Automatic Analysis of Scratch-pad Memory Code for
Heterogeneous Multicore Processors

Alastair F. Donaldson, Daniel Kroening, and Philipp Rimme

Oxford University Computing Laboratory, Oxford, UK

Abstract. Modern multicore processors, such as the Cell Broadbandn&ng
achieve high performance by equipping accelerator corés small “scratch-
pad” memories. The price for increased performance is highhegramming
complexity —the programmer must manually orchestraterdat@ement using di-
rect memory access (DMA) operations. Programming using@spnous DMAs

is error-prone, anMA racescan lead to nondeterministic bugs which are hard
to reproduce and fix. We present a method for DMA race analysish auto-
matically instruments the program with assertions moaglthe semantics of a
memory flow controller. To enable automatic verification $trumented pro-
grams, we present a new formulationefnduction geared towards software, as
a proof rule operating on loops. We present a toaRStcH, which we apply to

a large set of programs supplied with the IBM Cell SDK, in whige discover a
previously unknown bug. Our experimental results indi¢hs ourk-induction
method performs extremely well on this problem class. Tolkmawledge, this
marks both the first application @t induction to software verification, and the
first example of software model checking for heterogeneoukicore proces-
sors.

1 Introduction

Heterogeneous multicore processors such as the Cell Baoddbngine (BE) circum-
vent the shared memory bottleneck by equipping cores witlllSstratch-pad” mem-
ories [16,18]. These fast, private memories are not colhevigh main memory, and
allow independent calculations to be processed in parfyledeparate cores without
contention. While this can boost performardeplaces heterogeneous multicore pro-
gramming at the far end of the concurrent programming spectiThe programmer
can no longer rely on the hardware and operating system tolessly transfer data
between the levels of the memory hierarchy, and must insteadually orchestrate
data movement between memory spaces udirect memory acces®©OMA). Low-
level data movement code is error-prone: misuse of DMA djmracan lead tDMA
races where concurrent DMA operations refer to the same portiomemory, and
at least one modifies the memory. There is an urgent needdonitgues and tools to

* Alastair F. Donaldson is supported by EPSRC grant EP/GOhTléaniel Kroening and Philipp
RUmmer are supported by EPSRC grant EP/G026254/1, the EABFREP MOGENTES,
and the EU ARTEMIS CESAR project.

L A supercomputer comprised of Cell processors recentlynasgu#1 spot on the Top 500 list.

analyse DMA races, which, if undetected, can lead to nomaétéstic bugs that are
difficult to reproduce and fix.

We present a method for DMA race analysis which automatiéaitruments the
program with assertions modelling the semantics of a merflowy controller. The
instrumented programs are amenable to automatic verdichi state-of-the-art model
checkers. Recent dramatic advances in SAT/SMT technigaes led to widespread
use of Bounded Model Checking (BMC) [3, 5] for finding bugs oftaare. As well
as detecting DMA races, we are interested in proving thb8enceHowever, BMC
is only complete if the bound exceeds a completeness theEH] for the property,
which is often prohibitively large. We overcome this lintitm by presenting a novel
formulation ofk-induction [24]. Thek-induction method has been shown effective for
verifying safety properties of hardware designs. In ppieik-induction can be applied
to software by encoding a program as a monolithic transfiimrction. This approach
has not proven successful due to the loss of control-flovcira associated with such
a naive encoding, and because important refinemeritsrafuction €.g.restriction to
loop-free paths) are not useful for software where the stateor is very large.

We present a general proof rule fioinduction that is applicable to imperative pro-
grams with loops, and prove correctness of this rule. Inresito the naive encoding
discussed above, our method preserves the program seuntuperating at the loop
level. Furthermore, it allows properties to be expresseduiljh assertion statements
rather than as explicit invariants. Our experimental tssualdicate that this method of
k-induction performs very well when applied to realistic DMyased programs, which
use double- and triple-buffering schemes for efficient dadaement: such programsin-
volve regularly-structured loops for whiéhinduction succeeds with a relatively small
k. We investigate heuristics to further boost the appli¢gtoff £-induction when check-
ing for DMA races, and discuss limitations kfinduction in this application domain.

We have implemented our techniques as a tooR& cH, which checks programs
written for the Synergistic Processor Element (SPE) cofrésecCell BE processor. We
present an evaluation ofc®ATCH using a set of 22 example programs provided with
the IBM Cell SDK for Multicore Acceleration [18], in which weiscover a previously
unknown bug, which has been independently confirmed. Ouerérgnts show the
effectiveness of our methods in comparison to predicateati®n:k-induction allows
us to prove programs correct that cannot be verified usingotipredicate abstraction
tools, and bug-finding is orders of magnitude faster. Addgily, SCRATCH is able to
find bugs which go undetected by a runtime race-detectidridothe Cell processor.

In summary, our major contributions are:

— an automatic technique for instrumenting programs wittedgss to check for
DMA races, enabling verification of multicore programs watiratch-pad memory.

— a new proof rule fok-induction operating on programs with loops, which we show
to be effective when applied to a large set of realistic DMasé&d programs.

To our knowledge, this marks the first applicationkeihduction to software verifi-
cation, and of software model checking to heterogeneouscuore programs.

2 Direct memory access operations

We consider heterogeneous multicore processors comgastanhost core, connected to
main memory, and a humber of accelerator cores with privaggch-pad memory. A
DMA operatiorf specifies that a contiguous chunk of memory, of a given sixmylsl be
transferred between two memory addredsasdh. The addresérefers to accelerator
memory (ocal storg, andh to main memorylfost memory A tag (typically an integer
value) must also be specified with a DMA, the operation is $aite identified by
this tag. It is typical for DMA operations to be initiated biyet accelerator cores: an
acceleratopullsdata into local store, rather than having the msthdata. We assume
this scenario throughout the paper.

DMA operations are non-blocking — an accelerator threadwisisues a DMA con-
tinues executing while the operation is handled by a spsetpiece of hardware called
amemory flow controllerAn accelerator thread can issugvait operation, specifying
a tagt, which causes execution to block until all DMAs identifieditdyave completed.
A DMA with tag ¢ is pendinguntil a wait operation with tagis issued.

Although a DMA may complete before an explicit wait operation is issued, this
cannot be guaranteed, thus access by the host or acceleratemory that is due to
be modified by a pending DMA should be regarded as a bug. Edituissue a wait
operation may result in nondeterministic behaviour: it mayallybe the case that the
required data has arrived, but occasionally the lack of &nvay result in reading from
uninitialised memory, leading to incorrect computatiohisTnondeterminism means
that bugs arising due to misuse of DMA can be extremely difftoureproduce and fix.

2.1 DMA primitives and properties of interest

We consider the following primitives for DMA operations:

— put(l, h, s,t): issues a transfer afbytes from local store addresto host address
h, identified by tag

— get(l, h, s,t): issues a transfer afbytes from host addredsto local store address
1, identified by tag

— wait(t): blocks until completion of all pending DMA operations idiéied by tag¢

For each accelerator core, we assume hardware-imposedhomaxvaluesD and
M for the number of DMAs that may be pending simultaneously daednumber of
bytes that may be transferred by a single DMA, respectiWdl.assume that tags are
integers in the rangl®, D — 1]. On the Cell processoR) = 32 andM = 16384 (16K).

We have informally described the notion of memory being wpted by DMA op-
erations. A special case of memory corruption is where twadpey DMAs refer to
overlapping regions of memory, and at least one of the DMASlifies the region of
memory. We call this ®MA race and focus our attention on the detection of DMA
races for the remainder of the paper. This focus is for reasbspace only: our tech-
niques can be readily adapted to detect races where the befiéered to by a pending
DMA is accessed by non-DMA statements.

2 For brevity, we sometimes write “DMA” rather than “DMA opéian.”

#define CHUNK 16384 // Process data in 16K chunks
float buffers[3][CHUNK sizeof (float)]; // Triple-buffering requires 3 buffers
voi d process_data(float* buf) { ... }

void triple_buffer(char* in, char* out, int numchunks) {
unsigned int tags[3] = { 0, 1, 2}, tnp, put_buf, get_buf, process_buf;

(1) get(buffers[0], in, CHUNK tags[O]); // Get triple-buffer schene rolling
in += CHUNK;

(2) get(buffers[1], in, CHUNK tags[1]);
in += CHUNK;

(3) wait(tags[0]); process_data(buffers[0]); // Wait for and process first buffer
put _buf = 0; process_buf = 1; get_buf = 2;

for(int i = 2; i < numchunks; i++) {
(4) put (buffers[put_buf], out, CHUNK, tags[put_buf]); // Put data processed
out += CHUNK; I last iteration
(5) get (buffers[get_buf], in, CHUNK tags[get_buf]); // Get data to process
in += CHUNK; I next iteration
(6) wai t (tags[process_buf]); /1 Wait for and process data
process_dat a(buf fers[process_buf]); Il requested last iteration

tnp = put_buf; put_buf = process_buf; // Cycle the buffers
process_buf = get_buf; get_buf = tnp;

. I/ Handl e data processed/fetched on final |oop iteration

}

Fig. 1. Triple-buffering example, adapted from an example pravidéh the IBM Cell SDK [18]

Definition 1. Letop, (I1, h1, s1,t1) andop,(l2, ha, s2,12) be a pair of simultaneously
pending DMA operations, whets, , op, € {put, get}. The pair is said to beace free
if the following holds:

((opy = put Aopy = put) V (I1 + 51 <l2) V (la + s2 < I1))A

((Opl =get ANopy = get) V (hl +51 < h2) \Y (h2 + 59 < hl))

The first conjunct in Definition 1 asserts that the local stegions referred to by
op; andop, do not overlapunlessboth areput operations (which do not modify local
store); the second conjunct asserts that the host memdonsedo not overlap, unless
bothop, andop, areget operations (which do not modify host memory). We say there
is aDMA racewhen some pair of pending DMA operations is not race free.

2.2 lllustrative example: triple-buffering

Figure 1, adapted from an example provided with the IBM CBIK$18], illustrates the
use of DMA operations to stream data from host memory to Istcaie to be processed,
and to stream results back to host memory. Triple-buffeigngsed to overlap commu-
nication with computation: each iteration of the looptini pl e_buf f er puts results
computed during the previous iteration to host memory, iggtst to be processed next
iteration from host memory, and processes data which hagdiin local memory.

If num chunks is greater than three, this example exhibits a local stor\Date,
which we can observe by logging the first six DMA operations tfie right of each
operation we record its source code location and, if appetrits loop iteration. We
omit host address parameters as they are not relevant tatheate.

get(buffers[0], ..., CHUNK, tags[0]) (1)

get(buffers[1], ..., CHUNK tags[1]) (2)
wait(t ags[0]) ?3)

* put(buffers[0], ..., CHUNK, tags[0]) (4),i=2
get(buffers[2], ..., CHUNK tags[2]) (5),i=2
wait(t ags[1]) (6),i =2
put(buffers[1], ..., CHUNK, tags[2]) (4),i=3

*) get(buffers[0], ..., CHUNK, tags[0]) (5),i =3

At this point in execution the operations marked (*) are qmhding, since the only
interveningwait operation uses a distinct tag. The operations are not reeafrcording
to Definition 1 since they use the same region of local stoceaae is aget. The race
can be avoided by insertingvait with tagt ags[get _buf] before theget at (5).

We discovered this bug usingc8ATCH, our automatic DMA analysis tool, de-
scribed in§6, which can also show that the fix is correct. The bug occuasiiexample
provided with the IBM Cell SDK, and was, to our knowledge ypoeisly unknown. Our
bug report via the Cell BE forum has been independently coefit. In the remainder
of the paper, we present the new techniquesa®# /& cH that enable these results.

3 Goto programs

We present our results in terms of a simple goto languagehwsiminimal, but general
enough to uniformly translate C programs like the one in Fégu The syntax of the
goto language is shown in the following grammar, in whick X ranges over integer
variablesq € A over arrays variables,ande over boolean and integer expressions (for
which we do not define syntax, assuming the standard opesjfiandy, ...,[l; € Z
over integers:

Prog ::= 1: Stmt;...;n: Stmt VarRef := x ‘ ale]
Stmt ::= VarRef := x ‘ assume ¢ ‘ assert ¢ ‘ goto Iy, ...,

A goto program is a list of statements numbered frota n.

The language includes assertions, nondeterminisic assigh(VarRef := *), as-
sumptions (which can constrain variables to specific v3Juasl nondeterministic go-
tos. Execution of a goto statement, which is given a sequehtgeger values as ar-
gument (thegoto target$, causes the value of one of these (possibly negative)enseg
to be added to the instruction pointer. We use= e anda[i] := e as shorthands
for assignments to variables and array elements, respggtivhich can be expressed
in the syntax above via a sequence of nondeterministic @sggts and assumptions.
For simplicity, we assume variables and array elementserangr the mathematical
integers,Z; when translating C programs into the goto language theahcamge of
variables will always be bounded, so SAT-based analysistaf grograms by means of
bit-blasting is possible.

The transition system described by a prograra 1: ag;...;n: ay, is the graph
(S,E,). S ={(o,pc) | o: (XU(AXZ)) — Z, pc € Z} U{4} is the set of pro-
gram states, whereis a store mapping variables and array locations to integjeies,

pe is the instruction pointer, and is a distinguished state that designates erroneous
termination of a programi,, is the set of transitions (we writ¢ for the value of an
expression given the variable assignmentienote the set of all storage locations by
L =X U(A x Z), and defingt, ff to be the truth values of boolean expressions):

Ey = {(o,pc) = (o',pc+1) | ape =2 :=x, VL € L\ {z}. o(l) = o'()}
U{(o,pc) — (o', pc + 1) | ape = ale] :== %, Vi € L\ {(a,e”)}. o(l) =o' (1)}
U{(o,pc) = (0,pc + 1) | ape = assume ¢, ¢° = tt}

U{(o,pc) — (0, pc + 1) | ape = assert ¢, ¢° = it}
U{(o,pc) — & | ape = assert ¢, ¢7 = ff}
U{(o,pc) = (o,pc + ;) | ape = goto b, ..., Ik, 1 € {1,... . k}}

Proper termination oft in a states is denoted by | and occurs if the instruction
pointer ofs does not point to a valid statement] = s = (o, pc) A pc & [1,n]. Note
that no transitions exist from statesvith s |.

The settraces(a) of (finite and infinite) traces of a programis defined in terms
of its transition system:

do. s1 = (0,1), s orsiy =14,
traces(a) = {81 So - Sk | vi e h (k)— lk}.lsl- Hksiﬂé }

U{sis2 | 3o.s1=(0,1), Vie N.s; — 8,41}

In particular, no traces exist on which assumptions®fail.programa is considered
correctif no trace intraces(«) terminates erroneousliye. no trace containg.

4 Encoding DMA operations in goto programs

We now consider the goto language extended with the DMA pisies of§2.1:
Stmt = ... ‘ get(e, e, e, e) ‘ put(e, e, e, e) ‘ wait(e)

For a goto program with DMAs, we introduce a series of arrajatdes with size
D (see§2.1), which we calliracker arrays These “ghost variables” log the state of
up to D pending DMA operations during program execution. The teackrays are as
follows, with0 < j < D:

— walid: valid[j] = 1 if values at positionj in the other arrays are being used to
track a DMA operation, otherwiseulid[j] = 0 and values at positionin the other
arrays are meaningless

— is_get: is_get[j] = 1if j-th tracked DMA is aget, otherwiseis_get[j] = 0

— local, host, size, tag: elementj records local store address, host address, size, tag
of j-th tracked DMA, respectively

3 In our context, this is preferable to modelling failed asptions via a distinguished “blocked
program” state: it simplifies the notion of sequential cosipon of programsdf. §5.1).

|Statement |Translated form

start of programVo<;<p assume valid[j] = 0;

get(l,h,s,t) |assert 0 < s < M A0<t< D,

Yo<j<p assert —walid[j] V (disjoint(l, s, local[j), size[j])A
(is_get[§] V disjoint(h, s, host[j], size[4])));

assert =(valid[0] A valid[1] A - -+ A valid[D — 1]);

1 :=%; assume 0 < i < D A —walid[i];

valid[i] :== 1; is_get[i] :== 1; local[i] := I; host[i] := h; size[i] := s;

put(l,h,s,t) |assert 0 <s < M A0 <t<D;

Yo<j<p assert —walid[j] V (disjoint(h, s, host[j], size[j]) A
(—is_get[j] V disjoint(l, s, local[j], size[j])));

assert =(valid[0] A valid[1] A - -+ A valid[D — 1]);

i :=%; assume 0 < i < D A —walid[i];

valid[i] :== 1; is_get[i] := 0; local[i] := l; host[i] := h; size[i] := s;

wait(t) assert 0 <t < D;

Vo< j<p valid[j] := valid[j] A —(t = tag[j])

Fig. 2. Rules to translate DMA operations into assertions and as®gts to tracker arrays. We
usedisjoint(ai, 1, az, s2) as shorthand foi; + s1 < a2 Vaz + s2 < aq

To check properties of DMA operations we translate a progsétim DMA primi-
tives into a standard goto program, whgee, put andwait operations are replaced with
assertions about and assignments to the tracker arraysrarnséation rules are givenin
Figure 2. We us®y< ;< p to indicate that the following statement should be duptidat
D times with increasing values fgr Since the rules of Figure 2 replace single state-
ments with multiple statements, it is necessary to perforeraumbering of program
statements and goto targets after translation; we omitislefathis re-numbering.

The encoding of DMAs is based on Definition 1, and is desigednsure that
correct programs cannot issue DMA operations that are samebusly pending but not
race free. Note that in our simple goto language we do not hadeal movement of
data via DMA. In practice, to achieve soundness, we musthgetrtemory locations
written to by a DMA operation to nondeterministic valueseT®ell processor supports
further DMA primitives involvingfencesandbarriers. Our implementation§g) sup-
ports these operations via extensions of the rules in Figukge do not present the
extended rules due to lack of space.

5 k-Induction for goto programs

Our encoding of DMA programs is directly amenable to Bounkfiediel Checking [3]
as an effective method to discover DMA races. However, BM@Dalcannot be used to
verify the (unboundedbsencef DMA races in programs with loops.
Thek-induction procedure [24], proposed as a method to allovfigation of hard-
ware designs (represented as finite state machines) usidgd adbver, is a stronger
version of the standard invariant approach to verify safgtperties. Using normal
invariants, proving that a program satisfies a safety ptgpgerequires showing that

(i) some formulal (which often is identical tap) holds in all initial states, (i) is
preserved by all state transitions of the progrdns(inductive, and (iii) I implies ¢.
The main difficulty of this method is the construction of itive formulael. The k-
induction principle addresses this difficulty by weaken(iigto the property thaf has
to be preserved only if it held in the previokstates of program execution. In return,
(i) has to be strengthened appropriately.

We describe the principle using the notation of [9]. L&t) andT (s, s’) be formu-
lae encoding the initial states and transition relationgfdinite state system, arkl(s)
a formula representing states satisfying a safety propEadyk > 0, to proveP by
k-induction it is required first to show th& holds in all states reachable from an initial
state withink stepsj.e.that the following formula (the base case) is unsatisfiable:

I(s1) A T(s1,82) A+ AT(8g—1,5K) A (P(s1) V- VP(s)) .
Secondly, it is required to show that whenewerholds in & consecutive states

s1,--.,S8k, P also holds in the next statg,; of the system. This is established by
checking that the following formula (the step case) is usfable:

P(s1) AT (s1,82) A+ AP(sg) AT (S, Sk+1) AP (Sg41) -

In principle, k-induction can be used for SAT-based software model chgckint-
of-the-box.” A program can be encoded as a monolithic ttaorsfunction, where the
program counter is an explicit variable. Assertions apipgan the original program
can be gathered together into a single invariant. The entpagyram and invariant can
be represented as a SAT formula, to whicinduction can be applied.

This naive encoding has not shown success in practice dine foss of structure
associated with the translation process. Furthermoreitapt refinements which boost
the applicability ofk-induction to hardware designs, such as the restrictioodp-free
paths [24], are not useful when dealing with software whieesstate-vector is large.

To verify absence of DMA races in goto programs, we preseivaliformulation
of k-induction, which operates at the loop level, and provedtsectness.

5.1 A proofrule for k-induction with loops

To present our proof rule fok-induction we require some additional machinery and
notation. Given programs = 1: ay;...;m: a,, andg = 1: By;...;n: B, thesizeof
«, denoteda|, ism, and we define the sequential compositiomaind 3 as follows:

ay B =det Lag;...;m:oum; m~+1:61;...om~+n: By .

Fori > 0, we usea’ to denote the sequential compositioniafopies ofa, and
o to denote the empty program. For a single-statement progfaine form1: a;, we
drop the leading:, writing simply «; .

A programa is self-containeddenotedcontained (), if, for each goto statement
i goto ...,l,... appearing im, we have(i +1) € {1,...,|a| + 1}. In other words,
goto statements can only change the instruction pointdreddcations of statements
insideq, or to the location immediately following.

We define a function that replaces all assertions in a progvaimassumptions.
Given a programy = 1: a1;...;n: o, the corresponding prograt,ssyme = 1: af;
...;n: f is defined bya, = assume ¢ if a; = assert ¢, anda, = «; otherwise.

Finally, we presenk-induction as a proof rule operating on distinguished loops
a goto program of the following form:

as goto 1,(|8]+2)s B3 goto (—|B] —1)¢ ~

whereq, 5 and~ are self-contained. The program consists of a pretydeloop with
body 5 and a taily. Other than self-containedness, we do not make any assumspti
about the shape of componentss andy, which may contain further (nested) loops and
arbitrary control structure. We do not demand the presefae explicit loop condition:

a loop conditiorb can be simulated by choosingsume b as the first statement of the
loop body, andussume —b as the first statement of the tail. Note that the restriction t
self-contained components is milelg.early exit from the loop via a break statement
can be simulated by a flag together with an appropriate loogiton.

Proof rule for k-induction
contained () contained () contained () k>0
as yiscorrect {aussume s Blsome s B3 7 IS correcticqi,... i}
Zssume; giscorrect [..me o 7Y IS correct
as goto1,(|8] +2)s B goto (—|8] —1)¢ ~ is correct

In this rule, the assertions present in the prograrg.the formulae in Figure 2)
take the role of the inductive invariant needed for verifaat The premises include
base cases requiring the program to be shown correct whearre¢hele, followed by
between zero ank loop iterations, are executed. The premig€s,,... s 3 is correct
andgk,.... s ~ is correctform the induction step, establishing that if it is possitale
executek loop iterations from an arbitrary state without violating/aassertions then it
is possible to successfully execute a further loop iteratio the loop tail.

Theorem 2 (Correctness)The above proof rule is sound.

By presenting:-induction using a general proof rule, we do not restrictrtrethod
to a SAT-based implementation. Although our practical ienpéntation is SAT-based,
the rule could as well be used in any (possibly interactieettive verification system.

5.2 Heuristics to aidk-induction for DMA programs

Through our experiments if6 we observe that-induction works extremely well for
checking assertions representing DMA race-freenessrageuby the rules in Figure 2.
For realistic example programs written for the Cell prooesthe generated assertions
are inductive already for small, with no further annotations required to verify cor-
rectness. The result is a verification method that is fullijomatic and efficient on a
large range of Cell programs. Intuitiveisinduction works well in this application do-
main because DMA operations in loops are typically desigoduak pending for only
a bounded number of loop iterations, allowikgnduction to succeed with a value of
k proportional to the bound. This is analogous to the intnitioat 4-induction works
well for sequential hardware circuits with pipelines, wé#rek required for induction
to succeed is proportional to the pipeline depth [1].

For less regular examples, our practical experience haw lda following heuris-
tics which can be applied to helginduction succeed, or to quickly determine when
the technique is unlikely to work. These heuristics are igenetimisations to our tech-
nique; we are able to verify all benchmarks presentéiwithoutuse of heuristics.
Bounded lifetimes In practice, the programmer often knows that no DMA operatio
should pend for more than a small numh&y §éay) of loop iterations. To take advantage
of this domain specific information, the tracker arrays carektended with a compo-
nent to record the number of enclosing loop iterations for which a DMA has been
pending, asserting thatnever exceed&. When proving the step case for> Z, this
allows the assumption that only DMAs issued within the l&dterations are tracked,
eliminating many unreachable states which might othereasese the step case to fail.

Free slots While it is legal for up toD operations to be pending simultaneously, most
practical applications require significantly fewer sinamkous DMAs. Adding an as-
sertion to the start of the loop body requiring at leZdree slots in the tracker arrays
(for someZ > 0) can helpk-induction to succeed when it otherwise would not.

Bounded periods of inactivity Generally, to prove that a DMA operation is race free,
it is necessary to be able to assume that the operation wa$resecon a previous loop
iteration. If a DMA statement might not to be executed foadpitrary number of loop
iterations therk-induction is unlikely to work. By introducing extra instnentation

to check that each DMA statement is executed at least onag evdéerations (for
someZ > 0) we can set up reasonable conditions under whidahduction “gives up,”
resulting in a base case failure identifying a problematit/Dstatement.

6 Experimental evaluation

We have implemented a prototype tooGATCH,* built on top of the CBMC model
checker [5]. 8RATCH accepts an arbitrary C program written for an SPE core of the
Cell BE processor, and checks for DMA races involving locahmory. The translation
described in54 is applied to transform the input program into a form wheMA3
are replaced with assertions and assignments to tracleysaBMC can be applied
to the resulting program to check for DMA races up to a certi@ipth, and combined
with k-induction, using the formulation @b, to prove absence of races. Although our
k-induction method is, in principle, applicable to arbiyraested loops, for implemen-
tation convenience GRATCH currently appliest-induction only to single loops. We
are able to analyse many interesting examples with thisicgsh, in some cases by
converting a nest of two loops into a single loop.

We evaluate SBRATCH using a set of 22 benchmarks adapted from examples sup-
plied with the IBM Cell SDK for Multicore Acceleration [18fategorized as follows:

— z-buf (z € {1,2,3}) Data processing programs which use single-, double- or
triple-buffering for data-movementf; Figure 1). I/O indicates that separate buffers
are used for input and output. Some variants of these praguamfences/barriers

— race check, simple dmaExamples which illustrate data races and use of DMA

4 ScRATCH s available online at http://www.cprover.org/scratch/.

Correct Bu Correct Bu
Benchmark | 1B ime D|tim3|g)épth Benchmark | DT fime || D] timg%ept
race check 1 (|0/2|0.35(|1|0.94{ 34 ||cpaudio 3/4| 5831 1| 099 57
race check 2 ||0|4| 0.35(|3|0.95 65 ||3-bufl/O 3|4]12.29(|2| 0.67 | 133
sync atomic og1|1| 0.39(/1(0.33 64 ||2-buf + barrier 3/4| 3.23||2| 0.56 | 130
sync mutex |{1|1]| 0.43(/1(0.34 74 ||2-bufl/O 3/4| 3.531|3| 0.76 | 137
simpledma ||1|1]| 0.39|/1(0.36/ 80 ||3-buf + fence 3|/5|35.94(|3| 0.7 | 184
1-buf 1/1|0.41{/1|0.43 100 ||normalize 3| 8| 71.74(|12] 2.34 | 549
1-buf 110 1/1]| 0.44(/2|0.54| 109 ||Euler complex 3(10|420.54| 8 | 3.91 | 273
2-buf 1/2] 0.66(|2]|0.54 87 ||3-bufI/O + barrief|4| 2| 9.65 || 3| 0.68 | 160
2-buf + fence ||2|4| 1.39{|2(0.37| 130 ||3-buf I/O + fence||4| 4 | 12.99|| 3| 0.68 | 159
Euler simple |[2|5]4.79(|3|1.32 167 ||checksum 4/4| 3.49|4| 059 | 53
3-buf 3|3|15.84(3|0.65 160 ||Julia 2 7| 3| 32.75(|32|2783.4 1955

Fig. 3. Results using SRATCH for proving correctness vik-induction, and for bug-finding, on
Cell SDK benchmarks

— sync atomic/mutex Programs illustrating the use of SDK synchronization primi
tives for atomic operations and mutexes, in conjunctiom\BMA operations

— cpaudio, normalize Applications which copy one channel of a stereo audio file to
the other, and normalize the volume of a mono audio file, rasmdy

— checksum Computes a checksum on data in host memory. Multiple butiezs
used to coordinate data-movement efficiently

— Euler simple/complex Particle simulation using Euler integration. The simple ve
sion uses separate individual buffers for position, véyoghd mass data; the com-
plex version uses double-buffering

— Julian Quaternion Julia set ray-tracing, where an SPE rendeaumns of output

Manual program slicing has been applied to each benchmaekriove portions of
code that do not affect DMA operations. This routine slicooyld be automated: the
sliced code uses vector datatypes and intrinsic functipasific to the Cell processor,
which the slicer would need to understand.

Figure 3 shows results applyingc8ATCH to correct and buggy versions of the
benchmarks$.With the exception oB-buf andcpaudiq bugs are injected into the ex-
amples, either by removingwaait operation, changing the tag used to identify a DMA,
or switching an operation fromet to put (or vice-versa). Th&-buf benchmark is the
triple-buffering example discussed §2.2, in which RATCH uncovered an existing
bug. A DMA race occurs when thepaudiobenchmark is executed with zero frames of
audio. This is arguably a bug since the precondition thattimeber of frames should be
positive is not specified. For each benchmark, we give thélsshaalue ofk for which
correctness can be proved usirgnduction (vithoutemploying the heuristics ¢5.2);
the minimum numbeP of DMAs which it was necessary to track (settibgto a low
value reduces the size of the tracker arrays, which canfiignily reduce verifica-
tion complexity; we compute the optimum value fOriteratively for each benchmark,

5 Experiments are performed on a 3GHz Intel Xeon machine ngnhinux 2.6 (64-bit).

1600
1400 |

1200
1000
800
600 P
400
200 .
o+t * 7 ! ! !
6 8 10 12 14 16 18 20 22 24 26
Minimum k required to prove correctness of Julia benchmark with parameter n = k-5.

Verification time (seconds)
+

Fig. 4. Verification time for theJulia benchmark increases cubically with

starting withD = 1), and the time, in seconds, taken for verification. We alswstine
smallest depth of execution required for bug-finding. Rissare ordered with respect to
k, CorrectD and Buggyd. MiniSat 1.14, compiled with full optimisations, is used as
back-end SAT solver. It has been reported to perform contipahato state-of-the-art
SMT solvers for SMTBY [7] on this type of workload.

The results of Figure 3 indicate thatinduction provides a tractable method for
proving correctness for this set of benchmarks: verificatiachieved in under 10
seconds for 15 of the 22 examples, with olyler complexaking longer than two
minutes to check. Thaormalizeand Euler complexbenchmarks require the largest
values forD, and result in the largest SAT instances for the correctjarog, taking
the longest time to verify. Théulia benchmark contains a loop for which the number
of iterations is a fixed parametey the columns of a raytraced image to be computed by
one SPE. For this examplesinduction succeeds with = n+ 5 (the results in Figure 3
are for the case where = 2). In Figure 4, we illustrate the scalability éfinduction
by plotting the time taken for verification of the Julia benwrk against the size @f
when we vary parameter between 1 and 25. Growth is less than cubic, showing that
our k-induction method scales well.

With the exception oflulia, bug-finding is fast, taking less than 4 seconds. The
Julia benchmark is the only example where the bug leads to unbaussigng of non-
interfering DMAs. Thus an assertion fails only when an afieimmade to issue a DMA
operation when 32 operations are already pending. Thigt@turequires a large search
depth to detect, resulting in a SAT instance with more thamiillion variables which
takes considerable time to solve. The “bounded lifetimesirfstic 0f§5.2 can be used
to short-circuit the bug-finding process for this exampleg&ring that no DMA pends
for more than three loop iterations (which is the case fordbeect version of this
benchmark), bug-finding takes jusBS s, requiring a search depth of 901.

Comparison with predicate abstractiohhe translation implemented byc8ATCH op-
erates at the level of control flow graphs. In order to compaite other tools, we have
hand-translated three of our benchmafkduf 2-buf and3-buf, into C programs that
track DMA operations as described 4. We aimed to compare withlBST [2] and
SATABS [6] but were unable to obtain results usingA3T due to a bug in the tool,
which we have reported to theLBST developers.

Correct Buggy
Benchmarkiterationg time [ScRATCH speedufliterationg time |SCRATCH speedu

=]

1-buf 15 9.49 23.14x 3 1.25 2.91x
2-buf >100 [>1352.43 >417.78x 20 33.62 59.97 x
3-buf >100 |>4344.99 >120.9x 69 |4969.0 6641.47x

Fig. 5. Results applying CEGAR-based verification to three of th# EBK examples using
SatAbs, in comparison to bounded model checking withduction using CBMC

Figure 5 shows results for proving correctness and findigg liging 3T1ABS, with
Cadence SMV as a back-end model checker. For each examp#homethe number
of refinement iterations requireddrations, the time taken for verificatiortime), and
the speed-up factor obtained by usingrRATCH over ATABS (obtained by comparing
with the results of Figure 3). For all three exampleaTABs is eventually able to
find the bug, but is three orders of magnitude slower thar/8 cH when applied to
3-buf. The abstraction-refinement process leads to a conclusivfication result when
applied to the correct version dfbuf but is an order of magnitude slower than our
k-induction technique. & ABs was not able to prove correctness for correctness of
2-buf or 3-buf within 100 refinement iterations.

Comparison with IBM Race Check libraryfhe IBM Cell SDK [18] comes with a
library for detecting DMA races [17] at runtime. The libranaintains a log of pending
operations, checking each new operation against entrieeifog. If a DMA race is
detected, then an error message is written to the console.

Using a Sony PlayStation 3 console, which is equipped witlelh f€ocessor, we
tested the Race Check library on each of our buggy exampld# faces are detected
for all but three benchmarks, and race detection takeshesg)tl s in each case. The
bug incpaudiowas not detected since the example runs on a specific inpthdileloes
not expose the bug. Thellia bug, where more than 32 DMA operations may be simul-
taneously pending, is beyond the scope of the library. Aigiothe buggy version of
1-buf I/Ocrashes when executed on the Cell hardware, the Race Cheatyldoes not
detect the DMA race responsible for this crash. This falgmatiee appears to be a bug
rather than a fundamental limitation, sintéouf I/Ois similar to examples where the
Race Check library successfully detects DMA races. Notertlratime race detection
cannot be used to prowabdsencef DMA races, unlike ouk-induction method.

7 Related work

The concept ofk-induction was first published in [24, 4], targeting the fiedtion of
hardware designs represented by transition relationisof@dth the basic idea had al-
ready been used in earlier implementations [20] and a wemsia@ne-induction used
for BDD-based model checking [8]). A major emphasis of theee papers is on the
restriction to loop-free or shortest paths, which we do motsider in ourk-induction
rule due to the size of state vectors and the high degree efrditism in software pro-
grams. Several optimisations and extensions to the tecghriigve been proposed, in-

cluding property strengthening to reduce induction dep8j,[improving performance
via incremental SAT solving [9], and supporting verificatiof temporal properties [1].
Applications ofk-induction have focused exclusively on hardware desigis4220]
and synchronous programs [14,13]. A principle related-ioduction has also been
used for circular reasoning about liveness properties. [PdJthe best of our knowl-
edge, there has been no previous work on appl¥Higduction to imperative programs
comparable to our procedureqh.

Techniques for detecting data races in shared memory hmeltitled applications
have been extensively studied. Notable static methodsasedbon formal type sys-
tems [11], or use classic pointer-analysis techniquedather approach is used by tools
such as RCERX [10] and CHORD[22]. The ERASERtool [23] uses binary rewriting to
monitor shared variables and to find failures of the lockiisgigline at runtime. Other
dynamic techniques include [12], which is based on state-dearch with partial-order
reduction, and [15] which is based on a partial-order rédndechnique for SystemC
similar to the method of Flanagan and Godefroid [12].

None of these race detection techniques are applicableftiwage for heteroge-
neous multicore processors with multiple memory spaces.ofity race detection tool
we are aware of which is geared towards heterogeneous oreltis the IBM Race
Check library [17], which we compare with 6. The speed of runtime race detection
with this library is attractive, but requires access to caydity hardware and can only
be used to find bugs which are revealed by a particular setpoft$n In contrast, our
k-induction technique can prove absence of DMA races, and Bd/&ble to detect
potential races by assuming that input parameters mayatakealue.

8 Summary and Future Work

We have contributed an automatic technique for analysing\Dates in heterogeneous
multicore programs which manage scratch-pad memory. Attt of our method
is a novel formulation of-induction. We have demonstrated the effectiveness of this
technique experimentally via a prototype too5FATCH.

We plan to extend this work in the following ways. We intendé&meralise and make
precise our intuitions as to whyinduction works well for DMA-based programs. Our
vision is a set of conditions for identifying classes of piags amenable to verification
by k-induction, thus making the technique more broadly apple#or software anal-
ysis. SSRATCH focuses on analysing DMA races for accelerator memory biyaimg
accelerator source code in isolation. It is not possibleheck meaningful properties
of host memory without some knowledge of how this memoryriscstired. To check
DMA races for host memory we plan to design a method whichyaseslhost and ac-
celerator source code side-by-side. A further challenghéasproblem of DMA race
checking between concurrently executing acceleratorsdora heterogeneous system.
A starting point towards this goal could involve combiningr anethods with adapted
versions of race checking techniques for shared memoryurcerd softwaredf. §7).

Acknowledgement We are grateful to Matko Botincan, Leopold Haller and theran
mous reviewers for their comments on an earlier draft ofwask.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.
17.
18.
19.
20.
21.
22.
23.
24.

25.

Armoni, R., Fix, L., Fraer, R., Huddleston, S., Pitermisin,Vardi, M.Y.: SAT-based induc-
tion for temporal safety properties. Electr. Notes Theam@ut. Sci. 119(2), 3—-16 (2005)
Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: Théveare model checker Blast.
STTT 9(5-6), 505-525 (2007)

. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zh(;, Bounded model checking. Ad-

vances in Computers 58, 118-149 (2003)

. Bjesse, P., Claessen, K.: SAT-based verification witlstate space traversal. In: FMCAD.

LNCS, vol. 1954, pp. 372-389. Springer (2000)

. Clarke, E., Kroening, D., Lerda, F.: A tool for checking BNC programs. In: TACAS.

LNCS, vol. 2988, pp. 168-176. Springer (2004)

. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATBBSAT-based predicate abstrac-

tion for ANSI-C. In: TACAS. LNCS, vol. 3440, pp. 570-574. Smer (2005)

. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-babednded model checking for em-

bedded ANSI-C software. In: ASE (2009)

. Déharbe, D., Moreira, A.M.: Using induction and BDDs taasl check invariants. In:

CHARME. IFIP Conference Proceedings, vol. 105, pp. 203-Zt&pman & Hall (1997)

. Eén, N., Sérensson, N.: Temporal induction by incremieé®AT solving. Electr. Notes Theor.

Comput. Sci. 89(4) (2003)

Engler, D., Ashcraft, K.: RacerX: Effective, staticeletion of race conditions and deadlocks.
In: SOSP. pp. 237-252. ACM (2003)

Flanagan, C., Freund, S.N.: Type-based race detectida¥a. In: PLDI. pp. 219-232. ACM
(2000)

Flanagan, C., Godefroid, P.: Dynamic partial-ordeuotidn for model checking software.
In: POPL. pp. 110-121. ACM (2005)

Franzén, A.: Using satisfiability modulo theories foductive verification of Lustre pro-
grams. Electr. Notes Theor. Comput. Sci. 144(1), 19-33§200

Hagen, G., Tinelli, C.: Scaling up the formal verificatif Lustre programs with SMT-based
techniques. In: FMCAD. pp. 109-117. IEEE (2008)

Helmstetter, C., Maraninchi, F., Maillet-Contoz, L.,ol M.: Automatic generation of
schedulings for improving the test coverage of systemsa-ghip. In: FMCAD. pp. 171—
178. IEEE (2006)

Hofstee, H.P.: Power efficient processor architectatkethe Cell processor. In: HPCA. pp.
258-262. IEEE Computer Society (2005)

IBM: Example Library API Reference, version 3.1 (July02D

IBM: Cell BE resource center (2009), http://www.ibnmodeveloperworks/power/cell/
Kroening, D., Strichman, O.: Efficient computation ofugence diameters. In: VMCAI.
LNCS, vol. 2575, pp. 298-309. Springer (2003)

Lillieroth, C.J., Singh, S.: Formal verification of FP@Ares. Nord. J. Comput. 6(3), 299—
319 (1999)

McMillan, K.L.: Circular compositional reasoning atbdiveness. In: CHARME. LNCS, vol.
1703, pp. 342-345. Springer (1999)

Naik, M., Aiken, A., Whaley, J.: Effective static racet@etion for Java. In: PLDI. pp. 308—
319. ACM (2006)

Savage, S., Burrows, M., Nelson, G., Sobalvarro, P.efguh, T.: Eraser: A dynamic data
race detector for multithreaded programs. ACM Trans. Cdnfpyst. 15(4), 391-411 (1997)
Sheeran, M., Singh, S., Stalmarck, G.: Checking safetperties using induction and a
SAT-solver. In: FMCAD. LNCS, vol. 1954, pp. 108-125. Speng2000)

Vimjam, V.C., Hsiao, M.S.: Explicit safety propertyesigthening in SAT-based induction.
In: VLSID. pp. 63-68. IEEE (2007)

