
A Verification Toolkit for Numerical Transition Systems

Tool Paper⋆

Hossein Hojjat1, Filip Konečný2,4, Florent Garnier2,

Radu Iosif2, Viktor Kuncak1, and Philipp Rümmer3

1 Swiss Federal Institute of Technology Lausanne (EPFL)
2 Verimag, Grenoble, France
3 Uppsala University, Sweden

4 Brno University of Technology, Czech Republic

Abstract. This paper presents a publicly available toolkit and a benchmark suite

for rigorous verification of Integer Numerical Transition Systems (INTS), which

can be viewed as control-flow graphs whose edges are annotated by Presburger

arithmetic formulas. We present FLATA and ELDARICA, two verification tools

for INTS. The FLATA system is based on precise acceleration of the transition

relation, while the ELDARICA system is based on predicate abstraction with

interpolation-based counterexample-driven refinement. The ELDARICA verifier

uses the PRINCESS theorem prover as a sound and complete interpolating prover

for Presburger arithmetic. Both systems can solve several examples for which

previous approaches failed, and present a useful baseline for verifying integer

programs. The infrastructure is a starting point for rigorous benchmarking, com-

petitions, and standardized communication between tools.

1 Introduction

Common representation formats, benchmarks, and tool competitions have helped re-

search in a number of areas, including constraint solving, theorem proving, and compil-

ers. To bring such benefits to the area of software verification, we are proposing a stan-

dardized logical format for programs, in terms of hierarchical infinite-state transition

systems. The advantage of using a formally defined common format is avoiding ambi-

guities of programming language semantics and helping to separate semantic modeling

from designing verification algorithms. This paper focuses on systems whose transition

relation is expressed in Presburger arithmetic. Integer Numerical Transition Systems,

(denoted INTS in this paper), also known as counter automata, counter systems, or

counter machines, are an infinite-state extension of the model of finite-state boolean

transition systems, a model extensively used in the area of software verification [8].

The interest for INTS comes from the fact that they can encode various classes of sys-

tems with unbounded (or very large) data domains, such as hardware circuits, cache

⋆ Supported by the Rich Model Toolkit initiative, http://richmodels.org, the Czech

Science Foundation (projects P103/10/0306 and 102/09/H042), the Czech Ministry of Educa-

tion (COST OC10009 and MSM 0021630528), the EU/CzechIT4Innovations Centre of Excel-

lence project CZ.1.05/1.1.00/02.0070, the BUT project FIT-12-1 and the Microsoft Innovation

Cluster for Embedded Software.

http://richmodels.org

2 Hojjat, Konečný, Garnier, Iosif, Kuncak, Rümmer

var i,j : Int

l0 : havoc(i); assume(i >= 0)

l1 : havoc(j); assume(j >= 0)

l2 : var x: Int = i ;

var y: Int = j

l3 : while (x != 0) {
l4 : x = x − 1;

l5 : y = y − 1 }
l6 : if (i == j) assert (x == y)

l0

l2

l3

l4l5

l6

err

i′ ≥ 0 ∧ j′ ≥ 0

x′
= i ∧ y′ = j

x 6= 0

x′
= x − 1

y′ = y − 1

x = 0

i = j ∧ x 6= y

(a) (b)

Fig. 1. Example Program and its Numerical Transition System (NTS) Representation. By con-

vention, if a variable v does not appear in the transition relation formula, we implicitly assume

that the frame condition v = v
′ is conjoined. The states l1 and l2 have been merged in the NTS.

memories, or software systems with variables of non-primitive types, such as integer

arrays, pointers and/or recursive data structures. Any Turing-complete class of systems

can, in principle be simulated by an INTS. A number of recent works have revealed

cost-effective approximate reductions of verification problems for several classes of

complex systems to decision problems phrased in terms on INTS. Examples of systems

that can be effectively verified by means of integer programs include: specifications of

hardware components [10], programs with singly-linked lists [1], trees [6], and integer

arrays [2].

Consider the program in Figure 1(a). Most programmers would have little difficulty ob-

serving that the assertion will always succeed, but many tools, including non-relational

abstract interpretation, as well as predicate abstraction with arbitrary interpolation can

fail to prove the assertion to hold [9]. The integer numerical transition system for this

program is in Figure 1(b). We have developed a toolkit for producing and manipulat-

ing such representations, as well as two very different analyzers that can analyze such

transition systems. Both analyzers, ELDARICA and FLATA, in fact succeed for this ex-

ample, as well as for several other interesting examples. Our experiments show that the

two tools are complementary in general, so users benefit from different techniques that

use the same input format.

2 The INTS Infrastructure

We have developed a toolkit for rigorous automated verification of programs in INTS

format. The unifying component is the INTS library5, which defines the syntax of the

INTS representation by providing a parser and a library of abstract syntax tree classes.

For the purposes of this paper, the INTS syntax is considered to be a textual description

of a control flow graph labeled by Presburger arithmetic formulae, as in Figure 1 (b).

At this point, there are several tools supporting the INTS format, as input and/or output

language. The INTS library is designed for easy bridging with new tools, which can

be either front-ends (translators from mainstream programming languages into INTS),

5
http://richmodels.epfl.ch/ntscomp/ntslib

http://richmodels.epfl.ch/ntscomp/ntslib

A Verification Toolkit for Numerical Transition Systems 3

back-ends (verification tools), or both. Currently, there exist tools to generate INTS

from sequential and concurrent C, Scala, and Verilog. We present two tools that can

verify INTS programs: Flata and Eldarica.

Flata verifier. FLATA6 is a verification tool for hierarchical non-recursive INTS mod-

els. The tool computes the summary relation for each INTS independently of its calling

context, thus avoiding the overhead of procedure inlining. The verification is based

on computing transitive closure of loops. Classes of integer relations for which tran-

sitive closures can be computed precisely include: (1) difference bounds relations, (2)

octagons, and (3) finite monoid affine transformations. For these three classes, the tran-

sitive closures can be effectively defined in Presburger arithmetic. FLATA integrates the

transitive closure computation method for difference bounds and octagonal relations

from [3] in a semi-algorithm computing the summary relation incrementally, by elimi-

nating control states and composing incoming with outgoing relations.

Eldarica verifier. ELDARICA7 implements predicate abstraction with Counter-

Example Guided Abstraction Refinement (CEGAR). It generates an abstract reacha-

bility tree (ART) of the system on demand, using lazy abstraction with Cartesian ab-

straction, and uses interpolation to refine the set of predicates [7]. For checking the

feasibility of paths, and constructing abstractions, ELDARICA employs the provers Z38

and Princess.9 In addition, ELDARICA uses caching of previously explored states and

formulae to prevent unnecessary reconstruction of trees. Large block encoding can be

performed to reduce the number of calls to the interpolating theorem prover.

Eldarica refines abstractions with the help of Craig Interpolants, extracted from infea-

sibility proofs for spurious counterexamples. The complete interpolation procedure for

Presburger arithmetic was proposed in [4], and is implemented as part of Princess.

3 Experimental Comparison of the FLATA and ELDARICA Tools

We next give an experimentally compare FLATA and ELDARICA on six sets of examples

extracted automatically from different sources: (a) C programs with arrays provided as

examples of divergence in predicate abstraction [9], (b) INTS extracted from programs

with singly-linked lists by the L2CA tool [1], (c) INTS extracted from VHDL models

of circuits following the method of [10], (d) verification conditions for programs with

arrays, expressed in the SIL logic of [2] and translated to INTS, (e) C programs pro-

vided as benchmarks in the NECLA static analysis suite, and (f) C programs with asyn-

chronous procedure calls translated into INTS using the approach of [5] (the examples

with extension .optim are obtained via an optimized translation method). Experiments

were ran on an Intel R©CoreTM2 Duo @ 2.66GHz with 3GB RAM. The two tools be-

haved in a complementary way. In some cases (examples (a)) the predicate abstraction

method fails due to an unbounded number of loop unrollings required by refinement.

In these cases, acceleration was capable to find the needed invariant rather quickly. On

the other hand (examples (f)), the acceleration approach was unsuccessful in reducing

6
http://www-verimag.imag.fr/FLATA.html

7 http://lara.epfl.ch/w/eldarica
8
http://research.microsoft.com/en-us/um/redmond/projects/z3/

9
http://www.philipp.ruemmer.org/princess.shtml

http://www-verimag.imag.fr/FLATA.html
http://lara.epfl.ch/w/eldarica
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://www.philipp.ruemmer.org/princess.shtml

4 Hojjat, Konečný, Garnier, Iosif, Kuncak, Rümmer

loops with linear but non-octagonal relations. In these cases, the predicate abstraction

found the needed Presburger invariants for proving correctness, and error traces, for the

erroneous examples.

Model
Time [s]

Flata Eld.

(a) Examples from [9]

anubhav (C) 0.8 2.0

copy1 (E) 1.8 13.9

cousot (C) 12.0 -

loop1 (E) 1.3 12.0

loop (E) 1.9 10.6

scan (E) 2.5 -

string concat1 (E) 4.7 -

string concat (E) 4.7 -

string copy (C) 0.4 -

substring1 (E) 0.6 5.5

substring (E) 1.6 0.7

(b) Examples from L2CA [1]

bubblesort (E) 14.1 2.5

insdel (E) 0.1 0.3

insertsort (E) 1.9 0.8

listcounter (C) 0.3 -

listcounter (E) 0.3 0.3

listreversal (C) 4.8 0.6

Model
Time [s]

Flata Eld.

(c) VHDL models from [10]

counter (C) 0.1 1.7

register (C) 0.2 1.2

synlifo (C) 16.4 20.3

(d) Verification conditions

for array programs [2]

rotation vc.1 (C) 0.8 2.0

rotation vc.2 (C) 1.1 2.2

rotation vc.3 (C) 1.2 0.3

rotation vc.1 (E) 1.1 1.4

split vc.1 (C) 3.8 3.0

split vc.2 (C) 2.8 2.2

split vc.3 (C) 2.6 0.6

split vc.1 (E) 30.2 2.2

(e) NECLA benchmarks

inf1 (E) 0.2 0.4

inf4 (E) 0.9 0.6

inf6 (C) 0.1 0.4

inf8 (C) 0.3 0.6

Model
Time [s]

Flata Eld.

(f) Examples from [5]

h1 (E) - 5.7

h1.optim (E) 0.6 1.3

h1h2 (E) - 19.0

h1h2.optim (E) 0.9 4.3

simple (E) - 6.1

simple.optim (E) 0.6 1.3

test0 (C) - 30.6

test0.optim (C) 0.3 5.3

test0 (E) - 5.0

test0.optim (E) 0.6 1.3

test1.optim (C) 0.6 8.5

test1.optim (E) 1.4 6.8

test2 1.optim (E) 1.2 4.6

test2 2.optim (E) 2.8 4.6

test2.optim (C) 6.3 72.9

wrpc.manual (C) 0.6 1.2

wrpc (E) - 9.5

wrpc.optim (E) - 3.0

Fig. 2. Benchmarks for Flata and Eldarica. The letter after the model name distinguishes Correct

from models with a reachable Error state. Items with “-” led to a timeout for the respective tool.

References

1. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with lists

are counter automata. In CAV, pages 517–531, 2006.
2. M. Bozga, P. Habermehl, R. Iosif, F. Konečný, and T. Vojnar. Automatic verification of

integer array programs. In CAV, pages 157–172, 2009.
3. M. Bozga, R. Iosif, and F. Konečný. Fast acceleration of ultimately periodic relations. In

CAV, pages 227–242, 2010.
4. A. Brillout, D. Kroening, P. Rümmer, and T. Wahl. An interpolating sequent calculus for

quantifier-free Presburger arithmetic. In IJCAR, LNCS. Springer, 2010.
5. P. Ganty and R. Majumdar. Algorithmic verification of asynchronous programs. CoRR,

abs/1011.0551, 2010.
6. P. Habermehl, R. Iosif, A. Rogalewicz, and T. Vojnar. Proving termination of tree manipu-

lating programs. In ATVA, pages 145–161, 2007.
7. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from proofs. In

POPL, pages 232–244. ACM, 2004.
8. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL, 2002.
9. R. Jhala and K. L. McMillan. A practical and complete approach to predicate refinement. In

TACAS, pages 459–473, 2006.
10. A. Smrcka and T. Vojnar. Verifying parametrised hardware designs via counter automata. In

Haifa Verification Conference, pages 51–68, 2007.

	A Verification Toolkit for Numerical Transition Systems

