
A Theory for Control-Flow Graph Exploration

Stephan Arlt1, Philipp Rümmer2, and Martin Schäf1

1 United Nations University, IIST, Macau S.A.R., China.
2 Uppsala University, Sweden.

Abstract. Detection of infeasible code has recently been identified as
a scalable and automated technique to locate likely defects in software
programs. Given the (acyclic) control-flow graph of a procedure, infea-
sible code detection depends on an exhaustive search for feasible paths
through the graph. A number of encodings of control-flow graphs into
logic (understood by theorem provers) have been proposed in the past
for this application. In this paper, we compare the performance of these
different encodings in terms of runtime and the number of queries pro-
cessed by the prover. We present a theory of acyclic control-flow as an
alternative method of handling control-flow graphs. Such a theory can be
built into theorem provers by means of theory plug-ins. Our experiments
show that such native handling of control-flow can lead to significant
performance gains, compared to previous encodings.

1 Introduction

Recently, attempts are being made to use static verification to prove the presence
of infeasible code [7, 3, 14]. Infeasible code refers to statements that cannot occur
on any feasible (and complete) control-flow path in a program. Infeasible code
detection can be used to detect common coding mistakes like unreachable code,
insufficient error handling, or redundant checks whether pointers are well-defined
(see [3] for further examples). The benefit of using static verification to prove
the presence of bugs instead of their absence is that it can be implemented in
a modular and scalable way with a very low rate of false warnings. If a proof
exists that a certain statement cannot be executed, most likely this indicates
a coding mistake (not necessarily a bug), whereas, if the proof fails, infeasible
code detection simply remains silent. That is, while infeasible code detection can
miss occurrences of infeasible code (i.e., false negatives), it hardly causes false
alarms. Another benefit is that infeasible code detection can be implemented
in a modular fashion: if a statement does not have a feasible execution in its
containing procedure (regardless of the calling context), then it will not have an
execution in its containing program as a whole. Thus, infeasible code detection
can be implemented in a modular way on isolated code snippets without risking
false alarms (but possibly false negatives).

In order to show that a code fragment (basic block) within a given program is
feasible, an execution trace has to be found that contains the fragment. For each
code fragment, a formula is constructed whose satisfiability implies the existence
of an execution for the considered code fragment. This formula is sent to a

1

theorem prover, which either proves that the fragment in fact has no execution
(the formula is unsatisfiable), or computes a model that witnesses the existence
of an execution. The construction of execution traces is the main bottleneck of
algorithms for checking feasibility.

We present a tighter integration of feasibility checking with the search pro-
cedure executed by theorem provers, by defining a theory of control flow that
is natively implemented and integrated into the prover in the form of a theory
plug-in. With the help of the theory, we implement a query-optimal algorithm
for feasibility checking, similar in spirit to the procedure presented in [3]. The
use of a theory plug-in eliminates the need for helper variables to implement
the query-optimal algorithm, and generally enables more efficient control-flow
exploration; in experiments on real-world Java applications, our new algorithm
is more than one order of magnitude faster than the one in [3], and significantly
faster than other (encoding-based) algorithms for infeasible code detection that
we compared to. We believe that our results make a convincing case for native
implementation of decision procedures reasoning about program structure, with
implications also for other forms of static analysis, including verification of safety
properties and white-box methods to generate test cases.

The contributions of this paper are: (i) the definition of a theory of acyclic
control flow, and an efficient implementation with the help of a theory plug-in;
(ii) a query-optimal algorithm for feasibility checking; and (iii) an experimental
evaluation on a set of large Java applications. Our implementation and bench-
marks are publicly available.1

Related Work. Different approaches have been presented to identify code that
does not occur on feasible executions within a given program, such as [6, 8, 14, 3].
In this paper we focus on static verification based approaches to detect infeasible
code and on their strategies to explore all paths in a program. In [14] so called
wedges are identified as a suitable subset of statements that need to be check.
In [7] Boolean helper variables are used to render all executions that do not
pass a location infeasible. Both approaches are worst-case optimal but neither
proposes a strategy to explore the program efficiently.

In [3], integer-typed helper variables are used to enable queries that check
for the existence of a feasible path which covers at least n previously uncovered
statements. With that, a query-optimal algorithm is possible. We have reimple-
mented this approach for our experiments.

In [4] a different encoding of the weakest liberal precondition is proposed
that also encodes the backward reachability of statements. With this encoding,
counterexamples from the theorem prover can be used to identify feasible control-
flow paths in a program. Based on this, they present a covering algorithm that
uses enabling clauses. They argue that allowing to prover to find a covering
strategy is more efficient than forcing it towards a particular strategy. We will
also compare with this algorithm in our experiments.

1 http://www.joogie.org

2

2 A Theory of Acyclic Control-Flow

2.1 Programs and Acyclic Control-Flow Graphs

Throughout this paper, we consider programs written in a simple unstructured
language. The language can be seen as a simplified version of Boogie [10]:

Program ::= Block∗

Block ::= label : Stmt∗ goto label∗;

Stmt ::= VarId := Expr; | assume Expr;

The semantics of programs is as usual. We focus on the case of loop-free (or
acyclic) programs, and refer to related work for sound approaches to compute,
for an arbitrary program P , a loop-free program P# that over-approximates the
feasible executions of P (e.g., [7, 5]). We also assume that programs are upfront
transformed to passive form [2], which means that assignments are replaced with
fresh program variables and assume statements. Without loss of generality, it
can further be assumed that every block in a program only consists of a single
assume statement.

Definition 1 (Acyclic Control-Flow Graph). An acyclic control-flow graph
(ACFG) is defined by a tuple (B,E, be, bx), where B is a set of propositional
variables representing basic blocks, E ⊆ B2 is an acyclic edge relation, and
{be, bx} ⊆ B are two nodes such that every node in B is reachable from be, and
bx is reachable from every node in B.

Every passive loop-free program can be represented by an ACFG (B,E, be, bx),
together with a function S : B → For that maps every block variable b ∈ B
(representing a block lb : assume φb; goto . . .) to the formula S(b) = φb.

Definition 2 (Feasible block). Suppose (B,E, be, bx) is an ACFG, and S a
labelling of the blocks as above. A block represented by block variable b ∈ B is
called feasible iff there is a set P = {b1, b2, . . . , bn} ⊆ B of nodes such that b ∈ P ,
b1 = be, bn = bx, for all i ∈ {1, . . . , n− 1} it is the case that (bi, bi+1) ∈ E, and∧n

i=1 S(bi) is satisfiable.

In order to systematically discover feasible blocks, we consider the models of
the formula WLP ∧ be, where:

WLP =
∧
b∈B

(
b =⇒ S(b) ∧ SuccConj (b)

)
(1)

SuccConj (b) =

{∨
(b,b′)∈E b

′ if b 6= bx

true otherwise

It is easy to see that a block b ∈ B is feasible iff WLP∧be has a model that maps
b to true, and in which the subset B′ ⊆ B of block variables that is mapped to
true is minimal [1]. Hence, a theorem prover can be used to enumerate feasible

3

blocks by repeatedly computing models of the conjunction WLP ∧be. While this
encoding is correct and practical, for the application of infeasible code detection
it can be observed that it tends to provide insufficient guidance to a solver. In
particular, when forcing the prover to follow a particular cover strategy (like
in [3]), we claim that it is beneficial to assist the prover by providing domain-
specific knowledge about the structure of the control-flow graph to be explored;
otherwise, the implemented cover strategy can cause a slowdown rather than a
speedup, as the prover has to do significantly more internal backtracking [4] in
order to accommodate the cover strategy. We present a way of integrating CFG
exploration more deeply into the search algorithm used by solvers.

2.2 Acyclic Control-Flow Graphs as a Theory

We want to force a prover to discover paths with many previously uncovered
nodes first, and define a particular notion of control-flow path for this purpose:

Definition 3 (k-C-Path). Suppose (B,E, be, bx) is an ACFG, C ⊆ B is a set
of nodes, and k ∈ N is an integer. A k-C-path is a set P = {b1, b2, . . . , bn} ⊆ B
of nodes such that b1 = be, bn = bx, for all i ∈ {1, . . . , n− 1} it is the case that
(bi, bi+1) ∈ E, and |P ∩ C| ≥ k.

Since the nodes B of an ACFG are defined to be propositional variables, we
can regard an ACFG (together with a set C and an integer k) as a logical theory
that restricts the interpretation of B to k-C-paths:

Definition 4 (ACFG theory). The ACFG theory over (B,E, be, bx), a
set C ⊆ B, and k ∈ N is defined by the following axiom:∨

P⊆B
a k-C-path

(∧
P ∧ ¬

∨
(B \ P)

)
(2)

The ACFG theory can be used to discover feasible blocks in a program, by
choosing C ⊆ B as the set of blocks in a program that still have to be covered,
and k as some constant determining how many blocks are supposed to be covered
simultaneously. Every model of the formula WLP ∧be that also satisfies (2) (i.e.,
every model modulo the ACFG theory, with parameters k and C) represents a
feasible k-C-path through the given program.

Clearly, axiom (2) will in general be of exponential size (in the size of the
underlying ACFG), and is therefore not a practical way to implement the theory.
The next section discusses how an efficient implementation, in the context of a
DPLL-based solver, can be achieved by combining a set of smaller logical axioms
with a tailor-made constraint propagator.

2.3 Native Implementation of ACFG Theories

We implement a decision procedure for an ACFG theory in two parts:

4

1. a set of axioms that ensure that at least one path from be to bx is selected
in every accepted model;

2. a propagator (or theory solver) that ensures that at most one path is selected
in a model, and that this path is a k-C-path.

In the rest of the section, we assume that an ACFG (B,E, be, bx), a set
C ⊆ B, and a threshold k ∈ N have been fixed.

Axioms. The required axioms are simple implications in forward direction, start-
ing at the initial node of the ACFG:{

be

}
∪
{(
b =⇒

∨
Succ(b)

)
| b ∈ B \ {bx}

}
(3)

where Succ(b) = {b′ | (b, b′) ∈ E} is the set of direct successors of b ∈ B.
In order to satisfy (3), a prover has to assign true to variable be, and when-

ever some block variable b is selected (assigned true), also one of the successors
of b needs to be selected. Consequently, the axioms (3) are satisfied by interpre-
tations of the variables B in which at least one path from be to bx is selected;
it is left to the heuristics of the prover which path to pick. However, satisfying
interpretations might select multiple paths simultaneously, and they might also
contain paths that do not start in the initial node be (but end in bx). Selected
paths might moreover not be k-C-paths.

In our context, it can be observed that the axioms (3) are implied by the
formula WLP∧be constructed in Section 2.1. This means that a search for models
of WLP ∧ be (as done in Section 2.4 below) will automatically satisfy also (3),
and it is not necessary to explicitly assert (3) as well.

Propagator. DPLL-style solvers [11] construct models of a given formula (usually
modulo a set of background theories) by step-wise extension of partial interpre-
tations, with backtracking being carried out whenever conflicts occur (dead ends
in the search space are reached). In the context of an ACFG (B,E, be, bx), this
means that at any point during DPLL search there is a subset B+ ⊆ B of
variables that have been assumed to be true, and a subset B− ⊆ B \ B+ of
variables that have been assumed to be false. Other variables B \ (B+∪B−) are
unassigned. This means that the search has narrowed down the set of considered
k-C-paths to those paths P ⊆ B with B+ ⊆ P and B− ∩ P = ∅.

Given such a partial interpretation (B+, B−), a tailor-made propagator can
infer further information, and thus decide the value of further variables in the
remaining set B \ (B+ ∪B−):

1. most importantly, the propagator can check whether there is at all a k-C-
path P ⊆ B with B+ ⊆ P and B− ∩ P = ∅. If this is not the case, the
assignment (B+, B−) is inconsistent, and search has to backtrack.

2. it can be checked whether there are inevitable nodes

I =
⋂
{P ⊆ B | P a k-C-path with B+ ⊆ P, B− ∩ P = ∅}

that have to visited by every k-C-path that is consistent with the chosen
assignment (B+, B−). Variables in I can immediately be set to true.

5

3. it can be checked whether there are unreachable nodes

U = B \
⋃
{P ⊆ B | P a k-C-path with B+ ⊆ P, B− ∩ P = ∅}

that are not visited by any k-C-path consistent with the assignment
(B+, B−). Variables in U can immediately be set to false.

Note that the first kind of inference ensures that only satisfying assignments
with at most one path are accepted, and only in case the path is a k-C-path.
In combination with the axioms (3), this implies that only models representing
single k-C-paths are produced. The second and third kind of propagation provide
input for further Boolean constraint propagation, and ensure that a theorem
prover does not spend time exploring parts of the ACFG in which no k-C-
paths can exist; in particular, a prover can immediately ignore any implication
b =⇒ S(b) ∧ SuccConj (b) (from (1)) with b ∈ U , and can immediately process
the succedent S(b) ∧ SuccConj (b) in case b ∈ I. In comparison with a direct
encoding into logic (as in [3]), this provides a degree of look-ahead that can
significantly speed up search.

All three types of inference can be performed in linear time in the size of the
ACFG (B,E, be, bx) by means of simple dynamic programming.

For our experiments, we implemented an ACFG constraint propagator in
form of a theory plug-in that is loaded into the Princess theorem prover [13] and
initialised with the ACFG (B,E, be, bx), the set C ⊆ B, and the threshold k ∈
N. The theory plug-in monitors the variable assignments made during search,
and if possible adds inferred information (about inconsistency of the assignment
(B+, B−), or the value of the variables in I and U) to the state of the search.

2.4 Infeasibility Checking with ACFG Theories

With the propagator from above, we can now implement a greedy path-cover
algorithm for an ACFG on top of an incremental prover, following the idea of [3]:
our algorithm InfCode, as shown in Algorithm 1, takes a loop-free program P
and the associated ACFG (B,E, be, bx), and then repeatedly computes models of
the formula WLP∧be representing terminating executions of P . Such models are
constructed modulo the ACFG theory for (B,E, be, bx), with the set C initially
set to the set of all nodes B, and k to a sufficiently large number (e.g., the length
of a path from be to bx); only models are accepted that represent k-C-paths.

We repeatedly check for the existence of ACFG-models of WLP∧be using the
helper function checkSat (line 7). If a model exists, i.e., checkSat returns SAT ,
we remove all variables bi from C that were assigned true (line 9); such variables
represent blocks on the found k-C-path. We then re-initialize the theory plug-in
with the new reduced set C (line 10), and search for further models.

If no k-C-path exists, i.e., checkSat returns UNSAT , we restart the search
for models with k ← dk/2e (line 15 and 16). The algorithm terminates if our
set C becomes empty and thus all nodes have been covered (line 4), or we do

6

Algorithm 1: InfCode: an algorithm to detect infeasible code.

Input: Passive loop-free program P with ACFG (B,E, entry , exit)
Output: C: The set of block variables that do not have feasible executions.
begin

k ← average path length ;
C ← B ;

assert(WLP ∧ be);
restartModelSearch(k, C);

while C 6= {} do
R← checkSat ;
if R = SAT then

C ← {bi ∈ C | bi is assigned false in model} ;
reinitPlugin(C);

else
if k = 1 then

return C
endif
k ← dk/2e ;
restartModelSearch(k, C);

endif

endw

end

not find any k-C-path for k = 1 (line 10). In that case, all remaining nodes in
C cannot occur on a feasible path. A proof is given in [3].

Now let C be a so-called effectual subset of B [3]. That is, C ⊆ B is called
effectual if it is a minimal set of block variables such that a set of feasible paths
that covers all elements in C also covers all elements in B.

Theorem 1. Given an ACFG (B,E, be, bx) with an unknown set of feasible
paths. Let C ⊆ B be an effectual subset of B, and N(C) be the maximum number
of elements in C that can occur together on one control-flow path. If K is the
size of the smallest set of feasible paths that covers all coverable elements in C,
then Algorithm 1 performs at most O(K · log(N(C))) queries.

A proof is given in [3]. As shown in [9] and [12] this is a query-optimal solution
for the case that the set of feasible paths is unknown. However, the algorithm
queries a theorem prover to check for a feasible path with certain properties.
This is the most expensive part of the whole algorithm; in previous experiments,
which implemented the algorithm with the help of a purely logical encoding and
auxiliary variables, this led to the observation that the query-optimal algorithm
is in reality slower than theoretically sub-optimal solutions [4]. We hypothesise
that the implementation in form of a theory plug-in alleviates this bottleneck;
to check if our intuition holds, we compare our algorithm with other approaches
on several large-scale programs in the following section.

7

Program LOC # methods # inf code

Open eCard 456,220 15,654 26
ArgoUML 156,294 9,981 28
FreeMind 53,737 5,613 10
Joogie 11,401 973 0
Rachota 11,037 1,279 1
TerpWord 6,842 360 3

Table 1. Name, size, and detected infeasible code for the six AUTs in our experiments.

3 Experiments

We have implemented our approach in Joogie, http://www.joogie.org. The
Joogie tool takes a Java program as input and computes a loop-free abstrac-
tion of this program that can be translated into first-order logic (modulo the
theory of arrays, and linear integer arithmetic). Joogie then generates feasibility
checks, using four encoding schemes outlined in the next paragraph, and sends
the resulting constraints to the theorem prover Princess [13]. For details on this
translation and the inserted run-time assertions we refer to [3].

Experimental setup. For the loop-free program provided by Joogie, we compare
four ways of detecting infeasible code. (A) the method presented in Section 2,
implemented using a native theory plug-in, (B) an approach that uses enabling
clauses to cover at least one new block in each iteration [4], (C) an approach
that uses blocking clauses to never cover the same path twice [4], and (D) an
approach that is similar to ours, but uses the solver as a black box and asserts
linear inequalities to implement a query-optimal algorithm [3].

Note that all four approaches to detect infeasible code are complete for loop-
free Boogie programs. Hence the detection rate is the same for all approaches
(and only limited by the abstraction performed by Joogie), and we are only
interested in the computation time of each approach.

We evaluate our approach on six open-source applications (AUTs): Open-
eCard, a software to support the German eID, a CASE tool called ArgoUML,
the mind-mapping tool FreeMind, the time-keeping software Rachota, the word
processor TerpWord, and Joogie itself. Joogie applied each infeasible code detec-
tion algorithm to each procedure of an AUT individually. That is, Joogie does
not perform inter-procedural analysis. Calls to procedures are replaced by non-
deterministic assignments to all variables modified by the callee instead. For each
procedure, we stop the time spent in the theorem prover process. If the theorem
prover takes more than 30 seconds to analyze one procedure, we kill the process
with a timeout and continue with the next procedure. All experiments are run
on a workstation with 3 GHz CPU, 8 GB RAM, and 640 GB HDD.

Table 1 shows the details of the AUTs including the infeasible code that is
found by Joogie. Even though we picked stable releases of each AUT, we could
detect infeasible code in all of them besides Joogie. Most of the infeasible code

8

 0

 50

 100

 150

 200

 250

 300

 350

 400

Open-eCard ArgoUML FreeMind Rachota TerpWord Joogie

T
im

e
 (

m
in

u
te

s
)

A
B
C
D

Fig. 1. Total time needed by the four considered algorithms on the six AUTs.

found is unreachable, some is caused by null checks of objects that have already
been accessed (which is actually unreachable), and few cases are reported due
to explicit contradictions (e.g., dereferencing a pointer known to be null).

Results. Figure 1 shows our experimental results. Our algorithm A computed a
total 133, 330 queries in 48.26 minutes. Algorithm B used 130, 059 queries and
206.20 minutes, algorithm C 250, 566 queries and 424.11 minutes, and algorithm
D 132, 976 queries and 646.21 minutes. The experiments show that our approach
is significantly faster on all AUTs than existing approaches. The greedy algo-
rithms A and D require a similar amount of queries. However, algorithm D is
significantly slower. This is because D forces the prover to restrict it’s search
to a particular subset of paths by adding linear inequalities which can only be
understood by the prover when using the corresponding theory. The algorithms
A, B, D require a similar number of queries. Algorithm C used significantly
more time than A and B. Apparently, the theorem prover tries to change as
few values as possible in each iteration, thus blocking clauses might cause the
prover to explore all possible control-flow paths. However, we can see that not
restricting the solver results in very fast queries (the smallest time per query).

Threats to validity. We report the expected threats to validity: our AUTs do
not represent a statistically significant sample. However, they are real programs,
not tailored towards the experiments, and of reasonable size. Another threat is
that theorem provers other than Princess might produce different results.

4 Conclusion

We have presented a new algorithm to detect infeasible code. In contrast to pre-
vious work, our algorithm deeply integrates with the used theorem prover. Not

9

treating the theorem prover as a block box not only allows us to avoid addi-
tional instrumentation variables, it also enables the theorem prover to search for
feasible control-flow paths significantly faster than in previous work. Since the
time needed to process individual procedures is comparable to the time required
for compilation (in particular type-checking), and since no false alarms are pro-
duced, we believe that infeasible code detection can be integrated in an IDE in
a non-obtrusive way. With this integration, we will be able to detect infeasible
code even before a program is executed. This is also the context in which we
expect most occurrences of infeasible code, and a setting in which a large audi-
ence of users can be reached, opening a back door to provide programmers with
a smooth learning curve towards the use of formal methods.

Acknowledgements. This work is supported by the grant COLAB of the Macao
Science and Technology Development Fund, and by Vetenskapsr̊adet (VR).

References

1. Stephan Arlt, Zhiming Liu, and Martin Schäf. Reconstructing paths for reachable
code. In ICFEM, 2013. To appear.

2. Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured
programs. SIGSOFT SEN, 31, September 2005.

3. Cristiano Bertolini, Martin Schäf, and Pascal Schweitzer. Infeasible code detection.
In VSTTE, 2012.

4. Jürgen Christ, Jochen Hoenicke, and Martin Schäf. Towards bounded infeasible
code detection. CoRR, abs/1205.6527, 2012.

5. Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp Rümmer.
Software verification using k-induction. In SAS, 2011.

6. Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
Bugs as deviant behavior: a general approach to inferring errors in systems code.
In SOSP, 2001.

7. Jochen Hoenicke, K. Rustan Leino, Andreas Podelski, Martin Schäf, and Thomas
Wies. Doomed program points. FMSD, 2010.

8. David Hovemeyer and William Pugh. Finding bugs is easy. In OOPSLA, 2004.
9. David S. Johnson. Approximation algorithms for combinatorial problems. vol-

ume 9, 1974.
10. K. Rustan M. Leino and Philipp Rümmer. A polymorphic intermediate verification

language: Design and logical encoding. In TACAS, pages 312–327, 2010.
11. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT

modulo theories: From an abstract Davis-Putnam-Logemann-Loveland procedure
to DPLL(T). Journal of the ACM, 53(6), 2006.

12. Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and
a sub-constant error-probability PCP characterization of NP. In STOC, 1997.

13. Philipp Rümmer. A constraint sequent calculus for first-order logic with linear
integer arithmetic. In LPAR, 2008.

14. Aaron Tomb and Cormac Flanagan. Detecting inconsistencies via universal reach-
ability analysis. In ISSTA.

10

