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Abstract—Craig Interpolation is a standard method to con-
struct and refine abstractions in model checking. To obtain
abstractions that are suitable for the verification of software
programs or hardware designs, model checkers rely on theorem
provers to find the right interpolants, or interpolants containing
the right predicates, in a generally infinite lattice of interpolants
for any given interpolation problem. We present a semantic and
solver-independent framework for systematically exploring inter-
polant lattices, based on the notion of interpolation abstraction.
We discuss how interpolation abstractions can be constructed for
a variety of logics, and how they can be exploited in the context
of software model checking.

I. Introduction

Model checkers use abstractions to reduce the state space
of software programs or hardware designs, either to speed
up the verification process, or as a way of handling infinite
state space. One of the most common methods to construct
or refine abstractions is Craig interpolation [1], a logical tool
to extract concise explanations for the infeasibility (safety)
of specific paths in a program. To ensure rapid convergence,
model checkers rely on theorem provers to find suitable
interpolants, or interpolants containing the right predicates,
in a generally infinite lattice of interpolants for any given
interpolation problem. In the past, a number of techniques
have been proposed to guide theorem provers towards good
interpolants (see Sect. II for an overview); however, those
techniques either suffer from the fact that they require invasive
changes to the theorem prover, or from the fact that they
operate on a single proof of path infeasibility, and are therefore
limited in the range of interpolants that can be produced.

We present a semantic framework for systematically explor-
ing interpolant lattices, based on the notion of interpolation
abstraction. Our approach is solver-independent and works
by instrumenting the interpolation query, and therefore does
not require any changes to the theorem prover. Despite sim-
ple implementation, interpolation abstractions are extremely
flexible, and can incorporate domain-specific knowledge about
promising interpolants, for instance in the form of interpolant
templates used by the theorem prover. The framework can be
used for a variety of logics, including arithmetic domains or
programs operating on arrays or heap, and is also applicable
for quantified interpolants.

We have integrated interpolation abstraction into the model
checker Eldarica [2], which uses recursion-free Horn clauses
(a generalisation of Craig interpolation) to construct abstrac-
tions [3], [4]. Our experiments show that interpolation abstrac-
tion can prevent divergence of the model checker in cases that
are often considered challenging.

A. Introductory Example

We consider an example inspired by the program discussed
in the introduction of [5]. The example exhibits a situation that
is generally considered challenging for automatic verifiers:

i = 0; x = j;

while (i<50) {i++; x++;}

if (j == 0) assert (x >= 50);

To show that the assertion holds, a predicate abstraction-based
model checker would construct a set of inductive invariants
as Boolean combination of given predicates. If needed, Craig
interpolation is used to synthesise further predicates.

In the example, we might consider the path to the assertion
in which the loop terminates after one iteration. This path
could lead to an assertion violation if the conjunction of as-
signments and guards on the path (in SSA form) is satisfiable:

i0 � 0 ∧ x0 � j ∧ i0 < 50 ∧ i1 � i0+1 ∧ x1 � x0+1 (1)
∧ i1 ≥ 50 ∧ j � 0 ∧ x1 < 50 (2)

It is easy to see that the formula is unsatisfiable, and that
the path therefore cannot cause errors. To obtain predicates
that prevent the path from being considered again in the
model checking process, Craig interpolants are computed for
different partitionings of the conjuncts; we consider the case
(1)∧(2), corresponding to the point on the path where the loop
condition is checked for the second time. An interpolant is a
formula I that satisfies the implications (1)→ I and (2)→ ¬I,
and that only contains variables that occur in both (1) and (2);
a model checker will use I as a candidate loop invariant.

The interpolation problem (1) ∧ (2) has several solutions,
including I1 = (i1 ≤ 1) and I2 = (x1 ≥ i1 + j). What makes
the example challenging is the fact that a theorem prover is
likely to compute interpolants like I1, recognising the fact
that the loop cannot terminate after only one iteration as
obvious cause of infeasibility. I1 does not describe a property
that holds across loop iterations, however; after adding I1
as a predicate, a model checker would have to consider the
case that the loop terminates after two iterations, leading to
a similar formula i2 ≤ 2, and so on. Model checking will
only terminate after 50 loop unwindings; in similar situations
with unbounded loops, picking interpolants like I1 will lead
to divergence (non-termination) of a model checker.

In contrast, the interpolant I2 encodes a deeper explanation
for infeasibility, the dependency between i and x, and takes the
actual assertion to be verified into account. Since I2 represents
an inductive loop invariant, adding it as predicate will lead to
significantly faster convergence of a model checker.

This paper presents a methodology to systematically explore
solutions of interpolation problems, enabling a model checker



to steer the theorem prover towards interpolants like I2.
This is done by modifying the query given to the theorem
prover, through the application of interpolation abstractions
that capture domain knowledge about useful interpolants. To
obtain I2, we over-approximate the interpolation query (1)∧(2)
in such a way that I1 no longer is a valid interpolant:(

i0 � 0 ∧ x0 � j′ ∧ i0 < 50 ∧

i′1 � i0+1 ∧ x′1 � x0+1 ∧ x′1 − i′1 � x1 − i1 ∧ j′ � j
)

∧
(

x1 − i1 � x′′1 − i′′1 ∧ j � j′′ ∧ i′′1 ≥ 50 ∧ j′′ � 0 ∧ x′′1 < 50
)

The rewriting consists of two parts: (i) the variables x1, i1, j
are renamed to x′1, i

′
1, j′ and x′′1 , i

′′
1 , j′′, respectively; (ii) limited

knowledge about the values of x1, i1, j is re-introduced, by
adding the grey parts of the interpolation query. Note that the
formula is still unsatisfiable. Intuitively, the theorem prover
“forgets” the precise value of x1, i1, ruling out interpolants
like I1; however, the prover retains knowledge about the
difference x1 − i1 (and the value of j), which is sufficient to
compute relational interpolants like I2.

The terms x1 − i1 and j have the role of templates, and
encode the domain knowledge that linear relationships be-
tween variables and the loop counter are promising building
blocks for invariants (the experiments Sect. VII illustrate the
generality of this simple kind of template). Template-generated
abstractions represent the most important class of interpolation
abstractions considered in this paper (but not the only one), and
are extremely flexible: it is possible to use both template terms
and template formulae, but also templates with quantifiers,
parameters, or infinite sets of templates.

Templates are in our approach interpreted semantically, not
syntactically, and it is up to the theorem prover to construct
interpolants from templates, Boolean connectives, or other
interpreted operations. To illustrate this, observe that the
templates {x1 − i1, i1} would generate the same interpolation
abstraction as {x1, i1}; this is because the values of x1 − i1, i1
uniquely determine the value of x1, i1, and vice versa.

B. Contributions and Organisation of this Paper

• The framework of interpolant abstractions (Sect. IV);
• A catalogue of interpolation abstractions, in particular

interpolation abstractions generated from template terms
and template predicates (Sect. V);

• Algorithms to explore lattices of interpolation abstrac-
tions, in order to compute a range of interpolants for a
given interpolation problem (Sect. VI);

• An experimental evaluation (Sect. VII).

II. RelatedWork

Syntactic restrictions of considered interpolants [5], [6],
for instance limiting the magnitude of literal constants in inter-
polants, can be used to enforce convergence and completeness
of model checkers. This method is theoretically appealing, and
has been the main inspiration for the work presented in this
paper. In practice, syntactic restrictions tend to be difficult
to implement, since they require deep modifications of an
interpolating theorem prover; in addition, completeness does

not guarantee convergence within an acceptable amount of
time. We present an approach that is semantic and more prag-
matic in nature; while not providing any theoretic convergence
guarantees, the use of domain-specific knowledge can lead to
performance advantages in practice.

It has been proposed to use term abstraction to improve the
quality of interpolants [7], [8]: intuitively, the occurrence of
individual symbols in an interpolant can be prevented through
renaming. Our approach is highly related to this technique,
but is more general since it enables fine-grained control
over symbol occurrences in an interpolant. For instance, in
Sect. I-A arbitrary occurrence of the variable i1 is forbidden,
but occurrence in the context x1 − i1 is allowed.

The strength of interpolants can be controlled by choosing
different interpolation calculi [9], [10], applied to the same
propositional resolution proof. To the best of our knowledge,
no conclusive results are available relating interpolant strength
with model checking performance. In addition, the extraction
of different interpolants from the same proof is less flexible
than imposing conditions already on the level of proof con-
struction; if a proof does not leverage the right arguments
why a program path is infeasible, it is unlikely that good
interpolants can be extracted using any method.

In a similar fashion, proofs and interpolants can be min-
imised by means of proof transformations [11], [12]. The same
comments as in the previous paragraph apply.

Divergence of model checkers can be prevented by combin-
ing interpolation with acceleration, which computes precise
loop summaries for restricted classes of programs [13], [14],
[15]. Again, our approach is more pragmatic, can incorporate
domain knowledge, but is not restricted to any particular
class of programs. Our experiments show that our method is
similarly effective as acceleration for preventing divergence
when verifying error-free programs. However, in contrast to
acceleration, our method does not support the construction of
long counterexamples spanning many loop iterations.

Templates have been used to synthesise program invariants
in various contexts, for instance [16], [17], [18], and typically
search for invariants within a rigidly defined set of constraints
(e.g., with predefined Boolean or quantifier structure). Our
approach can be used similarly, with complex building blocks
for invariants specified by the user, but leaves the construction
of interpolants from templates entirely to the theorem prover.

III. Preliminaries
1) Craig interpolation: We assume familiarity with stan-

dard classical logic, including notions like terms, formu-
lae, Boolean connectives, quantifiers, satisfiability, structures,
models. For an overview, see, e.g., [19]. The main logics con-
sidered in this paper are classical first-order logic with equality
(FOL) and Presburger arithmetic (PA), but our method is not
restricted to FOL or PA. In the context of SMT, the quantifier-
free fragment of FOL, with equality � as only predicate, is
usually denoted by EUF.

Given any logic, we distinguish between logical symbols,
which include Boolean connectives, equality �, interpreted
functions, etc., and non-logical symbols, among others vari-
ables and uninterpreted functions. If s̄ = 〈s1, . . . , sn〉 is a list



of non-logical symbols, we write φ[s̄] (resp., t[s̄]) for a formula
(resp., term) containing no non-logical symbols other than s̄.
We write s̄′ = 〈s′1, . . . , s

′
n〉 (and similarly s̄′′, etc.) for a list

of primed symbols; φ[s̄′] (t[s̄′]) is the variant of φ[s̄] (t[s̄]) in
which s̄ has been replaced with s̄′.

An interpolation problem is a conjunction A[s̄A, s̄]∧B[s̄, s̄B]
over disjoint lists s̄A, s̄, s̄B of symbols. An interpolant is a
formula I[s̄] such that A[s̄A, s̄] ⇒ I[s̄] and B[s̄, s̄B] ⇒ ¬I[s̄];
the existence of an interpolant implies that A[s̄A, s̄] ∧ B[s̄, s̄B]
is unsatisfiable. We say that a logic has the interpolation
property if also the opposite holds: whenever A[s̄A, s̄]∧B[s̄, s̄B]
is unsatisfiable, there is an interpolant I[s̄]. For sake of
presentation, we only consider logics with the interpolation
property; however, many of the results hold more generally.

We represent binary relations as formulae R[s̄1, s̄2] over two
lists s̄1, s̄2 of symbols, and relations over a vocabulary s̄ as
R[s̄, s̄′]. The identity relation over s̄ is denoted by Id[s̄, s̄′].

With slight abuse of notation, if φ[x1, . . . , xn] is a formula
containing the free variables x1, . . . , xn, and t1, . . . , tn are
ground terms, then we write φ[t1, . . . , tn] for the formula
obtained by substituting t1, . . . , tn for x1, . . . , xn.

2) Statelessness: Some of the results presented in this paper
require an additional assumption about a logic:

Definition 1 A logic is called stateless if conjunctions A[s̄]∧
B[t̄] of satisfiable formulae A[s̄], B[t̄] over disjoint lists s̄, t̄ of
non-logical symbols are satisfiable.

Intuitively, formulae in a stateless logic interact only through
non-logical symbols, not via any notion of global state,
structure, etc. Many logics that are relevant in the context
of verification are stateless (in particular quantifier-free FOL,
PA, logics based on the theory of arrays, etc); other logics,
for instance full FOL, modal logics, or separation logic can
be made stateless by enriching its vocabulary. Statelessness is
important in this paper, since we use the concept of renaming
of symbols to ensure independence of formulae.

3) Lattices: A poset is a set D equipped with a partial
ordering v. A poset 〈D,v〉 is bounded if it has a least element
⊥ and a greatest element >. We denote the least upper bound
and the greatest lower bound of a set X ⊆ D by

⊔
X and

�
X,

respectively, provided that they exist. Given elements a, b ∈ D,
we say b is a successor of a if a v b but a , b, and immediate
successor if in addition there is no c ∈ D\{a, b} with a v c v b.
Elements a, b ∈ D with a @ b and b @ a are incomparable.
An element a ∈ X ⊆ D is a maximal element (resp., minimal
element) of X if a v b (resp., b v a) and b ∈ X imply a = b.

A lattice L = 〈D,v〉 is a poset 〈D,v〉 such that
⊔
{a, b} and�

{a, b} exist for all a, b ∈ D. L is a complete lattice if all non-
empty subsets X ⊆ D have a least upper bound and greatest
lower bound. A complete lattice is bounded by definition. A
non-empty subset M ⊆ D forms a sub-lattice if

⊔
{a, b} ∈ M

and
�
{a, b} ∈ M for all a, b ∈ M.

A function f : D1 → D2, where 〈D1,v1〉 and 〈D2,v2〉 are
posets, is monotonic if x v1 y implies f (x) v2 f (y).

IV. Interpolation Abstractions
This section defines the general concept of interpolation

abstractions, and derives basic properties:

A[s]
B[s]

A[s'] /\

RA[s', s]

RB[s, s''] /\
B[s'']

Fig. 1. Illustration of interpolation abstraction, assuming that only common
non-logical symbols exist. Both concrete and abstract problem are solvable.

Definition 2 (Interpolation abstraction) Suppose A[s̄A, s̄]
and B[s̄, s̄B] are formulae over disjoint lists s̄A, s̄, s̄B of
non-logical symbols, and s̄′ and s̄′′ fresh copies of s̄. An
interpolation abstraction is a pair (RA[s̄′, s̄],RB[s̄, s̄′′]) of
formulae with the property that RA[s̄, s̄] and RB[s̄, s̄] are valid
(i.e., Id[s̄′, s̄] ⇒ RA[s̄′, s̄] and Id[s̄, s̄′′] ⇒ RB[s̄, s̄′′]). We call
A[s̄A, s̄] ∧ B[s̄, s̄B] the concrete interpolation problem, and(

A[s̄A, s̄′] ∧ RA[s̄′, s̄]
)
∧

(
RB[s̄, s̄′′] ∧ B[s̄′′, s̄B]

)
the abstract interpolation problem for A[s̄A, s̄], B[s̄, s̄B] and
(RA[s̄′, s̄],RB[s̄, s̄′′]).

Assuming that the concrete interpolation problem is solvable,
we call an interpolation abstraction feasible if also the abstract
interpolation problem is solvable, and infeasible otherwise.

The common symbols of the interpolation problem in
Sect. I-A are s̄ = 〈x1, i1, j〉, and the interpolation abstraction
is defined by RA = (x′1 − i′1 � x1 − i1 ∧ j′ � j) and
RB = (x1 − i1 � x′′1 − i′′1 ∧ j � j′′). A further illustration
is given in Fig. 1. The concrete interpolation problem is
solvable since the solution sets A[s̄] and B[s̄] are disjoint, i.e.,
A[s̄] ∧ B[s̄] is unsatisfiable. An interpolant is a formula I[s̄]
that represents a superset of A[s̄], but that is disjoint with
B[s̄]. Since RA[s̄, s̄] and RB[s̄, s̄] are valid, the solution set of
A[s̄A, s̄′]∧ RA[s̄′, s̄] represents an over-approximation of A[s̄];
similarly for B[s̄] and RB[s̄, s̄′′]. This ensures the soundness
of computed abstract interpolants. In Fig. 1, despite over-
approximation, the abstract interpolation problem is solvable,
which means that the interpolation abstraction is feasible.

Lemma 3 (Soundness) Every interpolant of the abstract in-
terpolation problem is also an interpolant of the concrete
interpolation problem (but in general not vice versa).

Interpolation abstractions can be used to guide interpola-
tion engines, by restricting the space Inter(A[s̄A, s̄], B[s̄, s̄B])
of interpolants satisfying an interpolation problem. For
this, recall that the set Inter(A[s̄A, s̄], B[s̄, s̄B])/≡ of inter-
polant classes (modulo logical equivalence) is closed un-
der conjunctions (meet) and disjunctions (join), so that
(Inter(A[s̄A, s̄], B[s̄, s̄B])/≡, ⇒) is a lattice. Fig. 2 shows the



x1 � j + 1 ∧ i1 � 1

j 6� 0 ∨ i1 ≤ 49 ∨ x1 ≥ 50

i1 � 1

i1 ≤ 1

i1 ≤ 2

i1 ≤ 49

x1 � i1 + j

x1 ≥ i1 + j

j 6� 0 ∨ x1 ≥ i1

...

...

I1

I2

I⊥

I>

Fig. 2. Parts of the interpolant lattice for the example in Sect. I-A (up to
equivalence). The dashed boxes represent the sub-lattices for the abstraction
induced by the template terms {i1} (left) and {x1 − i1, j} (right).

interpolant lattice for the example in Sect. I-A; this lattice
has a strongest concrete interpolant I⊥ and a weakest concrete
interpolant I>. In general, the interpolant lattice might be
incomplete and not contain such elements.

For a feasible abstraction, the lattice of abstract interpolants

(Inter(A[s̄A, s̄′] ∧ RA[s̄′, s̄], RB[s̄, s̄′′] ∧ B[s̄′′, s̄B])/≡, ⇒)

is a sub-lattice of the concrete interpolant lattice. The sub-
lattice is convex, because if I1 and I3 are abstract interpolants
and I2 is a concrete interpolant with I1 ⇒ I2 ⇒ I3, then also
I2 is an abstract interpolant. The choice of the relation RA in
an interpolation abstraction constrains the lattice of abstract
interpolants from below, the relation RB from above.

We illustrate two disjoint sub-lattices in Fig. 2: the left box
is the sub-lattice for the abstraction (i′1 � i1, i1 � i′′1 ), while the
right box represents the interpolation abstraction

(x′1 − i′1 � x1 − i1 ∧ j′ � j, x1 − i1 � x′′1 − i′′1 ∧ j � j′′)

used in Sect. I-A to derive interpolant I2.

As the following lemma shows, there are no principal
restrictions how fine-grained the guidance enforced by an
interpolation abstraction can be; however, since abstraction
is a semantic notion, we can only impose constraints up to
equivalence of interpolants:

Lemma 4 (Completeness) Suppose A[s̄A, s̄] ∧ B[s̄, s̄B] is an
interpolation problem with interpolant I[s̄] in a stateless logic,
such that both A[s̄A, s̄] and B[s̄, s̄B] are satisfiable (the problem
is not degenerate). Then there is a feasible interpolation ab-
straction (definable in the same logic) such that every abstract
interpolant is equivalent to I[s̄].

V. A Catalogue of Interpolation Abstractions

This section introduces a range of practically relevant inter-
polation abstractions, mainly defined in terms of templates as
illustrated in Sect. I-A. For any interpolation abstraction, it is
interesting to consider the following questions:

(i) provided the concrete interpolation problem is solvable,
characterise the cases in which also the abstract problem
can be solved (how coarse the abstraction is);

(ii) provided the abstract interpolation problem is solvable,
characterise the space of abstract interpolants.

The first point touches the question to which degree an
interpolation abstraction limits the set of proofs that a theorem
prover can find. We hypothesise (and explain in Sect. I-A)
that it is less important to generate interpolants with a specific
syntactic shape, than to force a theorem prover to use the right
argument for showing that a path in a program is safe.

We remark that interpolation abstractions can also be
combined, for instance to create abstractions that include
both template terms and template predicates. In general, the
component-wise conjunction of two interpolation abstractions
is again a well-formed abstraction, as is the disjunction.

A. Finite Term Interpolation Abstractions

The first family of interpolation abstractions is defined with
the help of finite sets T of template terms, and formalises the
abstraction used in Sect. I-A. Intuitively, abstract interpolants
for a term abstraction induced by T are formulae that only
use elements of T , in combination with logical symbols, as
building blocks (a precise characterisation is given in Lem. 7
below). For the case of interpolation in EUF (quantifier-free
FOL without uninterpreted predicates), this means that abstract
interpolants are Boolean combinations of equations between T
terms. In linear arithmetic, abstract interpolants may contain
equations and inequalities over linear combinations of T terms.

The relations defining a term interpolation abstraction fol-
low the example given in Sect. I-A, and assert that primed
and unprimed versions of T terms have the same value. As a
consequence, nothing is known about the value of unprimed
terms that are not mentioned in T .

Definition 5 (Term interpolation abstraction) Suppose that
A[s̄A, s̄] ∧ B[s̄, s̄B] is an interpolation problem, and T =

{t1[s̄], . . . , tn[s̄]} a finite set of ground terms. The interpolation
abstraction (RT

A[s̄′, s̄],RT
B[s̄, s̄′′]) defined by

RT
A[s̄′, s̄] =

n∧
i=1

ti[s̄′] � ti[s̄], RT
B[s̄, s̄′′] =

n∧
i=1

ti[s̄] � ti[s̄′′]

is called term interpolation abstraction over T .

Term abstractions are feasible if and only if a concrete
interpolant exists that can be expressed purely using T terms:

Lemma 6 (Solvability) Suppose A[s̄A, s̄] ∧ B[s̄, s̄B] is an in-
terpolation problem, and T = {t1[s̄], . . . , tn[s̄]} a finite set
of ground terms. The abstract interpolation problem for
(RT

A[s̄′, s̄],RT
B[s̄, s̄′′]) is solvable if and only if there is a

formula I[x1, . . . , xn] over n variables x1, . . . , xn (and no further
non-logical symbols) such that I[t1[s̄], . . . , tn[s̄]] is an inter-
polant of A[s̄A, s̄] ∧ B[s̄, s̄B].

Example 1 Consider the interpolation abstraction used in
Sect. I-A, which is created by the set T = {x1 − i1, j} of terms.
The abstract interpolation problem is solvable with interpolant



x1 ≥ i1 + j, which can be represented as (x1 − i1) ≥ ( j) as a
combination of the template terms in T .

It would be tempting to assume that all interpolants gen-
erated by term interpolation abstractions are as specified in
Lem. 6, i.e., constructed only from T terms and logical
symbols. In fact, since our framework restricts the space of
interpolants in a semantic way, only weaker guarantees can
be provided about the range of possible interpolants; this is
related to the earlier observation (Sect. IV) that interpolation
can only be restricted up to logical equivalence:

Lemma 7 (Interpolant space) Suppose the abstract interpo-
lation problem for (RT

A[s̄′, s̄],RT
B[s̄, s̄′′]) is solvable, and the

underlying logic is EUF or PA. Then there is a strongest
abstract interpolant I⊥[t1[s̄], . . . , tn[s̄]], and a weakest abstract
interpolant I>[t1[s̄], . . . , tn[s̄]], each constructed only from T
terms and logical symbols. A formula J[s̄] is an abstract
interpolant iff the implications I⊥[t1[s̄], . . . , tn[s̄]] ⇒ J[s̄] ⇒
I>[t1[s̄], . . . , tn[s̄]] hold.

Example 2 Again, consider Sect. I-A, and the interpolant
lattice as shown in Fig. 2. The strongest abstract interpolant
for the interpolation abstraction induced by T = {x1 − i1, j} is
x1 � i1 + j, the weakest one j 6� 0 ∨ x1 ≥ i1.

B. Finite Predicate Interpolation Abstractions

In a similar way as sets of terms, also finite sets of formulae
induce interpolation abstractions. Template formulae can be
relevant to steer an interpolating theorem prover towards
(possibly user-specified or quantified) interpolants that might
be hard to find for the prover alone. The approach bears
some similarities to the concept of predicate abstraction in
model checking [20], [21], but still leaves the use of templates
entirely to the theorem prover.

Definition 8 (Predicate interpolation abstraction)
Suppose A[s̄A, s̄] ∧ B[s̄, s̄B] is an interpolation problem,
and Pred = {φ1[s̄], . . . , φn[s̄]} is a finite set of formulae.
(RPred

A [s̄′, s̄],RPred
B [s̄, s̄′′]) defined by

RPred
A [s̄′, s̄] =

n∧
i=1

(
φi[s̄′]→ φi[s̄]

)
RPred

B [s̄, s̄′′] =

n∧
i=1

(
φi[s̄]→ φi[s̄′′]

)
is called predicate interpolation abstraction over Pred.

Intuitively, predicate interpolation abstractions restrict the
solutions of an interpolation problem to those interpolants
that can be represented as a positive Boolean combination of
the predicates in Pred. Note that it is possible to include the
negation of a predicate φ[s̄] in Pred if negative occurrences
of φ[s̄] are supposed to be allowed in an interpolant (or both
φ[s̄] and ¬φ[s̄] for both positive and negative occurrences).

Lemma 9 (Solvability) Suppose A[s̄A, s̄] ∧ B[s̄, s̄B] is an in-
terpolation problem, and Pred a finite set of predicates. If the
underlying logic is stateless, then the abstract interpolation
problem for (RPred

A [s̄′, s̄],RPred
B [s̄, s̄′′]) is solvable if and only

if A[s̄A, s̄] ∧ B[s̄, s̄B] has an interpolant I[s̄] that is a positive
Boolean combination of predicates in Pred.

We remark that the implication ⇐ holds in all cases,
whereas ⇒ needs the assumption that the logic is stateless.
As a counterexample for the stateful case, consider the in-
terpolation problem (∀x, y. x � y) ∧ (∃x, y. x 6� y) in full
FOL. The abstract interpolation problem is solvable even for
Pred = ∅ (with interpolant ∀x, y. x � y), but no positive
Boolean combination of Pred formulae is an interpolant.

The interpolant space can be characterised as for term
interpolation abstractions (Lem. 7):

Lemma 10 (Interpolant space) Suppose the abstract inter-
polation problem for (RPred

A [s̄′, s̄],RPred
B [s̄, s̄′′]) is solvable, and

the underlying logic is stateless. Then there is a strongest
abstract interpolant I⊥[s̄], and a weakest abstract inter-
polant I>[s̄], each being a positive Boolean combination of
predicates in Pred. A formula J[s̄] is an abstract interpolant
iff the implications I⊥[s̄]⇒ J[s̄]⇒ I>[s̄] hold.

C. Quantified Interpolation Abstractions

The previous sections showed how interpolation abstractions
are generated by finite sets of templates. A similar construction
can be performed for infinite sets of templates, expressed
schematically with the help of variables; in the verification
context, this is particularly relevant if arrays or heap are
encoded with the help of uninterpreted functions.

Example 3 Suppose the binary function H represents
heap contents, with heap accesses obj. field translated to
H(obj, field), and is used to state an interpolation problem:(

H(a, f ) � c ∧ H(b, g) 6� null
)
∧(

b � c ∧ H(b, g) � null ∧ H(H(a, f ), g) � null
)

An obvious interpolant is the formula I1 =
(
H(b, g) 6� null

)
.

Based on domain-specific knowledge, we might want to avoid
interpolants with direct heap accesses H(·, g), and instead
prefer the pattern H(H(·, f ), g). To find alternative interpolants,
we can use the templates {H(H(x, f ), g), a, b, c}, the first of
which contains a schematic variable x. The resulting abstrac-
tion excludes I1, but yields the interpolant
I2 =

(
b � c→ H(H(a, f ), g) 6� null

)
.

Definition 11 (Schematic term abstraction) Suppose an in-
terpolation problem A[s̄A, s̄] ∧ B[s̄, s̄B], and a finite set T =

{t1[s̄, x̄1], . . . , tn[s̄, x̄1]} of terms with free variables x̄1, . . . , x̄n.
The interpolation abstraction (RT

A[s̄′, s̄],RT
B[s̄, s̄′′]) defined by

RT
A[s̄′, s̄] =

n∧
i=1

∀x̄i. ti[s̄′, x̄i] � ti[s̄, x̄i],

RT
B[s̄, s̄′′] =

n∧
i=1

∀x̄i. ti[s̄, x̄i] � ti[s̄′′, x̄i]

is called schematic term interpolation abstraction over T .

Note that schematic term interpolation abstractions reduce to
ordinary term interpolation abstractions (as in Def. 5) if none
of the template terms contains free variables.



Quantified abstractions are clearly less interesting for logics
that admit quantifier elimination, such as PA, but they are
relevant whenever uninterpreted functions (EUF) are involved.

Lemma 12 (Solvability in EUF) Suppose A[s̄A, s̄]∧ B[s̄, s̄B]
is an interpolation problem in EUF, T = {t1[s̄, x̄1], . . . , tn[s̄, x̄1]}
a finite set of schematic terms, and f = 〈 f1, . . . , fn〉 a vector
of fresh functions with arities |x̄1|, . . . , |x̄n|, respectively. The
abstract interpolation problem for (RT

A[s̄′, s̄],RT
B[s̄, s̄′′]) is solv-

able if and only if there is a formula I[ f1, . . . , fn] (without non-
logical symbols other than f̄ ) such that I[t1[s̄, ·], . . . , tn[s̄, ·]] is
an interpolant of A[s̄A, s̄] ∧ B[s̄, s̄B].

The expression I[t1[s̄, ·], . . . , tn[s̄, ·]] denotes the formula
obtained by replacing each occurrence of a function fi in
I[ f1, . . . , fn] with the template ti[s̄, x̄i], substituting the argu-
ments of fi for the schematic variables x̄i.

VI. Exploration of Interpolants

In practice, given an interpolation problem, we want to
compute a whole range of interpolants, or alternatively find
an interpolant that is optimal with respect to some objective.
For instance, in the example in Sect. I-A, we consider inter-
polant I2 constructed using templates {x1−i1, j} as “better” than
interpolant I1 for the template i1. To formalise this concept of
interpolant exploration we arrange families of interpolation
abstractions as abstraction lattices, and present search algo-
rithms on such lattices. Abstraction lattices are equipped with
a monotonic mapping µ to abstractions (RA,RB), ordered by
component-wise implication. The following paragraphs focus
on the case of finite abstraction lattices; the handling of infinite
(parametric) abstraction lattices is planned as future work.

Definition 13 (Abstraction lattice) Suppose an interpolation
problem A[s̄A, s̄] ∧ B[s̄, s̄B]. An abstraction lattice is a pair
(〈L,vL〉, µ) consisting of a complete lattice 〈L,vL〉 and a
monotonic mapping µ from elements of 〈L,vL〉 to interpo-
lation abstractions (RA[s̄′, s̄],RB[s̄, s̄′′]) with the property that
µ(⊥) = (Id[s̄′, s̄], Id[s̄, s̄′′]).

The elements of an abstraction lattice that map to feasible
interpolation abstractions form a downward closed set; an il-
lustration is given in Fig. 3, where feasible elements are shaded
in gray. Provided that the concrete interpolation problem is
solvable, the set of feasible elements in the lattice is non-
empty, due to the requirement that µ(⊥) = (Id[s̄′, s̄], Id[s̄, s̄′′]).

Particularly interesting are maximal feasible interpolation
abstractions, i.e., the maximal elements within the set of fea-
sible interpolation abstractions. Maximal feasible abstractions
restrict interpolants in the strongest possible way, and are
therefore most suitable for exploring interpolants; we refer to
the set of maximal feasible elements as abstraction frontier.

A. Construction of Abstraction Lattices

When working with interpolation abstractions generated by
templates, abstraction lattices can naturally by constructed as
the powerset lattice of some template base set (ordered by
the superset relation); this construction applies both to term
and predicate templates. Another useful construction is to

form the product of two lattices, defining the mapping µ as
the conjunction (or alternatively disjunction) of the individual
mappings µ1, µ2.

Example 4 An abstraction lattice for the example in Sect. I-A
is (〈℘(T ),⊇〉, µ), with base templates T = {x1 − i1, i1, j} and µ
mapping each element to the abstraction in Def. 5. Note that
the bottom element of the lattice represents the full set T of
templates (the weakest abstraction), and the top element the
empty set ∅ (the strongest abstraction). Also, note that µ(T ) is
the identity abstraction (Id[s̄′, s̄], Id[s̄, s̄′′]), since T is a basis
of the vector space of linear functions in x1, i1, j.

The lattice is presented in Fig. 3, with feasible elements in
light gray. The maximal feasible elements {i1} and {x1 − i1, j}
map to interpolation abstractions with the abstract interpolants
I1 and I2, respectively, as illustrated in Fig 2. Smaller feasible
elements (closer to ⊥) correspond to larger sub-lattices of
abstract interpolants, and therefore provide weaker guidance
for a theorem prover; for instance, element { j, i1} can produce
all abstract interpolants that {i1} generates, but can in addition
lead to interpolants like I3 = ( j 6� 0 ∨ i1 ≤ 49).

∅

{x1 − i1}

{ j, i1}

{x1 − i1, i1, j}

{i1} { j}

{x1 − i1, i1} {x1 − i1, j}

Fig. 3. The abstraction lattice for the running example. The light gray shaded
elements are feasible, the dark gray ones maximal feasible.

B. Computation of Abstraction Frontiers

We present an algorithm to compute abstraction frontiers
of finite abstraction lattices. The search is described in Al-
gorithms 1 and 2. Algorithm 1 describes the top-level proce-
dure for finding minimal elements in an abstraction lattice.
Initially we check if the ⊥ element is infeasible (line 1).
If this is the case, then the concrete interpolation problem
is not solvable and we return an empty abstraction frontier.
Otherwise, we initialise the frontier with a maximal feasible
element (line 4), which is found by the maximise function
(described in Algorithm 2). Next, in line 5 we check whether
a feasible element can be found that is incomparable to all
frontier elements found so far; efficient methods for computing
such incomparable elements can be defined based on the shape
of the chosen abstraction lattice, and are not shown here. As
long as incomparable elements can be found, we compute
further maximal feasible elements and add them to the frontier.

In Algorithm 2 we describe the procedure for finding a max-
imal feasible element mfe with the property that elem v mfe. In
each iteration of the maximisation loop, it is checked whether



Algorithm 1: Exploration algorithm
Input: Interpolation problem A[s̄A, s̄] ∧ B[s̄, s̄B],

abstraction lattice (〈L,vL〉, µ)
Result: Set of maximal feasible interpolation abstractions
if ⊥ is infeasible then1

return ∅;2

end3

Frontier ← {maximise(⊥)};4

while ∃ feasible elem ∈ L, incomparable with Frontier do5

Frontier ← Frontier ∪ {maximise(elem)};6

end7

return Frontier;8

Algorithm 2: Maximisation algorithm
Input: Feasible element: elem
Result: Maximal feasible element
while ∃ feasible successor fs of elem do1

pick element middle such that fs vL middle vL >;2

if middle is feasible then3

elem← middle;4

else5

elem← fs;6

end7

end8

return elem;9

elem has any feasible parents (line 1); if this is not the case,
elem has to be maximal feasible and is returned. Otherwise,
in the loop body the algorithm executes a binary search on
the set of elements in between elem and >. The algorithm
depends on the ability to efficiently compute (random) middle
elements between two elements a @ b of the lattice (line 2);
again, this functionality can best be implemented specifically
for an individual lattice, and is not shown here.

Lemma 14 (Correctness of exploration algorithm) When
applied to a finite abstraction lattice, Algorithm 1 terminates
and returns the set of maximal feasible elements.

A useful refinement of the exploration algorithm is to
canonise lattice elements during search. Elements a, b ∈ L
are considered equivalent if they are mapped to (logically)
equivalent abstraction relations by µ. Canonisation can select
a representative for every equivalence class of lattice elements,
and search be carried out only on such canonical elements.

C. Selection of Maximal Feasible Elements

Given the abstraction frontier, it is possible to compute a
range of interpolants solving the original interpolation prob-
lem. However, for large abstraction frontiers this may be
neither feasible nor necessary. It is more useful to define a
measure for the quality of interpolation abstractions, again
exploiting domain-specific knowledge, and only use the best
abstractions for interpolation.

To select good maximal feasible interpolation abstractions,
we define a function cost : L → N that maps elements of an

abstraction lattice (〈L,vL〉, µ) to a natural number, with lower
values indicating that an interpolation abstraction is considered
better. In the case of abstractions constructed using a powerset
lattice over templates (L = ℘(T )), it is natural to assign a cost
to every element in T (cost : T → N), and to define the cost
of a lattice element A ∈ L as cost(A) =

∑
t∈A cost(t).

Our abstraction lattice in Fig. 3 has two maximal feasible
elements, {i1} and {x1 − i1, j}, that result in computing the
interpolants I1 and I2, respectively. We can define a cost
function that assigns a high cost to {i1} and a low cost to
{x1 − i1, j}, expressing the fact that we prefer to not talk
about the loop counter i1 in absolute terms. More generally,
assigning a high cost to variables representing loop counters
is a reasonable strategy for obtaining general interpolants (a
similar observation is made in [7], and implemented with the
help of “term abstraction”).

VII. Integration into a SoftwareModel Checker

A. General Integration

Interpolation abstraction can be applied whenever inter-
polation is used by a model checker to eliminate spurious
counterexamples. To this end, it is necessary to select one
or multiple abstraction points in the constructed interpolation
problem (which might concern an inductive sequence of
interpolants, tree interpolants, etc.), and then to define an
abstraction lattice for each abstraction point. For instance,
when computing an inductive sequence I0, I1, . . . , I10 for the
conjunction P1∧ · · ·∧P10, we might select interpolants I3 and
I5 as abstraction points, choose a pair of abstraction lattices,
and add abstraction relations to the conjuncts P3, P4, P5, P6.

We then use Algorithm 1 to search for maximal feasible
interpolation abstractions in the Cartesian product of the
chosen abstraction lattices. With the help of cost functions,
the best maximal feasible abstractions can be determined, and
subsequently be used to compute abstract interpolants.

B. Abstraction in Eldarica

We have integrated our technique into the predicate
abstraction-based model checker Eldarica [2], which uses Horn
clauses to represent different kinds of verification problems
[3], and solves recursion-free Horn constraints to synthesise
new predicates for abstraction [4]. As abstraction points,
recurrent control locations in counterexamples are chosen
(corresponding to recurrent relation symbols of Horn clauses),
which represent loops in a program. Abstraction lattices are
powerset lattices over the template terms{

z | z a variable in the program
}

∪
{
x + y, x − y | x, y variables assigned in the loop body

}
In Table I we evaluate the performance of our approach

compared to Eldarica without interpolation abstraction, the
acceleration-based tool Flata [2], and the Horn engine of
Z3 [22] (v4.3.2). Benchmarks are taken from [15], and from a
recent collection of Horn problems in SMT-LIB format.1 They
tend to be small (10−750 Horn clauses each), but challenging

1https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/



Benchmark Eldarica Eldarica-ABS Flata Z3
N sec N sec sec sec

C programs from [15]
boustrophedon (C) * * 10 10.7 * 0.1
boustrophedon expansed (C) * * 11 7.7 * 0.1
halbwachs (C) * * 53 2.4 * 0.1
gopan (C) 17 22.2 62 57.0 0.4 349.5
rate limiter (C) 11 2.7 11 19.1 1.0 0.1
anubhav (C) 1 1.7 1 1.6 0.9 *
cousot (C) * * 3 7.7 0.7 *
bubblesort (E) 1 2.8 1 2.3 83.2 0.3
insdel (C) 1 0.9 1 0.9 0.7 0.0
insertsort (E) 1 1.8 1 1.7 1.3 0.1
listcounter (C) * * 8 2.0 0.2 *
listcounter (E) 1 0.9 1 0.9 0.2 0.0
listreversal (C) 1 1.9 1 1.9 4.9 *
mergesort (E) 1 2.9 1 2.6 1.1 0.2
selectionsort (E) 1 2.4 1 2.4 1.2 0.2
rotation vc.1 (C) 7 2.0 7 0.3 1.9 0.2
rotation vc.2 (C) 8 2.7 8 0.2 2.2 0.3
rotation vc.3 (C) 0 2.3 0 0.2 2.3 0.0
rotation.1 (E) 3 1.8 3 1.8 0.5 0.1
split vc.1 (C) 18 3.9 17 3.2 * 1.1
split vc.2 (C) * * 18 1.1 * 0.2
split vc.3 (C) 0 2.8 0 1.5 * 0.0
Recursive Horn SMT-LIB Benchmarks
addition (C) 1 0.7 1 0.8 0.4 0.0
bfprt (C) * * 5 8.3 - 0.0
binarysearch (C) 1 0.9 1 0.9 - 0.0
buildheap (C) * * * * - *
countZero (C) 2 2.0 2 2.0 - 0.0
disjunctive (C) 10 2.4 5 5.0 0.2 0.3
floodfill (C) * * * * 41.2 0.1
gcd (C) 4 1.2 4 2.0 - *
identity (C) 2 1.1 2 2.1 - 0.1
mccarthy91 (C) 4 1.4 3 2.4 0.2 0.0
mccarthy92 (C) 38 5.6 7 8.7 0.1 0.1
merge-leq (C) 3 1.1 7 7.0 15.7 0.1
merge (C) 3 1.1 4 4.5 14.7 0.1
mult (C) * * 15 52.8 - *
palidrome (C) 4 1.4 2 2.1 - 0.1
parity (C) 4 1.6 4 2.9 0.8 *
remainder (C) 2 1.1 3 1.6 - *
running (C) 2 0.9 2 1.7 0.2 0.1
triple (C) 4 2.0 4 5.1 - 0.1

TABLE I
Comparison of Eldarica without interpolation abstraction, Eldarica with
ABStraction, Flata, and Z3. The letter after the model name distinguishes
Correct benchmarks from benchmarks with a reachable Error state. For
Eldarica, we give the number of required CEGAR iterations (N), and the
runtime in seconds; for Flata and Z3, the runtime is given. Items with “*”
indicate a timeout (set to 10 minutes), while - indicates inability to run the
benchmark due to lack of support for some operators in the problems.

Experiments were done on an Intel Core i7 Duo 2.9 GHz with 8GB of RAM.

for model checkers. We focused on benchmarks on which
Eldarica without interpolation abstraction diverges; since in-
terpolation abstraction gives no advantages when constructing
long counterexamples, we mainly used correct benchmarks
(programs not containing errors). Lattice sizes in interpolation
abstraction are typically 215 − 2300; we used a timeout of 1s
for exploring abstraction lattices.

The results demonstrate the feasibility of our technique
and its ability to avoid divergence, in particular on problems
from [15]. Overall, interpolation abstraction only incurs a
reasonable runtime overhead. The biggest (relative) overhead
could be observed for the rate limiter example, where some
of the feasibility checks for abstraction take long time. Flata is
able to handle a number of the benchmarks on which Eldarica
times out, but can overall solve fewer problems than Eldarica.
Z3 is able to solve many of the benchmarks very quickly,

but overall times out on a larger number of benchmarks than
Eldarica with interpolation abstraction.

VIII. Conclusion
We have presented a semantic and solver-independent

framework for guiding theorem provers towards high-quality
interpolants. Our method is simple to implement, but can
improve the performance of model checkers significantly. Var-
ious directions of future work are planned: (i) develop further
forms of interpolation abstraction, in particular quantified and
parametric ones; (ii) application of the framework to programs
with arrays and heap; (iii) clearly, our approach is related to
the theory of abstract interpretation; we plan whether methods
from abstract interpretation can be carried over to our method.
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[2] H. Hojjat, F. Konecný, F. Garnier, R. Iosif, V. Kuncak, and P. Rümmer,

“A verification toolkit for numerical transition systems - tool paper,” in
FM, 2012, pp. 247–251.

[3] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko,
“Synthesizing software verifiers from proof rules,” in PLDI, 2012.
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