safety checks for ranking functions are in most cases
easier. Another approach for proving termination of large finite-state systems
was proposed by Ball et al. [2]; however, we would need to develop a technique
to find suitable abstractions. Furthermore, since neither one of these techniques
leads to ranking functions, it is not clear how they can be integrated into systems
whose aim is to prove termination of programs that mix machine integers with
data-structures, recursion, and/or numerical libraries with arbitrary precision.

6 Conclusion

The development of efficient ranking function synthesis tools has led to more
powerful automatic program termination provers. While synthesis methods are
available for a number of domains, efficient procedures for programs over ma-
chine integers have until now not been known. We have presented two new al-
gorithms solving the problem of ranking function synthesis for bit-vectors: (i) a
complete method based on a reduction to quantifier-free Presburger arithmetic,
and (ii) a template-matching method for finding ranking functions of specified
classes. Through experimentation with examples drawn from Windows device
drivers we have shown their efficiency and applicability to systems-level code.
The bottleneck of the methods is the reachability analysis engine. We will there-
fore consider optimizations for this engine specific to termination analysis as
future work.

Acknowledgements. We would like to thank M. Narizzano for providing us with
an experimental version of the QuBE QBF-Solver that outputs an assignment for
the top-level existentials and H. Samulowitz for discussions about QBF encodings
of the termination problem and for evaluating several QBF solvers. Besides, we
are grateful for useful comments from Vijay D’Silva, Georg Weissenbacher, and
the anonymous referees.

References

1. Babic, D., Hu, A.J., Rakamaric, Z., Cook, B.: Proving termination by divergence.
In: SEFM. pp. 93–102. IEEE (2007)

2. Ball, T., Kupferman, O., Sagiv, M.: Leaping loops in the presence of abstraction.
In: CAV. LNCS, vol. 4590, pp. 491–503. Springer (2007)

14

3. Benedetti, M.: sKizzo: A suite to evaluate and certify QBFs. In: CADE. LNCS,
vol. 3632, pp. 369–376. Springer (2005)

4. Biere, A.: Resolve and expand. In: SAT. LNCS, vol. 3542, pp. 59–70. Springer
(2005)

5. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. In:
FMICS. ENTCS, vol. 66, pp. 160–177. Elsevier (2002)

6. Bradley, A.R., Manna, Z., Sipma, H.B.: Termination analysis of integer linear loops.
In: CONCUR. LNCS, vol. 3653, pp. 488–502. Springer (2005)

7. Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of
ANSI-C programs using SAT. FMSD 25(2-3), 105–127 (2004)

8. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination.
In: SAS. LNCS, vol. 3672, pp. 87–101. Springer (2005)

9. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI. pp. 415–426. ACM (2006)

10. Encrenaz, E., Finkel, A.: Automatic verification of counter systems with ranking
functions. In: INFINITY. ENTCS, vol. 239, pp. 85–103. Elsevier (2009)

11. Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE++: an efficient QBF solver.
In: FMCAD. LNCS, vol. 3312, pp. 201–213 (2004)

12. Horwitz, S., Reps, T.W., Binkley, D.: Interprocedural slicing using dependence
graphs. In: PLDI. pp. 35–46. ACM (1988)

13. Jussila, T., Biere, A., Sinz, C., Kroening, D., Wintersteiger, C.M.: A first step
towards a unified proof checker for QBF. In: SAT. LNCS, vol. 4501, pp. 201–214.
Springer (2007)

14. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: VMCAI. LNCS, vol. 2937, pp. 239–251. Springer (2004)

15. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS. pp. 32–41. IEEE
(2004)

16. Podelski, A., Rybalchenko, A.: ARMC: The logical choice for software model check-
ing with abstraction refinement. In: PADL. LNCS, vol. 4354, pp. 245–259. Springer
(2007)

17. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In:
Sprawozdanie z I Kongresu metematyków slowiańskich, Warsaw 1929. pp. 92–101
(1930)

18. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: LPAR. LNCS, vol. 5330, pp. 274–289. Springer (2008)

19. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)
20. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,

P.W.: Scalable shape analysis for systems code. In: CAV. LNCS, vol. 5123, pp.
385–398. Springer (2008)

15

