
Theorem Proving with
Bounded Rigid E -Unification?

Peter Backeman and Philipp Rümmer

Uppsala University, Sweden

Abstract. Rigid E -unification is the problem of unifying two expres-
sions modulo a set of equations, with the assumption that every variable
denotes exactly one term (rigid semantics). This form of unification was
originally developed as an approach to integrate equational reasoning in
tableau-like proof procedures, and studied extensively in the late 80s and
90s. However, the fact that simultaneous rigid E -unification is undecid-
able has limited practical adoption, and to the best of our knowledge
there is no tableau-based theorem prover that uses rigid E -unification.
We introduce simultaneous bounded rigid E -unification (BREU), a new
version of rigid E -unification that is bounded in the sense that variables
only represent terms from finite domains. We show that (simultaneous)
BREU is NP-complete, outline how BREU problems can be encoded as
propositional SAT-problems, and use BREU to introduce a sound and
complete sequent calculus for first-order logic with equality.

1 Introduction

The integration of efficient equality reasoning in tableaux and sequent calculi
is a long-standing challenge, and has led to a wealth of theoretically intriguing,
yet surprisingly few practically satisfying solutions. Among others, a family of
approaches related to the (undecidable) problem of computing simultaneous rigid
E-unifiers have been developed, by utilising incomplete unification procedures
in such a way that an overall complete first-order calculus is obtained. To the
best of our knowledge, however, none of those procedures has led to competitive
theorem provers.

We introduce simultaneous bounded rigid E-unification (BREU), a new ver-
sion of rigid E -unification that is bounded in the sense that variables only rep-
resent terms from finite domains. BREU is significantly simpler than ordinary
rigid E -unification, in terms of computational complexity as well as algorith-
mic aspects, and therefore a promising candidate for efficient implementation.
BREU still enables the design of complete first-order calculi, but also makes
combinations with techniques from the SMT field possible, in particular the use
of congruence closure to handle ground equations.

? This work was partly supported by the Microsoft PhD Scholarship Programme and
the Swedish Research Council.

1.1 Background and Motivating Example

We start by illustrating our approach using the following problem (from [5]):

φ = ∃x, y, u, v.
(

(a 6≈ b ∨ g(x, u, v) ≈ g(y, f(c), f(d))) ∧
(c 6≈ d ∨ g(u, x, y) ≈ g(v, f(a), f(b)))

)
To show validity of φ, a Gentzen-style proof (or, equivalently, a tableau) can be
constructed, using free variables for x, y, u, v:

A
a ≈ b ` g(X,U, V) ≈ g(Y, f(c), f(d))

B
c ≈ d ` g(U,X, Y) ≈ g(V, f(a), f(b))

` (a 6≈ b ∨ g(X,U, V) ≈ g(Y, f(c), f(d))) ∧ (c 6≈ d ∨ g(U,X, Y) ≈ g(V, f(a), f(b)))

` φ

To finish this proof, both A and B need to be closed by applying further
rules, and substituting concrete terms for the variables. The substitution σl =
{X 7→ Y,U 7→ f(c), V 7→ f(d)} makes it possible to close A through equational
reasoning, and σr = {X 7→ f(a), U 7→ V, Y 7→ f(b)} closes B, but neither closes
both. Finding a substitution that closes both branches is known as simultaneous
rigid E-unification (SREU), and has first been formulated in [9]:

Definition 1 (Rigid E-Unification). Let E be a set of equations, and s, t be
terms. A substitution σ is called a rigid E -unifier of s and t if sσ ≈ tσ follows
from Eσ via ground equational reasoning. A simultaneous rigid E -unifier σ is a
common rigid E-unifier for a set (Ei, si, ti)

n
i=1 of rigid E-unification problems.

In our example, two rigid E -unification problems have to be solved:

E1 = {a ≈ b}, s1 = g(X,U, V), t1 = g(Y, f(c), f(d)),

E2 = {c ≈ d}, s2 = g(U,X, Y), t2 = g(V, f(a), f(b)).

We can observe that σs = {X 7→ f(a), Y 7→ f(b), U 7→ f(c), V 7→ f(d)} is a
simultaneous rigid E -unifier, and suffices to finish the proof of φ. In general, of
course, the SREU problem famously turned out undecidable [4], which makes
the style of reasoning shown here problematic.

Different solutions have been proposed to address this situation, including
potentially non-terminating, but complete E -unification procedures [8], and ter-
minating but incomplete algorithms that are nevertheless sufficient to create
complete proof procedures [5, 11]. The practical impact of such approaches has
been limited; to the best of our knowledge, there is no (at least no actively
maintained) theorem prover based on such explicit forms of SREU.

This paper introduces a new approach, bounded rigid E-unification (BREU),
which belongs to the class of “terminating, but incomplete” algorithms for
SREU. In contrast to ordinary SREU, our method only considers E -unifiers
where substituted terms are taken from some predefined finite set. This directly

2

implies decidability of the unification problem; as we will see later, the prob-
lem is in fact NP-complete, even for the simultaneous case, and can be handled
efficiently using SAT technology. In our experiments, cases with hundreds of si-
multaneous unification problems and thousands of terms were well in reach, and
future advances in terms of algorithm design and efficient implementation are
expected to further improve scalability.

For sake of presentation, BREU operates on formulae that are normalised by
means of flattening (observe that φ and φ′ are equivalent):

φ′ = ∀z1, z2, z3, z4.
(
f(a) 6≈ z1 ∨ f(b) 6≈ z2 ∨ f(c) 6≈ z3 ∨ f(d) 6≈ z4 ∨

∃x, y, u, v. ∀z5, z6, z7, z8.

g(x, u, v) 6≈ z5 ∨ g(y, z3, z4) 6≈ z6 ∨
g(u, x, y) 6≈ z7 ∨ g(v, z1, z2) 6≈ z8 ∨
((a 6≈ b ∨ z5 ≈ z6) ∧ (c 6≈ d ∨ z7 ≈ z8))

A proof constructed for φ′ has the same structure as the one for φ, with the

difference that all function terms are now isolated in the antecedent:

A′

. . . , g(X,U, V) ≈ o5, a ≈ b ` o5 ≈ o6
B′

. . . , g(U,X, Y) ≈ o7, c ≈ d ` o7 ≈ o8
...

f(a) ≈ o1 ∨ f(b) ≈ o2 ∨ f(c) ≈ o3 ∨ f(d) ≈ o4 ` ∃x, y, u, v. ∀z5, z6, z7, z8. . . .
(∗)

...

` ∀z1, z2, z3, z4. . . .

To obtain a bounded rigid E -unification problem, we now restrict the terms
considered for instantiation of X,Y, U, V to the symbols that were in scope
when the variables were introduced (at (∗) in the proof): X ranges over con-
stants {o1, o2, o3, o4}, Y over {o1, o2, o3, o4, X}, and so on. Since the problem is
flat, those sets contain representatives of all existing ground terms at point (∗)
in the proof. It is therefore possible to find a simultaneous E -unifier, namely the
substitution σb = {X 7→ o1, Y 7→ o2, U 7→ o3, V 7→ o4}.

It has long been observed that this restricted instantiation strategy gives rise
to a complete calculus for first-order logic with equality. The strategy was first
introduced as dummy instantiation in the seminal work of Kanger [13] (in 1963,
i.e., even before the introduction of unification), and later studied under the
names subterm instantiation and minus-normalisation [6, 7]; the relationship to
SREU was observed in [5]. The impact on practical theorem proving was again
limited, however, among others because no efficient search procedures for dummy
instantiation were available [7]. The present paper addresses this topic and makes
the following main contributions:

– we define bounded rigid E -unification, as a restricted version of SREU, and
investigate its complexity (Sect. 3);

– we present a sound, complete, and backtracking-free BREU-based sequent
calculus for first-order with equality (Sect. 4–6);

– we give a preliminary experimental evaluation, comparing with other tableau-
based theorem provers (Sect. 7).

3

1.2 Further Related Work

For a general overview of research on equality handling in sequent calculi and
related systems, as well as on SREU, we refer the reader to the detailed handbook
chapter [6]. The following paragraphs survey some of the more recent work.

Our work is partly motivated by a recent line of research on backtracking-
free tableau calculi with free variables [10], capturing unification conditions as
constraints that are attached to literals or tableau branches. This calculus was
extended to handle equality using superposition-style inferences in [11], build-
ing on results from [5]. Our work resembles both [5, 11] in that we define an
incomplete version of SREU, but show it to be sufficient for complete first-order
reasoning. Our variant BREU is incomparable in completeness to the SREU
solving in [5, 11]: BREU is able to derive a solution for the example shown in
Sect. 1.1, which [5, 11] cannot; on the other hand, the procedures in [5, 11] are
able to synthesise new terms of unbounded size as unifiers, whereas our proce-
dure only considers terms from predefined bounded domains. The calculus in
[11] was further extended to handle linear integer arithmetic in [14], however,
excluding functions (but including uninterpreted predicates, to which functions
can be reduced via axioms), leading to a further unification problem that is
incomparable in expressiveness.

Equality handling was integrated into hyper tableaux in [2], again using
superposition-style inferences, and also including redundancy criteria. This work
deliberately avoids the use of rigid free variables shared between multiple tableau
branches, so that branches can be closed one at a time, and there is no need for
simultaneous E -unification. The calculus was implemented in the Hyper prover,
against which we compare our implementation in Sect. 7.

2 Preliminaries

We assume familiarity with classical first-order logic and Gentzen-style calculi
(see e.g., [8]). Given countably infinite sets C of constants (denoted by c, d, . . .),
Vb of bound variables (written x, y, . . .), and V of free variables (denoted by
X,Y, . . .), as well as a finite set F of fixed-arity function symbols (written
f, g, . . .), the syntactic categories of formulae φ and terms t are defined by

φ ::= φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ || t ≈ t , t ::= c || x || X || f(t, . . . , t) .

Note that we distinguish between constants and zero-ary functions for reasons
that will become apparent later. We generally assume that bound variables x
only occur underneath quantifiers ∀x or ∃x. Semantics of terms and formulae
without free variables is defined as is common using first-order structures (U, I)
consisting of a non-empty universe U , and an interpretation function I.

We call constants and (free or bound) variables atomic terms, and all other
terms compound terms. A flat equation is an equation between atomic terms, or
an equation of the form f(t1, . . . , tn) ≈ t0, where t0, . . . , tn are atomic terms. A
flat formula is a formula φ in which functions only occur in flat equations. A

4

formula φ is positively flat (negatively flat) if it is flat, and every occurrence of
a function symbol is underneath an even (odd) number of negations. Note that
every formula can be transformed to an equivalent positively flat (negatively
flat) formula; we will usually assume that such preprocessing has been applied to
formulae handled by our procedures. This kind of preprocessing is also standard
for congruence closure procedures [1], and similarly used in SMT solvers.

If Γ is a finite set of positively flat formulae (the antecedent), and ∆ a finite
set of negatively flat formulae (the succedent), then Γ ` ∆ is called a sequent. A
sequent Γ ` ∆ without free variables is called valid if the formula

∧
Γ →

∨
∆

is valid. A calculus rule is a binary relation between finite sets of sequents (the
premises) and sequents (the conclusion).

A substitution is a mapping of variables to terms, such that all but finitely
many variables are mapped to themselves. Symbols σ, θ, . . . denote substitutions,
and we use post-fix notation φσ or tσ to denote application of substitutions. An
atomic substitution is a substitution that maps variables only to atomic terms.
We write u[r] do denote that r is a sub-expression of a term or formula u.

Definition 2 (Replacement relation [16]). The replacement relation →E

induced by a set of equations E is defined by: u[l] → u[r] if l ≈ r ∈ E. The
relation ↔∗E represents the reflexive, symmetric and transitive closure of →E.

3 Bounded Rigid E -Unification

We present bounded rigid E -Unification, a restriction of rigid E -unification in
the sense that we now require solutions to be atomic substitutions such that
variables are only mapped to smaller atomic terms according to a given partial
order �. This order takes over the role of an occurs-check of regular unification.

Definition 3 (BREU). A bounded rigid E -unification (BREU) problem is a
triple U = (�, E, e), with � being a partial order over atomic terms such that
for all variables X the set {s | s � X} is finite; E is a finite set of flat equations;
and e = s ≈ t is an equation between atomic terms (the target equation). An
atomic substitution σ is called a bounded rigid E -unifier of s and t if sσ ↔∗Eσ tσ
and Xσ � X for all variables X.

Note that the partial order � is in principle an infinite object. However, only
a finite part of it is relevant for defining and solving a BREU problem, which
ensures that BREU problems can effectively be represented.

Definition 4 (Simultaneous BREU). A simultaneous bounded rigid E -uni-
fication problem is a pair (�, (Ei, ei)ni=1) such that each triple (�, Ei, ei) is a
bounded rigid E-unification problem. An atomic substitution σ is a simultaneous
bounded rigid E -unifier for (�, (Ei, ei)ni=1) if σ is a bounded rigid E-unifier for
each problem (�, Ei, ei).

A solution to a simultaneous BREU problem can be used to close all branches
in a proof tree. In Sect. 4 we present the connection in detail.

5

Example 5. We revisit the example introduced in Sect. 1.1, which leads to the
following simultaneous BREU problem (�, {(E1, e1), (E2, e2)}):

E1 = E ∪ {a ≈ b}, e1 = o5 ≈ o6, E2 = E ∪ {c ≈ d}, e2 = o7 ≈ o8,

E =

{
f(a) ≈ o1, f(b) ≈ o2, f(c) ≈ o3, f(d) ≈ o4,
g(X,U, V) ≈ o5, g(Y, o3, o4) ≈ o6, g(U,X, Y) ≈ o7, g(V, o1, o2) ≈ o8

}
with {a, b, c, d} ≺ o1 ≺ o2 ≺ o3 ≺ o4 ≺ X≺ Y ≺ U ≺ V ≺ o5 ≺ o6 ≺ o7 ≺ o8.

A unifier to this problem is sufficient to close all goals of the tree up to
equational reasoning; one solution is σ = {X 7→ o1, Y 7→ o2, U 7→ o3, V 7→ o4}.

While SREU is undecidable in the general case, BREU is decidable; the exis-
tence of bounded rigid E -unifiers can be decided in non-deterministic polynomial
time, since it can be verified in polynomial time that a substition σ is a solution
of a (possibly simultaneous) BREU problem (and since an E -unifier only has
to consider variables that occur in the problem, it can be represented in space
linear in the size of the BREU problem). Hardness follows from the fact that
propositional satisfiability can be reduced to BREU, by virtue of the following
construction.

3.1 Reduction of SAT to BREU

Consider propositional formulae φb, which are assumed to be constructed using
the following operators:

φb ::= p || ¬φb || φb ∨ φb

where p is a propositional symbol.
A formula φb of this kind is converted to a BREU problem by introducing

two constants 0 and 1; two function symbols for and fnot; for each propositional
symbol p in φb, a variable Xp such that 0 ≺ Xp and 1 ≺ Xp; and for each
sub-formula ψ of φb, a constant cψ and an equation:

Xp ≈ cψ if ψ = p,

fnot(cψ1
) ≈ cψ if ψ = ¬ψ1,

for(cψ1
, cψ2

) ≈ cψ if ψ = ψ1 ∨ ψ2.

The above, together with the set of equations {for(0,0) ≈ 0, for(0,1) ≈
1, for(1,0) ≈ 1, for(1,1) ≈ 1, fnot(0) ≈ 1, fnot(1) ≈ 0} defining the semantics
of the Boolean operators, and a target equation cφb

≈ 1 yields a BREU problem
that is naturally equivalent to the problem of checking satisfiability of φb. Indeed,
every E -unifier can be translated to an assignmentA of the propositional symbols
such that A |= φb.

Theorem 6. Satisfiability of BREU problems is NP-complete.

6

3.2 Generalisations

A number of generalisations in the definition of BREU are possible, but can
uniformly be reduced to BREU as formulated in Def. 3, without causing a blow-
up in the size of the BREU problem.

General target constraints. Most importantly, there is no need to restrict BREU
to single target equations e, instead arbitrary positive Boolean combinations
of equations can be solved; this observation is useful for integration of BREU
into calculi. Any such combination of equations can be transformed to a single
target equation using a construction resembling that in Sec. 3.1, at the cost of
introducing a linear number of new symbols and defining equations.

For the remainder of the paper, we assume that e in Def. 3 can indeed be
any positive Boolean combination of atomic equations.

Arbitrary equations. BREU problems containing arbitrary (i.e., possibly non-
flat) equations in E or as target equation can be handled by reduction to equi-
satisfiable BREU problems with only flat equations, in a manner similar to [1].
Any non-flat equation of the form t[f(c̄)] ≈ s can be replaced by two new equa-
tions t[d] ≈ s and f(c̄) ≈ d, where d is a fresh constant; the symmetric case, and
non-flat target equations are handled similarly. Iterating this reduction eventu-
ally results in a problem with only flat equations.

Non-atomic E-unifiers. It is further possible to consider partial orders � over
arbitrary terms, as long as the set {s | s � X} is still finite for all variables X.
Reduction to problems as in Def. 3 is done by introducing a fresh constant ct
and a (possibly non-flat) equation t ≈ ct for each compound term t occurring in
a set {s | s � X} for some variable X in the BREU problem. A new order �′ is
defined by replacing compound terms t with constants ct, in such a way that

{s | s �′ X} = {s | s � X, s is atomic} ∪ {ct | t � X, t is compound} .

With this in mind, it is possible to relax Def. 3 by including non-atomic uni-
fiers σ (which might map variables to compound terms) as solutions to a BREU
problem, as long as the condition Xσ � X holds for all variables X.

Example 7. Consider the generalised BREU problem B = (�, E, e) defined by

E = {f(f(a, b), c) ≈ g(b), f(X,Y) ≈ c, g(b) ≈ a}, e = a ≈ c,
a ≺ b ≺ c ≺ f(a, a) ≺ f(a, b) ≺ f(b, a) ≺ f(b, b) ≺ X ≺ Y.

Intuitively, the order � encodes the fact that an E -unifier has to be constructed
that maps every variable to a term with at most one occurrence of f , and no
occurrence of g. A solution is the substitution σ = {X 7→ f(a, b), Y 7→ c}.

An equisatisfiable BREU problem according to Def. 3 is B′ = (�′, E′, e′}:

E′ =

{
f(d1, c) ≈ d2, f(a, b) ≈ d1, g(b) ≈ d2, f(X,Y) ≈ c, g(b) ≈ a,
f(a, a) ≈ d3, f(a, b) ≈ d4, f(b, a) ≈ d5, f(b, b) ≈ d6

}
,

e′ = e = a ≈ c, a ≺′ b ≺′ c ≺′ d3 ≺′ d4 ≺′ d5 ≺′ d6 ≺′ X ≺′ Y,

7

with the E -unifier σ′ = {X 7→ d4, Y 7→ c}.

3.3 Encoding of E-Unification into SAT

Since satisfiability of BREU problems is NP-complete, a natural approach to
compute solutions is an encoding as a propositional SAT problem, so that the
performance of modern SAT solvers can be put to use. A procedure for solving a
BREU problem will consist of three steps: (i) generating a candidate E -unifier σ;
(ii) using congruence closure [1] to calculate the equivalence relation induced by
the candidate σ and the equations of the BREU problem; and (iii) checking if
the BREU target equation is satisfied by this relation.

Each of these steps can be encoded into SAT. Candidate E -unifiers σ are
represented by a set of bit-vector variables storing the index of the term Xσ
that each variable X is mapped to. To guess candidate E -unifiers, it is then just
necessary to encode the conditions Xσ � X as a propositional formula.

A congruence closure procedure can be modelled by representing intermediate
results (i.e., equivalence relations) as a sequence of union-find data structures.
To represent such a data structure in SAT, it suffices to introduce one bit-vector
variable per atomic term t occurring in the BREU problem, storing the index of
the parent of t in the union-find forest. Propositional constraints are added to
characterise well-formed union-find forests, and to define the derivation of each
forest from the previous one.

Lastly, to check the correctness of the candidate σ, it is asserted that the
target equation is satisfied in the last union-find structure.

4 A First-order Logic Calculus with E -Unification

We will now introduce our sequent calculus for first-order logic with equality.
The calculus operates only on flat formulae, and is kept quite minimalist to illus-
trate the use of free variables and BREU for delayed instantiation; for practical
purposes, many refinements are possible, some of which are outlined in Sect. 6.
The BREU procedure is utilised to define a global closure rule that discharges all
goals of a proof tree simultaneously. Proof construction is intended to be done in
upward direction and backtracking-free manner, following the proof procedures
presented in [10, 14]; this is possible because all calculus rules are non-destructive
and the overall calculus proof-confluent. We will show that fair application of
the proof rules is complete.

The propositional, first-order, and equational rules of the calculus are shown
in Table 1. Propositional and first-order rules mostly correspond to the classical
system LK [8], however, keeping all structural rules implicit (Γ and ∆ are sets of
formulae). The first-order rules use Skolem symbols c ∈ C for existential quanti-
fiers in the antecedent, and fresh free variables X ∈ V for universal quantifiers;
and similarly for formulae in the succedent.

The equational rules simplify terms by means of ordered ground rewriting.
Given a proof tree, we introduce a strict partial order≺ ⊆ (C∪V)2 over constants

8

Table 1. Our sequent calculus for first-order logic with equality. In rules ∀l and ∃r,
X is a fresh variable, whereas the rules ∃l and ∀r introduce a fresh constant c. In ≈l
and ≈r, the equation (t′ ≈ s′)[t/s] is the result of replacing all occurrences of t with s.

Γ, φ, ψ ` ∆

Γ, φ ∧ ψ ` ∆
∧l

Γ ` φ,∆ Γ ` ψ,∆

Γ ` φ ∧ ψ,∆ ∧r
Γ ` φ,∆

Γ,¬φ ` ∆
¬l

Γ, φ ` ∆ Γ,ψ ` ∆

Γ, φ ∨ ψ ` ∆
∨l

Γ ` φ, ψ,∆

Γ ` φ ∨ ψ,∆ ∨r
Γ, φ ` ∆

Γ ` ¬φ,∆ ¬r

Γ,∀x.φ, φ[x/X] ` ∆

Γ,∀x.φ ` ∆
∀l

Γ ` φ[x/c],∆

Γ ` ∀x.φ,∆ ∀r Γ ` ∆
Γ, s ≈ s ` ∆

≈elim

Γ, φ[x/c] ` ∆

Γ,∃x.φ ` ∆
∃l

Γ ` ∃x.φ, φ[x/X],∆

Γ ` ∃x.φ,∆ ∃r ∗
Γ ` s ≈ s,∆ ≈close

Γ, t ≈ s ` ∆

Γ, s ≈ t ` ∆
≈orient where t � s

Γ, t ≈ s, (t′ ≈ s′)[t/s] ` ∆

Γ, t ≈ s, t′ ≈ s′ ` ∆
≈l where t � s and t′ � s′, the term t occurs

in t′ ≈ s′, and if t = t′ then s′ � s

Γ, t ≈ s ` (t′ ≈ s′)[t/s],∆
Γ, t ≈ s ` t′ ≈ s′,∆

≈r where t � s and the term t occurs in t′ ≈ s′

∗
Γ1 ` ∆1

. . . ∗
Γn ` ∆n

breu

. . .
...

Γ ` ∆

where Γ1 ` ∆1, . . . , Γn ` ∆n are all open goals
of the proof, Ei = {t ≈ s ∈ Γi} are flat
antecedent equations, ei =

∨
{t ≈ s ∈ ∆i} are

succedent equations, and the simultaneous
BREU problem (�, (Ei, ei)

n
i=1) is solvable

and free variables reflecting the order in which symbols are introduced by the
rules ∀l, ∀r, ∃l, ∃r: we define s ≺ t if the constant or variable t was introduced
above the symbol s, or if s is a symbol already occurring in the root sequent and
t is introduced by some rule in the proof. For instance, for the proof shown in
Sect. 1.1, the partial order shown in Example 5 is derived.

By slight abuse of notation, we also write s ≺ f(t1, . . . , tn) if s does not
start with a function symbol. The rule ≈orient moves the bigger term to the
left-hand side of an equation. ≈l and ≈r can be used to replace occurrences of
the (bigger) left-hand side term of an equation with the smaller right-hand side
term; this rewriting is purely ground and does not unify expressions containing
free variables (unification is entirely left to the breu closure rule discussed in
the next paragraph). As a consequence, and since ≺ is well-founded, rewriting
is terminating and confluent, and in fact implements a congruence closure pro-
cedure [1] that eventually replaces every term with a unique representative term
of its equivalence class modulo equations in the antecedent.

The breu rule operates globally and closes all remaining goals of a proof
if a global E -unifier σ exists that solves some succedent equation in each goal.
The rule makes use of the non-strict partial order � corresponding to ≺, with
the implication that every variable X can be mapped to symbols that were

9

introduced prior to X in the proof. To encode non-emptiness of the universe, we
assume that there is some constant c⊥ ∈ C below all variables X ∈ V in a proof
(c⊥ ≺ X for all X ∈ V); if the proof itself does not contain such a constant, it
is assumed that c⊥ is some fresh constant with c⊥ ≺ X for all variables X.

5 Properties of the Calculus

5.1 Soundness

The soundness of the calculus from Table 1 can be shown by substituting con-
stants for all free variables, and observing the local soundness of each rule.

Lemma 8. Suppose Γ ` ∆ is a sequent without free variables. If a closed proof
can be constructed for Γ ` ∆ using the calculus in Table 1, then Γ ` ∆ is valid.

Proof. We assume that a proof for Γ ` ∆ was closed using rule breu, with a
unifier σ that maps every variable X occurring in the proof to a constant Xσ ∈ C
with Xσ ≺ X. In case all goals were closed using ≈close, Xσ can be some
arbitrary constant with Xσ ≺ X.

By induction, it can be shown that the instance (Γ ′ ` ∆′)σ = Γ ′σ ` ∆′σ of
every sequent Γ ′ ` ∆′ occurring in the proof is valid. This is the case for every
goal discharged using rule breu by definition. For all other rules, it is the case
that if the σ-instance of the premises is valid, then also the σ-instance of the
conclusion is valid. We show two cases, the other rules are verified similarly:

– ∃l: assume that the instantiated premise (Γ, φ[x/c] ` ∆)σ is valid. Since
c is fresh, we know that X ≺ c for all free variables X in Γ,∃x.φ ` ∆.
Therefore Xσ ≺ c, and it follows that (Γ,∃x.φ ` ∆)σ does not contain c.
Validity of (Γ, φ[x/c] ` ∆)σ then implies validity of ∀x.(

∧
Γ ∧ φ →

∨
∆)σ,

and equivalently of (Γ,∃x.φ ` ∆)σ.
– ≈l: assume that (Γ, t ≈ s, (t′ ≈ s′)[t/s] ` ∆)σ is valid. Then the conclusion

(Γ, t ≈ s, t′ ≈ s′ ` ∆)σ is valid, too, since the conjunctions (t ≈ s∧ t′ ≈ s′)σ
and (t ≈ s ∧ (t′ ≈ s′)[t/s])σ are equivalent.

Since the root sequent Γ ` ∆ does not contain any free variables, it is implied
that (Γ ` ∆)σ = Γ ` ∆ is valid. ut

5.2 Completeness

The completeness of the calculus can be shown using a model construction ar-
gument (e.g., [8]), which also implies that every attempt to construct a proof
of a valid sequent in a “fair” manner will ultimately be successful; this ensures
that proofs can always be found without the need for backtracking (although
backtracking might sometimes lead to success more quickly, of course).

We call a proof search strategy for the calculus in Table 1 fair if the propo-
sitional and first-order rules ∧l, ∧r, ∨l, ∨r, ¬l, ¬r, ∀l, ∀r, ∃l, ∃r are always
eventually applied when they are applicable to some formula, and if every proof

10

goal in which one of those rules is applicable is eventually expanded. This implies,
in particular, that ∀l and ∃r are applied unboundedly often to every quanti-
fied formula. Fairness does not mandate the application of the equational rules,
which are subsumed by breu; eager application of equational rules is in practice
cheap and advisable for performance, however.

Lemma 9 (Completeness of fair proof search). Suppose Γ ` ∆ is a sequent
without free variables, and suppose that a proof is constructed in a fair manner.
If Γ ` ∆ is valid, then eventually a proof tree will be obtained that can be closed
using the rule breu.

In order to prove this lemma, we first consider a “ground” version GC of our
calculus, obtained by removing the rule breu, and by replacing ∀l and ∃r with
the following ground rules:

Γ,∀x.φ, φ[x/c] ` ∆

Γ,∀x.φ ` ∆
∀lg ,

Γ ` ∃x.φ, φ[x/c], ∆

Γ ` ∃x.φ,∆
∃rg

where c is an arbitrary constant. GC has the property that systematic appli-
cation of the rules will either eventually produce a closed proof, or lead to a
saturated (possibly infinite) branch from which a model can be derived:

Definition 10. An open proof branch in GC labelled with sequents Γ0 ` ∆0,
Γ1 ` ∆1, . . . (where Γ0 ` ∆0 is the root of the proof) is called saturated if

(i) the branch is finite and no rule is applicable in the goal sequent Γn ` ∆n; or
(ii) the branch is infinite, and for the limit sets Γ∞, ∆∞ of formulae occurring

on the branch, as well as the sets Γ p, ∆p of persistent formulae

Γ∞ =
⋃
i≥0

Γi , ∆∞ =
⋃
i≥0

∆i , Γp =
⋃
i≥0

⋂
j≥i

Γj , ∆p =
⋃
i≥0

⋂
j≥i

∆j

it is the case that (a) Γp only contains equations and ∀-quantified formulae;
(b) ∆p only contains equations and ∃-quantified formulae; (c) none of the
rules ≈elim, ≈close, ≈orient, ≈l, ≈r is applicable in Γp ` ∆p; (d) at
least one constant c occurs on the branch; (e) for every formula ∀x.φ ∈ Γp
and every constant c occurring on the branch, there is an instance φ[x/c] ∈
Γ∞; and (f) for every formula ∃x.φ ∈ ∆p and every constant c there is an
instance φ[x/c] ∈ ∆∞.

The ability to construct saturated branches follows directly from the ob-
servation that application of the GC -rules other than ∀lg and ∃lg terminates
(because ≺ is well-founded), and that ∀lg and ∃lg can be managed in a fair way
using a work queue. The property (ii)–(d) encodes non-emptiness of universes,
and is ensured by instantiating every formula ∀x.φ ∈ Γp and ∃x.φ ∈ ∆p at least
once on every branch (e.g., using the ≺-smallest constant c⊥).

Lemma 11. If a (finite or infinite) GC proof contains a saturated branch, then
the root sequent Γ ` ∆ has a counter-model (is invalid).

11

Proof. We use persistent equations to construct a structure S = (U, I). In case
of a finite saturated branch, persistent formulae are the ones in the goal; with-
out loss of generality, we assume that also finite branches contain at least one
constant. U is chosen as the set of constants that do not occur as left-hand
side of some persistent antecedent equation; left-hand side terms are interpreted
as the right-hand side constants. In case the value of some function applica-
tion f(c1, . . . , cn) is not determined by the equations, we set the value to some
arbitrary constant c ∈ U :

U = {c ∈ C | c occurs in Γ∞ ∪∆∞} \ {c | c ≈ d ∈ Γp}

I(c) =

{
d if there exists an equation c ≈ d ∈ Γp
c otherwise

I(f)(c1, . . . , cn) =

{
d if there exists an equation f(c1, . . . , cn) ≈ d ∈ Γp
c otherwise, for some arbitrary c ∈ U

Since no equational rule is applicable in Γp ` ∆p, it is clear that valS(t ≈ s) =
true for every t ≈ s ∈ Γp, and valS(t ≈ s) = false for every t ≈ s ∈ ∆p.

By well-founded induction over the equations in Γ∞, it can then be shown
that in fact all equations in Γ∞ evaluate to true under S. For this we define a
well-founded order ≺′ over flat equations (for c, d ∈ C, c̄, c̄′ ∈ C∗, f, g ∈ F , and
≺lex the well-founded lexicographic order induced by ≺):

(c ≈ d) ≺′ (c′ ≈ d′) ⇔ (d, c) ≺lex (d′, c′), (c ≈ d) ≺′ (f(c̄) ≈ d′),
(f(c̄) ≈ d) ≺′ (g(c̄′) ≈ d′) ⇔ f = g and (d, c̄) ≺lex (d′, c̄′).

In particular, note that in any application of rule ≈l we have (t ≈ s) ≺′ (t′ ≈ s′)
and (t′ ≈ s′)[t/s] ≺′ (t′ ≈ s′); this implies that if all equations ≺′-smaller than
t′ ≈ s′ hold, then also t′ ≈ s′ holds. In the same way, it can be proven that all
equations in ∆∞ evaluate to false.

By induction over the depth of formulae we can conclude that all formulae
(not only equations) in Γ∞ evaluate to true, and all formulae in ∆∞ to false. ut

Proof (Lem. 9). Assume that an (unsuccessful) attempt was made to construct
a proof P for the valid sequent Γ ` ∆ by fair application of the rules in Table 1.
We define a global mapping v : V → C of variables occurring in P to constants,
and use v to map P to a GC -proof with a saturated branch. The mapping v
is defined successively by depth-first traversal of P , visiting sequents closer to
the root earlier than sequents further away. Note that for each branch that has
not been closed by applying ≈close, fairness implies that ∀l (∃r) has been
applied infinitely often to every universally quantified formula in the antecedent
(existentially quantified formula in the succedent).

When a node is visited where a new variable X is introduced by ∀l or ∃r for
a quantified formula φ, set v(X) = c for some constant c ≺ X that is ≺-minimal
among the constants that have not yet been assigned for the same formula φ on
this branch. If no such constant exists, an arbitrary constant c ≺ X is chosen. On

12

every infinite branch, this ensures that for every quantified formula φ handled via
∀l or ∃r, and every constant c occurring on the branch, there is some application
of ∀l or ∃r to φ such that the introduced variable X is mapped to c = v(X).

The function v can then be used to translate P to a GC -proof P ′, replacing
each variable X with the constant v(X), and inserting exhaustive applications of
the equational rules wherever they are applicable. By Lem. 11 and since Γ ` ∆ is
valid, each branch in P ′ can be closed after finitely many steps through ≈close.
This implies that it has to be possible to close the corresponding finite prefix
of the original proof P using rule breu, with the mapping v restricted to the
variables occurring in the prefix as E -unifier. ut

6 Refinements of the Calculus

The presented calculus can be refined in many practically relevant ways; in
the scope of this paper, we only outline three modifications that we use in our
implementation (also see Sect. 7).

General instantiation. Similar the subterm instantiation method proposed by
Kanger [13], our system explicitly generates constants representing all terms
possibly required for instantiation of quantified formulae, through application
of ∃l and ∀r. While subterm instantiation is complete, it has been observed
(e.g., in [6]) that resulting proofs can sometimes be significantly longer than
the shortest proofs that can be obtained when considering arbitrary instances
of quantified formulae. Instantiation with new terms can be simulated in our
systems by adding a rule tot representing the totality axiom ∀x̄.∃y. f(x̄) ≈ y,
which iteratively increases the range of terms considered for substitution by the
breu rule. In tot, f is a function symbol, X1, . . . , Xn are fresh variables, and
c is a fresh constant (and we set Xi ≺ c for all i ∈ {1, . . . , n}):

Γ, f(X1, . . . , Xn) ≈ c ` ∆

Γ ` ∆
tot

Local closure. The closure rule breu can be generalised to operate not only on
complete proof trees, but also on arbitrary sub-trees, and thus be used to guide
proof expansion. For any sub-tree t, it can be checked (i) whether all goals in
t contain equations that are simultaneously E -unifiable; as long as this is not
the case, proof expansion can focus on t, since rules applied to branches outside
of t will not be helpful; and (ii) whether the goals in t are E -unifiable with a
unifier σ such that Xσ = X for all variables X that occur outside of t; in this
case, t can be closed permanently and does not have to be considered again. It is
also possible to define a notion of unsatisfiable cores for E -unification problems,
which can further refine the selection of goals to be expanded.

Ground instantiation. It has also been observed that handling of quantifiers us-
ing free variables is very powerful, but is excessively expensive in case of simple

13

Table 2. Comparison of our prototypical implementation on TPTP benchmarks. The
numbers indicate how many benchmarks in each group could be solved; the runtime
per benchmark was limited to 240s (wall clock time). All experiments were done on an
AMD Opteron 2220 SE machine, running 64-bit Linux, heap space limited to 1.5GB.

FOF FOF CNF CNF
with eq. w/o eq. with eq. w/o eq.

Princess + BREU 211 325 203 252
Hyper 1.0 16112014 [2] 119 378 160 305
leanCoP 2.2 (CASC-J7) 153 379 –1 –1

quantified formulae that have to be instantiated many times, and provides little
guidance for proof construction. Possible solutions include the use of connec-
tion conditions, universal variables, or simplification rules [3, 12]. In our imple-
mentation, we use a more straightforward hybrid approach that combines free
variables with ground instantiation through E-matching [15]; in combination,
free variables and e-matching can solve significantly more problems than either
technique individually. E-matching can be integrated naturally in our calculus
without losing completeness, following [15]; in general this requires the use of
the rule tot shown above.

7 Experimental Results

We are in the process of implementing our BREU algorithm, and the calculus
from Sect. 4, as an extension of the Princess theorem prover [14].2 Our implemen-
tation uses the SAT encoding outlined in Sect. 3.3, and the Sat4j solver to solve
the resulting constraints; we also include the refinements discussed in Sect. 6.
Considered benchmarks were randomly selected TPTP v.6.1.0 problems with
status Theorem or Unsatisfiable. To illustrate strengths and weaknesses of the
compared tools, the benchmarks were categorised into FOF (first-order) prob-
lems with equality, FOF problems without equality, CNF (clause normal form)
problems with equality, and CNF problems without equality. 500 benchmarks
from all of TPTP were chosen in each group.

We compared our BREU implementation with the tableau provers Hyper
and leanCoP from the CASC-J7 competition. Hyper uses the superposition-
based equality reasoning from [2], whereas leanCoP relies on explicit equality
axioms. The experimental results shown in Table 2 are still preliminary, and
expected to change as further optimisations in our BREU procedure are done.
However, it can be seen that even our current implementation of BREU shows
performance that is comparable with the other tableau systems in all groups of
benchmarks, and outperforms the other systems on benchmarks with equality.

1 leanCoP cannot process benchmarks in the TPTP CNF dialect.
2 http://user.it.uu.se/~petba168/breu/

14

Conclusion

We have introduced bounded rigid E -unification, a new variant of SREU, and
illustrated how it can be used to construct sound and complete theorem provers
for first-order logic with equality. We believe that BREU is a promising approach
to handling of equality in tableaux and related calculi. Apart from improved
algorithms for solving BREU, and an improved implementation, in future work
we plan to consider the combination of BREU with other theories, in particular
arithmetic, and integration of BREU with DPLL(T)-style clause learning.

Acknowledgements We would like to thank Christoph M. Wintersteiger for
comments on this paper, and the anonymous referees for helpful feedback.

References

1. Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. J. Autom.
Reasoning 31(2), 129–168 (2003)

2. Baumgartner, P., Furbach, U., Pelzer, B.: Hyper tableaux with equality. In: Pfen-
ning, F. (ed.) CADE. LNCS, vol. 4603, pp. 492–507. Springer (2007)

3. Beckert, B.: Equality and other theories. In: D’Agostino, M., Gabbay, D., Hähnle,
R., Posegga, J. (eds.) Handbook of Tableau Methods. Kluwer, Dordrecht (1999)

4. Degtyarev, A., Voronkov, A.: Simultaneous rigid E-Unification is undecidable. In:
Büning, H.K. (ed.) CSL. LNCS, vol. 1092, pp. 178–190. Springer (1995)

5. Degtyarev, A., Voronkov, A.: What you always wanted to know about rigid E-
Unification. J. Autom. Reasoning 20(1), 47–80 (1998)

6. Degtyarev, A., Voronkov, A.: Equality reasoning in sequent-based calculi. In: Hand-
book of Automated Reasoning (in 2 volumes). Elsevier and MIT Press (2001)

7. Degtyarev, A., Voronkov, A.: Kanger’s Choices in Automated Reasoning. Springer
(2001)

8. Fitting, M.C.: First-Order Logic and Automated Theorem Proving. Graduate
Texts in Computer Science, Springer-Verlag, Berlin, 2nd edn. (1996)

9. Gallier, J.H., Raatz, S., Snyder, W.: Theorem proving using rigid e-unification
equational matings. In: LICS. pp. 338–346. IEEE Computer Society (1987)

10. Giese, M.: Incremental closure of free variable tableaux. In: Goré, R., Leitsch, A.,
Nipkow, T. (eds.) IJCAR. LNCS, vol. 2083, pp. 545–560. Springer (2001)

11. Giese, M.: A model generation style completeness proof for constraint tableaux
with superposition. In: Tableaux. LNCS, vol. 2381, pp. 130–144. Springer (2002)

12. Giese, M.: Simplification rules for constrained formula tableaux. In: TABLEAUX.
pp. 65–80 (2003)

13. Kanger, S.: A simplified proof method for elementary logic. In: Siekmann, J.,
Wrightson, G. (eds.) Automation of Reasoning 1: Classical Papers on Computa-
tional Logic 1957-1966, pp. 364–371. Springer, Berlin, Heidelberg (1983), originally
appeared in 1963

14. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: LPAR. LNCS, Springer (2008)

15. Rümmer, P.: E-Matching with free variables. In: LPAR. LNCS, vol. 7180, pp. 359–
374. Springer (2012)

16. Tiwari, A., Bachmair, L., Rueß, H.: Rigid E-Unification revisited. In: CADE. pp.
220–234. CADE-17, Springer-Verlag, London, UK, UK (2000)

15

