
Test-Case Generation for Embedded Simulink via
Formal Concept Analysis∗

Nannan He
Oxford University

Philipp Rümmer
Uppsala University

Daniel Kroening
Oxford University

ABSTRACT
Mutation testing suffers from the high computational cost of
automated test-vector generation, due to the large number
of mutants that can be derived from programs and the cost
of generating test-cases in a white-box manner. We propose
a novel algorithm for mutation-based test-case generation
for Simulink models that combines white-box testing with
formal concept analysis. By exploiting similarity measures
on mutants, we are able to effectively generate small sets of
short test-cases that achieve high coverage on a collection of
Simulink models from the automotive domain. Experiments
show that our algorithm performs significantly better than
random testing or simpler mutation-testing approaches.

Keywords
mutation-based test-case generation; embedded software;
Simulink; change impact analysis; concept lattice;

1. INTRODUCTION
Mutation coverage is a method to quantify the quality of a

test suite for a design artifact, such as a circuit or a software
program. The key idea is to define a set of pre-defined muta-
tion operators, which are small, systematic modifications of
the representation of the design artifact [5, 11]. The intent
is to capture typical design errors, such as the choice of an
inappropriate arithmetic operator. The design that results
from the application of a mutation operator is called the mu-
tant. A test suite is considered good if it contains tests that
are able to distinguish a large number of these mutants from
the original design. Given a sufficiently rich set of mutation
operators, mutation coverage subsumes many other popular
notions of coverage, such as location and modified condi-
tion/decision coverage (MC/DC) for software and stuck-at
faults for hardware [14].

Mutation testing is a computationally expensive technique,
for a number of reasons. An obvious cause of computational

∗Supported by the EU FP7 STREP MOGENTES (project
ID ICT-216679) and the ARTEMIS CESAR project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2011, June 5-10, 2011, San Diego, California, USA.
Copyright 2011 ACM ACM 978-1-4503-0636-2/11/06 ...$10.00.

cost is the sheer number of mutants that can be considered.
Mutations are small local changes to parts of the model rep-
resentation. Given a set of m mutation operators and a
model with n components (e.g., lines in a program or gates
in a netlist), a maximum of m·n mutants can be constructed.
If simultaneous mutation of multiple locations of a model is
considered, the number of mutants even grows exponentially
in the number of applied mutations. Another cause of com-
putational cost are equivalent mutants, which are mutated
designs that are actually indistinguishable from the original
design [5]. It is often too difficult or not feasible to algorith-
mically decide whether a mutant is equivalent, so that much
time can be wasted searching for a covering test.

This paper focuses on automated test case generation for
a specific class of designs: we specialize on dataflow mod-
els given in the Simulink design language. The Simulink
framework is the predominant modeling formalism for em-
bedded control software in the automotive industry, and is
also widely deployed in other safety-critical domains, such
as for avionic applications. In previous work [2], we have de-
scribed a tool chain for generating test vectors for Simulink
models, given individual mutants of the model. Test case
generation for Simulink models is complicated by the fact
that the Simulink language lacks a formal semantics and
makes heavy use of floating-point arithmetic. The method
presented in [2] relies on a bounded model checking (BMC)
engine for software [3]. The model and the mutant are en-
coded into a decision problem for a SAT-based decision pro-
cedure for a given execution depth. The formula is satisfi-
able iff the mutant can be discovered by a trace of the given
depth. The application of model checking or constraint-
based techniques to generate high-coverage test suites has
become commonplace (see, for instance, [6] for an applica-
tion in the automotive domain).

In our experiments we observe that BMC is effective at
discovering short tests for a given mutant, but that the com-
putational cost of the model checking engine is high. This
renders the näıve way of applying the model checker to each
individual mutant ineffective for any non-trivial number of
mutants.

This paper proposes a new algorithmic technique for auto-
mated mutation testing for Simulink. The key to an effective
use of the expensive model checking procedure is to exploit
the structure of the Simulink diagram. Simulink diagrams
can be seen as graphs in which the nodes represent compu-
tational blocks and the edges describe the flow of data. For
this kind of program representation with explicit dataflow
it is easy to perform a conservative change impact analysis,

i.e., we can compute a (conservative) subset of nodes that
can possibly observe any given mutation at low cost. Subse-
quently, this information can be exploited to analyze a large
set of mutants simultaneously with a single call to the model
checking engine: on our benchmark set, we have observed a
case of 5 (short) tests that are able to detect 108 mutants.

The main contributions of this paper are
1. a generic mutation testing framework for Simulink pro-

grams that is flexible w.r.t. a number of design deci-
sions, including mutant selection strategies and cover-
age checks;

2. a theoretical and empirical comparison of various in-
stances of the framework using an industrial case study;

3. heuristics derived from formal concept analysis that
optimize the use of the framework.

Related Work.
A number of papers report applications of CBMC or sim-

ilar techniques for generating high-coverage test suites [8,
1, 16]. These implementations are very similar to ours.
There are also reports of the use of predicate abstraction
in test-vector generation, e.g., using SLAM and Blast. We
only consider mutant models with single mutations, whereas
other authors also consider combinations of mutations [13].
Ruthruff et al. [15] propose to use mutations to prioritize
test-cases to increase a test suite’s rate of fault detection.
We propose ordering mutants instead of test-cases, to both
reduce the TCG cost and minimize the size of test suite.

To the best of our knowledge, there is no previous work
on the use of formal concept analysis to support mutation
testing. An application of other clustering methods, such
as K-means clustering, is described in [9]. Our method has
similarities with structural fault collapsing [10], where one
representative fault is chosen from a set of faults that are
structurally proximal and prove equivalent.

2. BACKGROUND
2.1 Matlab Simulink

Matlab Simulink is a graphical dataflow language that is
commonly used in an industrial context for modeling or im-
plementing control applications. Simulink models consist
of a set of blocks that are connected by signals specifying
the flow of data. Blocks are taken from pre-defined block li-
braries (covering generic functions such as addition or logical
operators, but also domains like fuzzy logic or network com-
munication) and receive a specific number of input signals
from which output signals are computed. Stateful systems
are modeled with the help of feedback loops. Models can be
structured hierarchically with the help of subsystems, and
can be simulated, analyzed, or compiled to code using the
Matlab tool-suite and third-party products.

For the purposes of this paper, we only consider time-
discrete Simulink models, which means that signals repre-
sent (potentially infinite) streams of values governed by a
global clock.1 The semantics of blocks is synchronous in the
sense that every block is evaluated and performs exactly one
computation step per time unit. As a whole, a Simulink pro-
gram receives a number of (potentially infinite) streams of

1We believe that our results can be generalized to time-
continuous and event-driven diagrams, with appropriate
changes to the techniques described in Sect. 4.

Acronym Description

RC Replace Constant x with x+ 1, x− 1, or 0
ABS Insert absolute value operator
UOI Insert negation (−, ¬) operator
INC Add constant value to a signal
RR Swap relational operators <,≤, >,≥,=
RL Swap Boolean operators ∧ and ∨

Table 1: Mutations applied to Simulink models

2

1
In1

In2 1/z

+

-
1

Out1

Switch

delay

Add

(a) Original Simulink model

2

1
In1

In2 1/z

+

-
1

Out1

Switch

delay

Add
-

|U|

Abs

(b) Mutated Simulink model

Figure 1: Example of a mutated Simulink model

input values (specified using inports in the Simulink model)
and generates a number of output streams (described using
outports). Fig. 1 gives an example of a Simulink model.

2.2 Mutation-based test-case generation
In this paper, we consider test-case generation (TCG)

strategies for Simulink models built on top of the mutation-
based TCG approach defined in [2], which uses bounded
model checking techniques to systematically construct test-
cases. Mutation-based TCG proceeds by injecting syntactic
mutations (in this context sometimes also called faults) into
a given Simulink model S, generating from S a set M of
mutants. The types of mutation operators considered in this
paper are given in Table 1. The goal of TCG is to find a
set of test-cases (finite sequences of inputs for the models S)
that kill each of the mutants S′ ∈M , which means that the
test-case makes the mutant S′ produce outputs that differ
from those of the original model S. The main hypothesis
underlying mutation testing is that such test-cases, which
are able to detect simple bugs like the injected syntactic
mutations, are also useful for finding real, potentially more
complicated defects (this is called the coupling effect [5]).

We show an example of a mutated Simulink model in
Fig. 1b, illustrating the “Absolute Value” (ABS) mutation
operator. Some of the mutations (like ABS) are applied by
inserting additional blocks into a diagram, while other mu-
tations replace existing blocks with new blocks.

In the style of bounded model checking [4], both the origi-
nal model S and each of its mutants S′ ∈M can be modeled
using transition relations R and R′ and formulae I, I ′ defin-
ing the initial states. As in sequential equivalence check-
ing [12], observational equivalence of S and S′ during the

first k computation steps can then be expressed using the
following formula:

k∧
i=0

si.i = s′i.i︸ ︷︷ ︸
equality of all inputs

∧ I(s0) ∧
k−1∧
i=0

R(si, si+1)︸ ︷︷ ︸
original model S

∧

I ′(s′0) ∧
k−1∧
i=0

R′(s′i, s
′
i+1)︸ ︷︷ ︸

mutant S′

∧
k∨

i=0

si.o 6= s′i.o︸ ︷︷ ︸
inequality of an output

(1)

Any satisfying assignment for this formula represents two ex-
ecutions of S and S′ that yield a different output sequence;
the projection of the assignment to the inputs corresponds
to a test-case. As most Simulink models operate on scalar
datatypes such as machine integers or floating-point arith-
metic, and therefore have a finite state space, satisfying as-
signments can be constructed using SAT/SMT-based tech-
niques.

3. SIMULINK TCG STRATEGIES
3.1 The TCG procedure

The inherent difficulty of mutation-based TCG is the vast
number of mutants that can be generated from real-world
programs: this number grows polynomially in the size of
the program and the number of considered mutation oper-
ators, and exponentially in case multiple mutations are ap-
plied simultaneously. The use of efficient subsumption cri-
teria and heuristics is therefore indispensable in any TCG
approach. We address this need systematically by defining
a TCG framework that can be instantiated using various
ordering and subsumption strategies:

Algorithm 1: The general TCG procedure

Input: A model S and a set M of mutants
Output: A test-suite T for the model S

T ← ∅;
Mr ←M ;

while Mr 6= ∅ do
pick mutant S′ ∈Mr; // (*)

generate test-case t that kills S′; // (**)

T ← T ∪ {t};
Mr ←Mr \ {S′};
remove further mutants from Mr; // (***)

end

return T ;

The procedure is parametric in three respects:

(*) Mutants can be selected using different strategies; this
is discussed in Sect. 3.2 and 4.

(**) We use the approach described in Sect. 2.2 to gener-
ate test-cases for individual mutants with the help of
BMC. More refined methods might consider multiple
mutants at the same time, but are beyond the scope
of this paper.

(***) With each new test-case, killed mutants can be re-
moved from the set Mr of remaining mutants. The

most accurate method is to execute each remaining
mutant for the new test-case; more efficient (heuristic)
approaches are discussed in Sect. 4.2.4.

Note that (**) might fail to generate a test-case killing
S′, leading to an unchanged suite T in this iteration of the
procedure. Since S′ will be removed from Mr, termination
of the procedure is guaranteed also in this case.

The rest of the paper will discuss different choices of (*),
(**), (***), with the following objectives:

O1) Minimize the size of test-suites T .

O2) Maximize coverage, i.e., find test-suites T that kill as
many mutants in M as possible.

O3) Minimize the runtime of the procedure; this primarily
means that the main loop of Alg. 1 should be executed
as few times as possible.

3.2 Simple mutant selection strategies
Mutant selection (*) aims at selecting those mutants first

that yield good test-cases (which are test-cases that kill
a large number of mutants), but at the same time should
prefer mutants that are not too difficult to kill; otherwise,
TCG (**) might consume a lot of time. We propose and
evaluate the following “näıve” strategies to this end:

3.2.1 Random mutant selection
As baseline approach, mutants can be picked randomly

from Mr in (*).

3.2.2 Mutations close to observation points (MCTO)
Naturally, mutations close to the outports of a Simulink

model are easy to kill by test-cases, because the effects of the
mutation are likely to be carried through to the outports.
Given a Simulink model S with outports O1, . . . , On, and a
location l in S, we can compute the lengths d1(l), . . . , dn(l)
of shortest paths from l to O1, . . . , On, respectively. This
induces the observation distance order �od on model loca-
tions

l �od l
′ ≡ {{d1(l), . . . , dn(l)}} �ms {{d1(l′), . . . , dn(l′)}}

where the order �ms on multisets of integers is defined by

{{α1, . . . , αk}} �ms {{β1, . . . , βm}}
≡ 〈α1, . . . , αk〉 �lex 〈β1, . . . , βm〉

with α1 ≤ · · · ≤ αk, β1 ≤ · · · ≤ βm, and �lex is the lexico-
graphic order of tuples of integers.

The MCTO strategy for (*) will randomly pick one of
the mutants in Mr for which the location of the injected
mutation is minimal in the �od order.

3.2.3 Mutations far from observation points (MFFO)
Inverting MCTO, the MFFO strategy will randomly pick

mutants for which the location of the applied mutation is
maximal in the observation distance order �od. This means
that mutations far away from outports are preferred. Such
mutants are normally harder to kill than mutants obtained
through mutations close to the observation points, but indi-
vidual test-cases resulting from MFFO might be more useful
than those from MCTO: since MFFO test-cases guarantee
that the modified signal is passed through a large part of
the model under test, it is more likely that also other muta-
tions become observable. Similarly, following the coupling

hypothesis, we can argue that MFFO mutations correspond
to deeper or more intricate bugs in a design.

4. APPLYING CONCEPT ANALYSIS
4.1 Overview of formal concept analysis

Formal concept analysis (FCA) [7] is a means of cate-
gorizing objects based on attributes, making it possible to
systematically identify similarities and differences by con-
structing a hierarchy of object groups. In the context of
TCG, FCA can be used to cluster and order mutants, and
thus drive the steps (*) and (***) of Alg. 1. On the most
abstract level, FCA is applied to contexts (O,A, I) consist-
ing of a set O of objects (in our case, mutants), a set A of
attributes, and a binary relation I ⊆ O×A between objects
and attributes. A concept is a pair of sets (X,Y) satisfying
the following equations:

X = {o ∈ O | ∀a ∈ Y : (o, a) ∈ I} (2)

Y = {a ∈ A | ∀o ∈ X : (o, a) ∈ I} . (3)

X is called the extent of the concept, while Y is called the
intent.

Object Attributes
A 1,2,3
B 4,5,3
C 8,9

(a) Context

{A,B,C}/{Ø}

{C}/{8,9} {A,B}/{3}

{B}/{3,4,5} {A}/{1,2,3}

{Ø}/{1,2,3,4,5,6,7,8,9}

(b) Concept Lattice

Figure 2: Example of a concept lattice

Concepts can be compared using the partial order ≤ de-
fined by

(X,Y) ≤ (X ′, Y ′) ≡ X ⊆ X ′

which gives the set of all concepts over a context (O,A, I)
the (uniquely defined) structure of a complete lattice. Note
that the inclusions X ⊆ X ′ and Y ′ ⊆ Y are equivalent.

Fig. 2 gives an example context and the resulting concept
lattice. The top concept represents the set of all objects (and
the set of attributes common to all objects), and the bottom
concept the set of all attributes (and the set of objects that
possess all attributes).

4.2 Clustering mutants using concept lattices
To analyze interdependencies in a set M of mutants of a

Simulink model S, we consider the concept lattices gener-
ated by contexts (M,A, I). The goal is to group together
those mutants that behave similarly with respect to test-
ing; by “similar,” we mean that the mutants are likely to
be killed by the same test-cases. This kind of clustering
can be achieved by selecting a set A of attributes represent-
ing testing-relevant properties of mutants, e.g., the mutation
operator or the mutated location in S.

4.2.1 Perfect clustering
To illustrate this approach, we describe (theoretically) the

perfect concept lattice for clustering mutants. Because this

perfect lattice is too expensive or impossible to compute, it
will later be approximated using coarser sets of attributes.

For perfect clustering, we define the attributes A to be the
(usually infinite) set of input sequences that the model S can
receive:2

AInp = (IP → D)∗

Here, IP represents the set of all inports of S, and D the
data domain from which inputs are taken. The relationship
between mutants and attributes is defined by:

IInp = {(S′, a) ∈M ×AInp | a kills S′}

The concepts generated by the context (M,AInp, IInp) group
together exactly those mutants that are killed by the same
model inputs, and are thus useful for selecting inputs rep-
resenting good test-cases. Clearly, if the top concept of the
resulting concept lattice happens to have a non-empty in-
tent, any input taken from the intent is an “optimal” test-
case that kills all mutants in M . If the intent of the top
concept is empty, no single test-case suffices, but we can
still extract test-cases killing many mutants simultaneously
from the maximal concepts with non-empty intent.

4.2.2 Approximative clustering
The concept lattice described in the previous paragraphs

can obviously not be computed in practice, but it can be
approximated in order to achieve a similar classification of
mutants. The resulting lattices can be traversed in various
ways in order to implement steps (*) and (***) of Alg. 1.

In the scope of this paper, we concentrate on concepts clas-
sifying mutations according to their cone of influence in the
Simulink model S (the set of blocks that values originating
from the mutation can reach). This follows the hypothesis
that mutations applied to similar locations in S are likely to
be killed by the same test-cases:

ABlk = {a | a is a block in S} (4)

IBlk =

{
(S′, a)

∣∣∣ a is reachable from the
mutated location in S′

}
(5)

Concepts (X,Y) resulting from the context (M,ABlk, IBlk)
represent mutants X whose mutations share the influenced
blocks Y . Concepts near the bottom element of the lattice
correspond to mutations in close proximity and with large
cone of influence, while concepts close to the top might also
combine distant mutations.

The definition of (M,ABlk, IBlk) can be refined in various
ways, e.g. by 1. only considering certain classes of blocks
in (4), for instance only relational operators; 2. disallowing
to follow feedback connections (crossing unit-delay blocks)
when checking reachability in (5); or 3. checking reachability
not in the original model S, but in a k-fold unwinding of S.
The generality of concept lattices gives rise to a systematic
and very flexible method of analyzing sets of mutants.

4.2.3 Mutant selection using concept lattices
Given a concept lattice over mutants like the one defined

in the previous section, step (*) of Alg. 1 can be imple-
mented through traversal of the lattice, picking mutants
from the visited concepts. Since mutants may occur in many

2For any set X, the expression X∗ denotes the set of finite
sequences of X-values.

concepts of the lattice, it is meaningful to restrict this selec-
tion to mutants that are specific for a chosen concept and
do not occur in any sub-concepts:

N(X,Y) =

{
S′ ∈ X

∣∣∣ S′ 6∈ X ′ for all concepts (X ′, Y ′)
with (X ′, Y ′) < (X,Y)

}
The set N(X,Y) contains the mutants that occur in (X,Y),
but not in any concept underneath (X,Y); intuitively, mu-
tants in N(X,Y) are those whose set of attributes coin-
cides (or almost coincides) with the set Y . For the lattice
in Fig. 2, for instance, we obtain N({A,B,C}, ∅) = ∅ and
N({C}, {8, 9}) = {C}.

To traverse the lattice over mutants, we can choose a linear
order (X1, Y1), . . . , (Xn, Yn) of the concepts in the lattice
and implement (*) as:

pick S′ ∈ N(Xi, Yi) ∩Mr, where i ∈ {1, . . . , n}
is minimal such that N(Xi, Yi) ∩Mr 6= ∅;

In our experiments, we consider four traversal orderings:
1. Top-down breadth-first: the order C1, . . . , Cn deter-

mined by the distance of concepts from the top concept
in the lattice.

2. Top-down depth-first: similarly, orders C1, . . . , Cn de-
termined by depth-first traversal of the lattice, starting
from the top element.

3. Bottom-up breadth-first: the order given by the dis-
tance from the bottom element.

4. Bottom-up depth-first: the order given by depth-first
traversal, starting from the bottom element.

It can be observed that the top-down strategies have similar-
ity with MCTO from Sect. 3.2, while bottom-up strategies
correspond to MFFO.

4.2.4 Mutant elimination using concept lattices
Besides ordering mutants, concept lattices can also be

used to predict the outcome of the TCG process in Sect. 2.2
for a given mutant, thus making it possible to optimize
step (***) in Alg. 1. This can be useful in two ways:

• If TCG has failed for one or for a small number of mu-
tants selected from a concept (X,Y), it can be mean-
ingful to ignore all mutants in X.3

• Vice versa, once a test-case has been generated for a
mutant of the concept (X,Y), it can be meaningful to
simply skip all further mutants in X, since it is likely
that they are also killed by the new test-case.

In both scenarios, some amount of precision is traded off
for performance, since predictions for further mutants of the
selected concepts might be wrong. We quantify the loss of
precision and the performance gains in Sect. 5. Both opti-
mizations lead to the following implementation of step (***):

// (X,Y) is the concept selected in (*)

Mr ←Mr \X;
identify further killed mutants in Mr by simula-
tion;

3The TCG process can fail either because the mutant is in
fact not observable, because of incompleteness of the TCG
method, or simply because a timeout occurred. In each case,
it is likely that TCG will also fail for other mutants in the
same concept, so that a significant amount of time can be
saved by skipping those mutants.

Benchmark #In #Out #Blks #B-Blk #Concepts

CalcOffset 3 2 70 9 12
Decision 9 3 80 12 18
Safety 5 1 46 8 10
LocRecog 3 3 57 12 19
Sac 4 3 250 36 31
Quadratic 3 3 20 3 6
t-Sac-Safety 6 4 235 45 37
t-Sac-Safety-i 6 4 233 43 37

Table 2: Benchmark Characteristics

5. EXPERIMENTAL EVALUATION
We have implemented the test case generation algorithm

and the mutant selection strategies described above. We
use some of the tools presented in [2], namely a transla-
tor from Simulink to C, as well as the SAT-based bounded
model checker CBMC.4 This is combined with a mutation
injection tool directly operating on Simulink models, as well
as an implementation of the overall TCG procedure from
Alg. 1. The computation of concept lattices is done using
the ColibriConcepts5 tool. All experiments are performed
on a machine with a 3 GHz Intel Xeon CPU and 48 GB of
memory running Linux.

Our experiments were conducted on eight Simulink mod-
els. For each model, we inject detectable and undetectable
mutants. The benchmark named “Quadratic” is from [17].
The other benchmarks are extracted from Simulink mod-
els of embedded software provided by Ford. They contain
control functions to implement steering anti catch-up. Ta-
ble 2 summarizes some basic features of the models: #In
and #Out denote the number of inputs and outputs, re-
spectively, and #Blks is the number of blocks. The column
#B-Blk gives the number of branching blocks in the model:
when approximating the impact of each mutant, our tool
focuses on certain types of blocks in the cone of influence
of the mutation.6 The rightmost column gives the number
of concepts in the lattice using the traversal orderings 1)
and 3) from Sec. 4.2. All but t-Sac-Safety-i use single preci-
sion floating-point arithmetic; the benchmark t-Sac-Safety-i
is t-Sac-Safety rewritten to use integer arithmetic.

The runtime of each single TCG is limited to 20 min-
utes; the total time for a particular strategy is limited to
five hours. The results are summarized in Table 3. The first
column gives the name of the benchmark and the second the
number of relevant mutants. The remaining columns present
the results of applying the TCG algorithm to the bench-
mark using a particular selection heuristic. The columns
“Cov” give the number of mutants covered and the columns
“tc” give the number of test-cases required for this coverage.
“Cov” marked with ’*’ represents the corresponding TCG
procedure times out. The columns represent, respectively:
top-down breadth-first traversal of the concept lattice, as
in Sect. 4.2.3 (Top-D); bottom-up breadth-first traversal

4Available at http://www.cprover.org/cover/.
5http://code.google.com/p/colibri-concepts/
6These are the blocks LogicOperator, MinMax, Multi-
portSwitch, RelationalOperator, Saturation, Switch, and
Signum. These block types are those typically considered
for branch coverage by commercial tools for testing Simulink
models, such as Reactis Tester.

Table 3: Experimental results

Benchmark #Muts
Top-D Bot-U Opt. MFFO MCTO Rand-sel Random

Cov. tc Cov. tc Cov. tc Cov. tc Cov. tc Cov. tc Cov. tc

CalcOffset 199 124 15 125 9 123 6 125 10 124 17 124 13 125 32
Decision 218 140 33 141 28 138 12 140 28 140 32 140 30 126 47
Safety 143 114 10 114 6 105 5 114 6 113 11 114 7 69 15
LocRecog 211 132 23 135 14 131 7 135 12 133 19 134 15 81 17
Sac 501 270* 30 273* 21 271* 20 272* 27 251* 40 262* 23 206 16
Quadratic 66 66 11 66 9 66 9 66 8 66 12 66 10 66 17
t-Sac-Safety 621 163* 30 175* 18 202 20 171* 22 133* 15 172* 30 126 14
t-Sac-Safety-i 621 340* 35 349* 25 339* 10 341* 30 335* 40 340* 33 113 25

(Bot-U); the mutant elimination strategy from Sect. 4.2.4
combined with bottom-up breadth-first traversal (Opt); two
strategies from Sect. 3.2 selecting mutations w.r.t. observa-
tion points (MFFO and MCTO); random selection of mu-
tants, as in Sect. 3.2 (Rand-sel). As a reference point, the
last column (Random) gives the result of plain random test-
ing, using 1000 randomly generated test vectors and a simple
selection heuristic.

We observe that the two bottom-up concept lattice strate-
gies (Bot-U and Opt) are overall able to achieve the highest
degree of coverage, performing better or at least as good as
all other approaches. The Bot-U strategy results in the best
coverage within the timeout, while Opt usually generates the
smallest number of test-cases. Top-D is dominated by Bot-
U. The simple MFFO strategy is dominated by Bot-U with
the exception of the “Quadratic” benchmark, where MFFO
generates the smallest test suite. The strategy MCTO per-
forms worse than random selection.

Comparing with the baseline approaches Rand-sel and
Random, we observe that the coverage achieved by Rand-sel
is comparable to that of Top-D and MFFO, but significantly
worse than that of the bottom-up strategies Bot-U and Opt.
With the exception of two benchmarks, pure random testing
(Random) fails to achieve good coverage. Random testing
usually produces a large number of test-cases; as example,
random testing generates 32 test-cases for “CalcOffset” to
kill 125 mutants, whereas Bot-U generates a suite of only 9
test-cases that cover the same number of mutants.

6. CONCLUSION
We present a new method for effectively applying an ex-

pensive TCG engine (a bounded model checker) to the prob-
lem of generating a small test suite that covers a large set
of mutants of Simulink diagrams. We propose a novel or-
dering heuristic that is based on an change impact analysis
using a formal concept lattice. Our experimental results in-
dicate that the new method typically produces the smallest
number of test cases and the best coverage.

7. REFERENCES
[1] D. Angeletti, E. Giunchiglia, M. Narizzano, A. Puddu,

and S. Sabina. Automatic test generation for coverage
analysis using CBMC. In Computer Aided Systems
Theory (EUROCAST), volume 5717 of LNCS, pages
287–294. Springer, 2009.

[2] A. Brillout, N. He, M. Mazzucchi, D. Kroening,
M. Purandare, P. Rümmer, and G. Weissenbacher.
Mutation-based test case generation for Simulink
models. In FMCO, LNCS. Springer, 2010.

[3] E. Clarke, D. Kroening, and F. Lerda. A tool for
checking ANSI-C programs. In TACAS, pages
168–176. Springer, 2004.

[4] E. M. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 2000.

[5] R. DeMillo, R. Lipton, and F. Sayward. Hints on test
data selection: Help for the practicing programmer.
Computer, 11(4):34 –41, 1978.

[6] A. Gadkari, A. Yeolekar, J. Suresh, S. Ramesh,
S. Mohalik, and K. C. Shashidar. AutoMOTGen:
Automatic model oriented test generator for
embedded control systems. In CAV, volume 5123 of
LNCS, pages 204–208. Springer, 2008.

[7] B. Ganter and R. Wille. Formal Concept Analysis.
Springer, 1996.

[8] A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith.
FShell: Systematic test case generation for dynamic
analysis and measurement. In CAV, volume 5123 of
LNCS, pages 209–213. Springer, 2008.

[9] S. Hussain. Mutation Clustering. PhD thesis, King’s
College London, UK, 2008.

[10] N. Jha and S. Gupta. Testing of Digital Systems.
Cambridge University Press, 2003.

[11] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. IEEE Transactions
on Software Engineering (TSE), 2010.

[12] A. Kuehlmann and C. A. J. van Eijk. Combinational
and sequential equivalence checking. In Logic Synthesis
and Verification, pages 343–372. Kluwer, 2002.

[13] O. Kupferman, W. Li, and S. A. Seshia. A theory of
mutations with applications to vacuity, coverage, and
fault tolerance. In FMCAD, pages 1–9. IEEE, 2008.

[14] J. Offutt and J. M. Voas. Subsumption of condition
coverage techniques by mutation testing. Technical
Report ISSE-TR-96-01, George Mason University,
1996.

[15] J. R. Ruthruff, M. M. Burnett, and G. Rothermel.
Interactive fault localization techniques in a
spreadsheet environment. IEEE Transactions on
Software Engineering (TSE), 32(4):213–239, 2006.

[16] P. V. Suman, T. Muske, P. Bokil, U. Shrotri, and
R. Venkatesh. Masking boundary value coverage:
Effectiveness and efficiency. In TAIC PART, volume
6303 of LNCS, pages 8–22. Springer, 2010.

[17] Y. Zhan and J. A. Clark. A search-based framework
for automatic testing of MATLAB/Simulink models.
J. Syst. Softw., 81:262–285, February 2008.

