
Mutation-based Test Case Generation for
Simulink Models

Angelo Brillout1, Nannan He2, Michele Mazzucchi1, Daniel Kroening2,
Mitra Purandare1, Philipp Rümmer2, and Georg Weissenbacher1,2

1 Computer Systems Institute, ETH Zurich
2 Computing Laboratory, Oxford University

Abstract. The Matlab/Simulink language has become the standard for-
malism for modeling and implementing control software in areas like
avionics, automotive, railway, and process automation. Such software is
often safety critical, and bugs have potentially disastrous consequences
for people and material involved. We define a verification methodology
to assess the correctness of Simulink programs by means of automated
test-case generation. In the style of fault- and mutation-based testing,
the coverage of a Simulink program by a test suite is defined in terms
of the detection of injected faults. Using bounded model checking tech-
niques, we are able to effectively and automatically compute test suites
for given fault models. Several optimisations are discussed to make the
approach practical for realistic Simulink programs and fault models, and
to obtain accurate coverage measures.

1 Introduction

Model-based design is a development methodology for modern software artifacts.
It promotes the use of powerful and specialized modeling languages, allowing the
engineer to focus on the domain-specific aspects of the system under develop-
ment. The implementation of the system is either generated or derived manually
from high-level models. The goal is to identify design flaws as early as possible
in the development cycle, thereby avoiding costly late-stage design fixes.

The Matlab/Simulink language, developed by The MathWorks,3 has emerged
as the predominant modeling formalism in the automotive industry and is also
widely deployed for avionic applications. A software glitch in these application
domains may result in high cost and considerable damage of reputation. Due to
the safety-critical nature of these domains, defects in the software may put hu-
man lives at stake. Accordingly, international safety standards such as DO-178B
or IEC 61508 demand the application of rigorous verification techniques. In par-
ticular, they require the test engineers to provide a set of test cases that exercise
the implementation of the system according to certain coverage metrics. The

Supported by the EU FP7 STREP MOGENTES (project ID ICT-216679) and the
ARTEMIS CESAR project.

3 http://www.mathworks.com/products/simulink/

effort to create appropriate test suites is substantial, and the execution of the
test suites is time consuming. There is therefore a strong incentive to automate
the generation of test cases and to keep the resulting test suite small.

Model-based testing is an application of model-based design for deriving test
cases from a model of the design, which promises better scalability and is appli-
cable before the implementation phase. In the context of model-based testing,
the question of suitable coverage metrics has to be reconsidered: traditional met-
rics such as location or branch coverage are no longer meaningful, since the test
cases are not derived from implementation source code. In this paper, we focus
on mutation testing : the quality of the test suite is assessed by injecting muta-
tions into the model and by measuring which percentage of these modifications
can be detected when exercising the test cases. We say that a modification is
detected if we can observe that the modified and the original model generate
different output signals. The resulting test vectors can be used to check that
the model satisfies requirements or can be applied to an implementation of the
design.

The generation of test suites that achieve high mutation coverage is difficult.
We use model checking [1] for this task, as it is also able to address the issue of
equivalent mutants. The application of model checking to generate high-coverage
test suites has become commonplace (see, for instance, [2] for an application in
the automotive domain). Test case generation for Simulink models is complicated
by the fact that the Simulink language lacks a formal semantics and makes heavy
use of floating-point arithmetic.

Contribution. We describe an application of the bounded model checking
engine Cbmc [3] to generate test suites for Simulink models with high mutation
coverage. The implementation features precise reasoning with respect to the
floating-point semantics of the models. The computational complexity of the
underlying model checking algorithm requires us to deploy a number of heuristics
to achieve the desired coverage if the number of mutations is large. Moreover,
these heuristics also serve the orthogonal purpose of keeping the number of
redundant test cases small in order to reduce the time required to execute the
test suite.

Related Work. We briefly relate our work to other tools that generate test-
vectors by means of software model checkers. A number of papers report applica-
tions of Cbmc or similar techniques for generating high-coverage test suites [4–6].
These implementations are very similar to ours. There are also reports of the
use of predicate abstraction in test-vector generation, e.g., using Slam [7] and
Blast [8].

We refer the reader to [9] for a broad survey on mutation testing. We only con-
sider mutant models with single mutations, whereas other authors also consider
combinations of faults [10]. Do and Rothermel [11] proposes to use mutations to
prioritise test cases to increase a test suite’s rate of fault detection.

Schuler et al. [12] discusses the impact of equivalent mutations (mutations
that keep the semantics of the model unchanged) and presents an approach to
detect such mutations by means of checking dynamic invariants. We propose a

similar approach in Section 5, but we rely on invariants statically generated by
means of verification techniques such as k-induction.

We also relate our work to other methods for analyzing Simulink models.
Most tools that aim at formal analyses of Simulink models focus on a partic-
ular and usually relatively small fragment. In particular, models that contain
ANSI-C are often not considered [13–15]. Strichman and Ryabtsev [16] uses an
automated decision procedure to validate code generated by Simulink against a
set of verification conditions extracted from the model.

Another issue is the floating-point semantics of Simulink. Tools such as the
Simulink Design Verifier rely on approximations of floating point arithmetic by
means of infinite-precision rational numbers [17]. In contrast to that, we use a
bit-accurate representation of floating-point arithmetic, as presented in [18]. We
are therefore able to analyse the exact behaviour of the model rather than an
approximation. Furthermore, our bit-level technique enables the use of mutations
such as bit-flips in data values.

Outline. Section 2 describes the transformation of Simulink diagrams into an
intermediate representation amenable to static analysis. This translation process
conclusively determines the semantics of the model. Section 3 discusses how fault
injection and mutations of the model and (bounded) model checking can be used
to generate test cases. For this purpose, we rely on a model checking technique
able to deal with floating-point arithmetic. We present a novel algorithm which
aims at identifying efficient test cases that cover more than one mutation, thus
reducing the size of the test suite and improving the performance of the test-
case generation process in Section 4. In Section 5, we discuss strategies to detect
mutations that do not have an observable impact on the model.

2 Simulink Models

The Simulink language is a graphical modeling language comprising block dia-
grams and an extensive set of block libraries. An example of a Simulink model
is presented in Figure 1. Due to the complexity of the language and the lack of
formal semantics, Simulink models are not directly amenable to automated anal-
ysis. We present a front-end to transform these models into intermediate ANSI-
C programs with well-defined semantics. This transformation is performed fully
automatically and allows us to separate the ambiguity issues in the Simulink
semantics from our test case generation process.

Each Simulink block is associated with a type. We define the meaning of
blocks of a particular type by means of C code, which is organized in a library.
This library can be independently refined or modified (e.g., to add a new block-
type definition) without the need to change the transformation process.

A block-type X is defined with the following artifacts:

– X in t: a C struct that defines the input ports of X.

– X out t: a C struct that defines the output ports of X.

– X props t: a C struct that specifies the verification-relevant properties of X.

i0
1
z

1

o0+

+

Add

×
÷

Division

Constant

Unit Delay

–

+

Subtract

Saturation [1,5]

Fig. 1: A Simulink model example

– X semfun: a C function that defines the semantics of X as a mapping from
input ports to output ports. Its declaration format is
X out t* X semfun(X props t *prop, X in t *in).

Currently, our Simulink front-end supports a set of commonly used block
types that belong to a variety of Simulink libraries, such as Math, Discrete, Logic
and Bit, Sinks, Sources, Ports&Subsystems, Discontinuities, Signal Routing, Sig-
nal Attributes and Model Verification. Some important block types include Sub-
systems, Unit Delay that forms feedback loops, Switches, and From/Goto pairs.
With our uniform definition artifacts, further block types can easily be added to
the library as needed. Support for Stateflow diagrams is under development.

The transformation source is a Simulink model composed of a set of intercon-
nected blocks, organized into a hierarchy of subsystems. The front-end parses the
model, flattens the hierarchy and derives an appropriate block execution order
which determines the simulation order of blocks in the resulting ANSI-C model.
The front-end identifies the type and property specifications of each individual
block instance and maps it to the corresponding block-type definition in the
library. Then, it determines which C block-type definitions need to be included
and assigns values to block properties. Some analyses like type inference are
also performed during the transformation to resolve ambiguities in the Simulink
model.

Figure 2 shows the basic structure of the C code transformed from the model
in Figure 1 with the front-end. Our analysis and test-case generation approach
based on the resulting C code is introduced in the sections below.

3 Generating Test Cases using Mutations

3.1 Overview

Many existing test case generation techniques permit the generation of test suites
that satisfy structural coverage criteria such as condition or statement coverage.

/*1. Links to blocktypes definitions */

#include <Sum.h> // Corresponds to the Add block

...

/*2. Declaration and initialization of block instances */

Sum_in_t b3_in;

Sum_out_t b3_out;

const Sum_prop_t b3_props ={. Inputs="++"}; ...

/*3. Simulation loop: define data dependencies w.r.t.

block connections extracted from the model */

int main() {

for(sim_time=START; sim_time <END; sim_time += sim_step) {

b3_in.port1 = b7_out.port1;

b3_in.port2 = b2_out.port2;

b3_out = *Sum_semfun (&b3_props , &b3_in); ...

}

}

Fig. 2: Structural overview of the C code transformed from a Simulink model

One approach to achieve such coverage is to use a model checker, which can gen-
erate counterexamples that demonstrate the reachability of certain statements
or conditions.

The following sections present mutation-based test case generation (TCG)
using bounded model checking (see Section 3.2). We describe how test cases can
be extracted automatically from a model or implementation M by injecting
mutations or faults into M (producing in a mutant model M ′) and checking the
equivalence of M and M ′ by means of model checking. If M and M ′ are not
equivalent, a model checking tool is able to generate a witness for the inequality
(a counterexample for equality). This counterexample determines a set of input
values for which the executions of M and M ′ produce different outputs.

The coverage criteria for fault-based testing in our work are based on syntac-
tic and semantic modifications of the model. Given a modification to the model,
the aim is to generate a test case that demonstrates the resulting change of the
behavior. Simple structural coverage metrics are not sufficient, since even exhaus-
tive coverage criteria such as modified condition/decision coverage (MC/DC)
provide no guarantee that the error resulting from the modification of the model
has a visible impact on the behavior generated by exercising the test suite.

The fault-driven test case generation approach is inspired by mutation testing
and fault injection:

– Mutation testing denotes the method of making (syntactic) modifications
to the source code of the implementation. The intention is to evaluate a
given test suite based on whether it is able to detect the introduced faults
and to aid the generation of additional meaningful test cases.

– Fault injection. Fault injection triggers the occurrences of faults in the
system under test. The main purpose of this technique is to evaluate the
error handling mechanisms of the system.

Examples for injected faults and mutations are provided in Section 3.5. The
common idea underlying both approaches is to make modifications to the system
and to run test cases that demonstrate the impact of these changes.

The following subsection provides a brief overview over the formal verification
techniques we apply to generate test suites from models containing mutations
or failure modes.

3.2 Bounded Model Checking

Model checking, in the most general sense, is a technique that explores the
reachable states of a model in order to determine whether a given specifica-
tion is satisfied [1]. It differs from testing in so far as it aims at an exhaustive
exploration of the state space of the model or program under test, thereby pro-
viding a correctness guarantee that is rarely achieved by means of testing. If
the specification is violated, model checking tools are often able to provide a
counterexample, i.e., a witness that demonstrates how the specification can be
violated in the model.

Bounded model checking (BMC) is a variation of model checking which re-
stricts the exploration to execution traces up to a certain (user-defined) length
k. BMC either provides a guarantee that the first k execution steps of the pro-
gram are correct with respect to the property P or a counterexample of length
at most k. The ability to report counterexamples is the essential feature we use
to generate test cases. The disadvantage of model checking is that it does not
scale as well as testing.

Figure 3a illustrates the schema of a Simulink model with a feedback loop.
Simulink diagrams comprise blocks instances and signals and wires represent-
ing the connections between these blocks. These components determine the in-
put and output signals (i and o, respectively) and the transition function R
represented by the model. A bounded model checking algorithm unwinds such
models as indicated in Figure 3b; the signals ii and oi refer to the input and
output signals in the ith step (or point in time), respectively, and ? denotes an
undefined/non-deterministic signal value.

For the purpose of test case generation it suffices to determine whether certain
states in a model are reachable. A model is specified by a formula representing
a (possibly partial) transition relation R (e.g., specified by means of a Simulink
diagram or ANSI-C program) and a predicate I that determines the valid ini-
tial states of the model. The transition relation R relates the current state of
the model to its successor states (i.e., the potential states after one step). The
structure of R may be further detailed by means of a control flow graph, which
partitions R into a separate transition function for each program location. This
simple formalism is sufficiently general to allow imperative models (such as C
programs or state charts) as well as data flow models (such as Simulink models).

i

R

o

(a) Schema of a Simulink model with a loop

i0

R

o0 i1

R

o1

?
l1

(b) Unwinding of the model in Figure 3a

Fig. 3: Unwinding Simulink models

Furthermore, the predicate I characterizes the set of valid initial states of the
model (this may be the safe or reset state of the system), i.e., I(s) holds if s is
a valid initial state.

A path (or execution trace) π of the model is a sequence of states s0, s1, . . . , sn
such that the adjacent pairs si, si+1 of states in that sequence are related by R
(i.e.,

∧n−1
i=0 R(si, si+1)), and I(s0) holds (i.e., s0 is a valid initial state). A state

is induced by the values of the variables (or wires and signals) of the model.
In reactive models, the variables are typically partitioned into input variables,
hidden (or internal) variables, and output variables. The observable part of an
execution trace is therefore the sequence of inputs and the resulting sequence of
outputs. Given a state si, we use si.i to refer to the input, and si.o to denote
the output.

3.3 Equivalence Checking

Formal Equivalence Checking is a technique used to formally prove that two
models M and M ′ exhibit the same observable behavior [19]. This is achieved
by comparing the input and the output behavior of the two models. To con-
struct a test-scenario (i.e., a sequence of input/output pairs), we are interested
in checking whether for a given input sequence the outputs in the first k steps of
the executions of the models match. This notion of “k-equivalence” is decidable,
assuming that the input and output values have a finite range.

Whether two given models are k-equivalent can be decided using model check-
ing. Given two models M and M ′ (comprising the transition functions R and R′

and the initial state predicates I and I ′, respectively), we can check (assuming

that the size of the states is finite) whether the following is satisfiable:

k∧
i=0

si.i = s′i.i︸ ︷︷ ︸
equality of all inputs

∧ I(s0) ∧
k−1∧
i=0

R(si, si+1)︸ ︷︷ ︸
first model

∧

I ′(s′0) ∧
k−1∧
i=0

R′(s′i, s
′
i+1)︸ ︷︷ ︸

second model

∧
k∨
i=0

si.o 6= s′i.o︸ ︷︷ ︸
inequality of an output

(1)

Any satisfying assignment to this formula represents two executions of M and
M ′ that yield a different output sequence. The models are equivalent (up to k
steps) if Formula (1) is unsatisfiable.

Checking software equivalence is more complicated, since the two programs
rarely perform input/output in lockstep. Algorithmic details of equivalence check-
ing using BMC are covered in [3]. An approach based on predicate abstrac-
tion [20] is presented in [21].

3.4 Floating-Point Arithmetic

Simulink models make heavy use of floating-point arithmetic (FPA). Although
reasoning about FPA is an active field of research, existing methods are primarily
tailored to interactive proof assistants (e.g., [22, 23]) or abstract floating-point
number to intervals of the reals (e.g., [24, 25]). The methods of the first kind are
unsuitable for automated tools, while the latter ones are not able to construct
models for satisfiable formulae and therefore cannot be used for test-case gener-
ation. Currently, there are only few model checkers that handle FPA accurately.

In our model checker Cbmc, we use the mixed abstraction framework de-
scribed in [18]. By using both over- and under-approximations simultaneously,
combined with a novel abstraction refinement approach, we are able to achieve
both accurate reasoning and a significantly better performance than ordinary
bit-blasting approaches [26].

Previous work on test case generation for Simulink programs, for instance
in the Simulink Design Verifier [17], employs approximations of floating-point
arithmetic by means of infinite-precision rational numbers. While this allows ef-
ficient reasoning in the case of models only containing linear arithmetic, rationals
do not faithfully reflect the actual behavior of Simulink programs: in equivalence
checking, it can happen that Simulink models are erroneously reported as equiv-
alent (although they are not with FPA semantics), or that equivalent Simulink
models are erroneously reported as non-equivalent. This is particularly relevant
because unexpected over- or underflows due to FPA semantics can be hard to
detect, but can have profound consequences.

We illustrate the inconsistencies between rational arithmetic and FPA us-
ing the Simulink model in Figure 1. The model contains a feedback loop that

computes the consecutive sums

tn =

n∑
j=1

ij

given the stream i1, i2, i3, . . . of inputs. Furthermore, in each time frame, the
quotient

1

tn − tn−1

is computed. Because the inputs are constrained to the interval [1, 5] with the
help of a Saturation block, and since tn = tn−1 + in, the computation of
the fraction will always succeed when computing with infinite-precision rational
numbers. If the model is implemented and executed using floating-point num-
bers, however, the stream of sums t1, t2, t3, . . . will eventually get stationary due
to lack of precision: in FPA, it is the case that a+ b = a if a is a very large and
b a very small number. As soon as tn = tn−1 occurs in the sequence of sums, the
computation of the quotient will raise a division-by-zero exception.

The use of a bit-accurate decision procedure has further advantages in the
context of mutation testing: Many fault models are based on bit-level modifica-
tions (such as single-bit-stuck-at faults). The effect of these mutations is trivial to
model using a propositional formula, and SAT-solvers can deal with the resulting
encoding very efficiently. For instance, modeling a single-bit-stuck-at-1 fault cor-
responds to setting a single propositional variable to true. Modern SAT-solving
algorithms deal with this case by using unit propagation, which is extremely
efficient. If, on the other hand, a decision procedure for reasoning about real
arithmetic was used, encoding the same fault would be complicated and would
result in constraints that are very hard to solve.

3.5 Mutation Testing and Fault Injection

From an abstract point of view, mutations as well as injected faults are simply
modifications to the behavior of the model.

Example 1. Consider the simple Simulink diagram in Figure 4a. The input sig-
nals i1 and i2 are related to the output signal o by means of the formula
o = i1 × i2, i.e., the transition function is

R(si, si+1)
def
= si.o = si.i1 × si.i2 ∧ si+1.o = si+1.i1 × si+1.i2 .

A possible syntactic mutation is to replace the multiplication (×) with an
addition:

R′(si, si+1)
def
= si.o = si.i1 + si.i2 ∧ si+1.o = si+1.i1+ si+1.i2 .

This mutation can be implemented in the diagram using an enable signal, al-
lowing us to switch the mutation on and off (see Figure 4b).

1

2

× 1Input signal 1

Input signal 2

Output signal

(a) A simple Simulink diagram

Mutation

1

2

× 1

∑

4

Input signal 1

Input signal 2

Output signal

Mutation enable

(b) A Simulink diagram with a mutation

Fig. 4: A simple Simulink program and its mutation

In our formalism, such a modification can be modeled by replacing the tran-
sition relation R of our model M ′ with a slightly modified transition relation R′

(and possibly a modified condition I ′ for the initial state). The faults introduced
into the system may be either permanent, transient, or intermittent (i.e., occur
repeatedly). The former case can be simply modeled by permanently altering
the transition relation R, and applying the resulting relation R′ in each step:

I ′(s0) ∧R′(s0, s1) ∧R′(s1, s2) ∧R′(s2, s3) ∧R′(s3, s4)︸ ︷︷ ︸
permanent fault

∧ . . .

To model transient or intermittent faults, we have to take the temporal aspect
into account, i.e., the alteration becomes only effective at certain points in time.
Accordingly, a typical execution satisfies the following constraint:

I(s0) ∧R(s0, s1) ∧R(s1, s2) ∧ R′(s2, s3)︸ ︷︷ ︸
intermittent fault

∧R(s3, s4) ∧ . . .

Transient or intermittent faults can be modeled by referring to a global timer.
Let R′ be a transition function with a permanently enabled mutation. Further-
more, given a state si, let si.t denote a signal tracking progression of time during

the execution. A transition function R′′ with an intermittent fault occurring ev-
ery c execution steps can be modeled as

R′′(si, si+1)
def
=

{
R′(si, si+1) if (si.t = 0 mod c)
R(si, si+1) if (si.t 6= 0 mod c)

.

Mutations are small syntactic changes of the model, whereas simulated hard-
ware faults require semantic changes to the model that reflect physical faults of
the system as accurately as possible. Conceptually, however, there is no difference
when it comes to their integration into the transition relation: The implementa-
tion of faults in the model M requires syntactic changes to M .

Depending on the extent of these modifications, the resulting error may not
be immediately observable, i.e., it is not necessarily the case that

s0.i = s′0.i ∧R(s0, s1) ∧R′(s′0, s′1) =⇒ s1.o 6= s′1.o

holds. Even though s1 differs from s′1, the outputs s1.o and s′1.o may be indis-
tinguishable: the modification of R may not necessarily have an (immediate)
impact on the observable behavior. Intuitively, a test case is “good” if it yields
a different outcome for M and M ′. In mutation testing, the term weak mutation
testing refers to the condition that the test cases should cause different program
states for the mutant and the original model. In the case that the affected part
of the state is not observable, this condition is not sufficient for our purpose.
Strong mutation testing refers to the case where the error propagates to the
output of the model and is caught by an appropriate test case. In dependable
systems, this notion may be too strong, since redundant systems may tolerate a
certain number of faults. Note that this case can be detected using a complete
model checking technique or k-induction. A brief outline of these techniques is
provided in Section 5.1.

3.6 Generating Test Cases

One way of generating test cases that detect a mutation is to find a satisfying
assignment to Formula (1). Such a satisfying assignment provides the inputs
that yield a different output sequence during the first k steps and, provided the
observable behaviors of the two models M and M ′ are not fully equivalent, such
a solution must exist for some k.

Encoding Combinations of Faults Assume that the objective is to gener-
ate a test suite that detects single faults (or mutations). The näıve approach
to create such a test suite is to generate a new model M ′ for each conceivable
fault or mutation and to generate an instance of Formula (1) for each pair of
models M and M ′. In practice, this approach is very wasteful, since modern
satisfiability checkers such as MiniSAT [27] are able to solve problem instances
incrementally. Encoding M ′ in a way such that faults or mutations can be acti-
vated or deactivated by adding constraints to the formula allows the SAT solver
to (partially) reuse the information it has already derived.

Therefore, we propose to generate a modified model M ′ that contains all
faults and mutations for which we want to generate test cases. We use the same
idea as in Figure 4b and introduce a Boolean flag f for each modification that
allows us to activate (deactivate) the respective fault/mutation by setting f to
true (false). Assume that R is the transition relation of the original model M
and that R′i is the transition relation of the model M ′i that contains the ith of
the n modifications in question. We define the model Rµ as follows:

Rµ(s0, s1, f
1, . . . , fn) :=

R(s0, s1) if
∨n
i=1 f

i = F
R′1(s0, s1) if f1 = T ∧

(∨n
=2 f

i
)

= F
R′2(s0, s1) if f2 = T ∧ f1 = F ∧

(∨n
=3 f

i
)

= F
...

R′n(s0, s1) if fn = T ∧
(∨n−1

=1 f i
)

= F

(2)

We use Mµ to denote the model with the transition relation Rµ.
Given the resulting transition relation Rµ (as defined in (2)) we can construct

an instance of Formula (1). A fault in the modified model Mµ can be triggered
by adding a constraint of the form

F j := f j ∧
∧

0<i≤n,i6=j

¬f i . (3)

Example 2. Figure 5 shows a mutation and a fault injected into the Simulink
diagram in Figure 4a. The first diagram shows the implementation of a signal-
stuck-at-0 fault. The diagram below combines this fault and the mutation in
Figure 4b into one model. The model provides two flags allowing us to trigger
the mutations.

The decision procedure of Cbmc, the model checker which our test case
generation tool Cover is based on, performs bit-level accurate reasoning by
transforming the instance of Formula (1) into an equi-satisfiable propositional
formula EQk in Conjunctive Normal Form4 (CNF). This formula is then handed
over to the satisfiability checker MiniSAT [27]. The decision process of MiniSAT
is incremental, i.e., it allows

– to add additional clauses, and
– to add or remove a constraint F j of the form described in (3)

without reinitializing the solver, meaning that the solver can reuse intermediate
results if it has to solve similar problem instances.

Let EQk denote the CNF of the instance of Equation (1) derived from the
models M and Mµ. We can generate a test suite covering all n mutations in
question by iteratively computing satisfiable assignments to

EQk ∧ F i, i ∈ {1, . . . , n} . (4)

4 A propositional formula in conjunctive normal form is a conjunction of disjunctions
of literals, where a literal l is a propositional variable or its negation (e.g., a or ¬a).
A clause is a disjunction of literals.

1

2

× 1

3

0

Fault

Input signal 1

Input signal 2

Output signal

FI enable

Constant

(a) Fault Injection: A signal-stuck-at-0 fault

Mutation

1

2

× 1

∑
3

4

0

Fault

Input signal 1

Input signal 2

Output signal

en
ab

le

Constant

(b) The fault and the mutation from Figure 4b combined in one model

Fig. 5: Mutations and Faults injected into a simple Simulink model

We say that a test case t independently covers a mutation if it corresponds
to a satisfying assignment of (4) for that mutation i. If each of the instances
of Formula (4) has a solution, we obtain n (not necessarily different) test cases
that cover all mutations injected into the model Mµ.

4 Generating Test-Cases for Many Mutations

In this section, we propose an optimisation of the mutation-based test-case gen-
eration approach discussed in Section 3.

4.1 Finding an Efficient and Sufficient Test-Suite

The technique described in Section 3.6 uses a SAT-solver to extract n test cases
from Formula (4), each of which corresponds to one mutation. If the number of
mutations (n) is large, this may lead to an equally large number of test cases.
These test-cases are computationally expensive to generate and time-consuming
to execute. Therefore, it is desirable to minimize the size of the test-suite.

Example 3. Consider the Simulink diagrams in Figures 4a, 4b, and 5. Assume
that we use the model in Figure 5b to generate a test case. Consider the test
case s.i1 = 1.2 and s.i2 = 23.4. The following table lists the observable outputs
of the model for all possible combinations of enable flags:

Input signal 1 Input signal 2 Fault Mutation Output
1.2 23.4 off off 28.08
1.2 23.4 on off 0.0
1.2 23.4 off on 24.6
1.2 23.4 on on 23.4

This test case is sufficient to detect the syntactic mutation, the signal-stuck-at-0
fault, as well as the combination of these modifications.

The observation in Example 3 suggests that it is not strictly necessary to
generate a separate test case for each single modification. In the setting presented
in Example 3, the test vector t = {i1 7→ 1.2, i2 7→ 23.4} can be obtained from
the model in which both modifications are enabled. This can be achieved by
generalizing the constraint F j (see (3)) accordingly, i.e., for a set T of indices
corresponding to mutations or faults

FT :=
∧

0<i≤n

(
(i ∈ T)⇒ f i

)
∧
(
(i 6∈ T)⇒ ¬f i

)
. (5)

Notably, t is sufficient to cover the fault and the mutation independently.
It follows that it is possible that a test-case t derived from a model Mµ

with a combination of several mutations {ν1, ν2, . . .} detects the independent
mutations, too. This can be efficiently checked by evaluating the behavior of the
mutated models Mν1 ,Mν2 , . . . for the input defined by the test-vector t. The
execution of a given test-case on a model is very efficient compared to the model
checking-based computation of a new test-vector for Mνi .

Example 4. We continue working in the setting of Example 4. Consider the test
case s.i1 = 0.0 and s.i2 = 23.4. We can compute the outcome for all different
models for this input by simply executing the test cases:

Input signal 1 Input signal 2 Fault Mutation Output
0.0 23.4 off off 0.0
0.0 23.4 on off 0.0
0.0 23.4 off on 23.4
0.0 23.4 on on 23.4

This test case is sufficient to detect the combination of the syntactic mutation
and the injected signal-stuck-at-0 fault, as well as the single syntactic mutation.
However, it fails to detect the signal-stuck-at-0 fault.

Example 4 shows that it is not always the case that a test-case that detects
a combination of mutations and faults also covers each mutation independently.
While we have found a test vector t = {i1 7→ 0.0, i2 7→ 23.4} which “kills”
the mutation, the same test vector fails to cover the fault. We are forced to
generate an additional test case for the injected fault, which can be achieved by
deactivating the enable flag for the fault and starting another incremental run
of the SAT solver.

We propose to analyze the model systematically, starting with a set of muta-
tions T . The corresponding algorithm is outlined in Figure 6. We generate a test
case which covers this set of mutations T and check whether it independently
covers the single elements of T . The advantage of the algorithm is that it is
possible to prune entire subsets of mutations if C in step Â is non-empty. If this
is not the case, we have to split T recursively. In the worst case, we still require
n test-cases to cover all n mutations.

Input: A model and a set of mutations T
Output: A test-suite S covering the mutations in T .

À If T = ∅, terminate.
Á Compute a test case t satisfying EQk ∧ FT (as defined in (5)).

(C = ∅ if there is no such t).
Â Let C ⊆ T be the set of mutations independently covered by t:

Ê If C 6= ∅, let T := T \ C. Add t to the test suite and proceed to À.
Ë If C = ∅, partition T into T1 and T2 s.t. T = T1∪T2, and T1∩T2 = ∅.

Call the algorithm recursively with T := T1 and T := T2, respectively.

Fig. 6: An algorithm for systematic test-case generation.

The success or failure of this approach depends inherently on the structure of
the mutations and the model M . In the following, let ν1 and ν2 be two mutations
for M . Furthermore, let s0, . . . , sn be an execution trace of M , and s′0, . . . , s

′
n be

an execution trace of M with both mutations enabled.

Assume that ν1 and ν2 affect different output signals, i.e., given a fixed input
sequence s0.i, . . . sn.i, the set of signals changed by activating the mutation ν1

is disjoint from the set of signals changed by enabling the mutation ν2. Then,
we can increase the chance of finding a test case that covers both mutations
independently by trying to maximize the difference between s0.o, . . . sn.o and
s′0.o, . . . s

′
n.o.

Unfortunately, such an independence cannot be assumed in general, since
there may be a mutual influence between mutations. In particular, two mutations
may cancel each other out. Checking whether two mutations are independent in
the sense explained above is computationally as expensive as model checking
and therefore not a feasible strategy.

5 Detecting Non-Observability of Mutations

In traditional mutation-based testing, the difficulty to identify mutations without
observable effect on the system outputs is known to be one of the main obstacles.
Assume that one instance EQk ∧ F c of (4) (with i = c) is unsatisfiable. This
indicates that the injected fault corresponding to f c (see Formula (2)) does not
result in an error that propagates to an observable output within k steps. There
are two possible reasons for this phenomenon:

1. The bound k is not sufficiently large to reveal the error.
2. The model contains redundancy and the injected fault does not result in an

observable change of its behavior. We say that the model tolerates the fault.
The mutant is an equivalent mutant.

A complete model checking algorithm can distinguish both cases. The first
case can be addressed by simply increasing the bound k. In the second case, the
mutation is not strong enough to have any impact on the observable behavior
of the model and the model checking tool provides a proof for the equivalence
of the mutated and original model. This concept is explained in the following
subsection.

5.1 Model Checking, Induction, and Invariants

BMC is only capable of providing a guarantee that a property P is not violated
within at most k execution steps. In this section, we briefly discuss two techniques
to lift this restriction: k-induction [28] and finding invariants by means of fixed-
point detection [1].

k-Induction. This technique generalizes the standard induction principle, and
has been used before for test-vector generation for Simulink models [2]. The base
case is established by means of BMC. The following equation holds if and only
if the property P is not violated in the first k execution steps:

I(s0) ∧
k−1∧
i=0

R(si, si+1) ∧
k∧
i=0

P (si) (6)

If the base case (6) holds, the technique proceeds to show by induction that P
holds for any arbitrary k ∈ N: k∧

i=0

R(si, si+1) ∧
k∧
j=0

P (sj)

⇒ P (sk+1) (7)

Formula (6) in combination with (7) implies that the sequence of states can be
extended to a path of arbitrary length without ever violating P . Thus, if we can
find a k for which the conjunction of (6) and (7) holds, then the model is safe.

To check whether this conjunction holds for a given k, we rely on efficient
decision procedures (SAT solvers such as [27], in particular). Let G = (6)∧(7). If
G holds, modern decision procedures are able to generate a proof. In our setting,
a proof is a directed acyclic graph (V,E, `), where V is a set of vertices, E is a
set of edges, and ` is a labeling function. Each initial vertex v has in-degree 0
and `(v) is an axiom or a sub-conjunct of G. Each internal vertex has in-degree
m, m ≥ 1. The label of each inner node w is derived from the labels of its
predecessors {v1, . . . , vm} by means of a deduction rule `(v1), . . . , `(vm) ` `(w).
The final vertex u has out-degree 0 and `(u) is the conclusion of the proof. SAT
solvers typically generate proofs that ¬G is unsatisfiable, that is, the conclusion
is F.

Fixed-Points and Invariants. For finite-state systems, iterating the transition
function until no new states are found is a viable verification technique, known
as fixed-point detection. This technique relies on an efficient symbolic repre-
sentation of sets of states such as binary decision diagrams [29]. The following
recursive equations are iterated until Si = Si+1:

S0 = {s0|I(s0)}, Si+1 = Si ∪ {si+1|si ∈ Si ∧R(si, si+1)} (8)

Let J be a symbolic representation of the final Si in this sequence. Then J is an
inductive invariant, i.e., it holds that

I(s0)⇒ J(s0) , and J(si) ∧R(si, si+1)⇒ J(si+1) . (9)

A popular technique to find invariants is the over-approximation of the set of
safe states by means of Craig interpolation [30].

5.2 Reusing Proofs and Invariants for Proving Unobservability

Proof Analysis. The techniques presented in this section are based on work re-
cently presented by Purandare et al. [31]. Consider a system M and a mutated
system Mo in which all the mutations are introduced, but disabled using F ∅, i.e.
∀i.¬f i. Thus, M and Mo are equivalent, i.e. si.o = s′i.o at all times. The equiv-
alence checking Formula (1) is unsatisfiable for all k. As stated in Section 5.1,
k-induction is one possibility to prove equivalence of M and Mo. Let T be a set

of indices corresponding to all possible mutations (cf. Section 4.1). The formulae
that k-induction checks to establish equivalence of M and Mo are as follows:

I(s0) ∧
k−1∧
i=0

R(si, si+1)︸ ︷︷ ︸
original model

∧ I ′(s′0) ∧
k−1∧
i=0

R′(s′i, s
′
i+1)︸ ︷︷ ︸

mutated model

∧
∧
j∈T
¬f j︸ ︷︷ ︸

disable T

∧
k∧
i=0

si.o = s′i.o︸ ︷︷ ︸
equality of output

(10) k∧
i=0

(R(si, si+1) ∧R′(s′i, s′i+1)) ∧
∧
j∈T
¬f j ∧

k∧
j=0

sj .o = s′j .o

⇒ sk+1.o = s′k+1.o

(11)
The following theorem states that those mutations that do not appear in the

final proof of G = (10)∧(11) checked during k-induction are non-observable [31].

Theorem 1. A mutation corresponding to an enabling variable f j that does not
appear in the final proof of G is unobservable.

Proof. A variable absent in the proof does not influence the conclusion of the
proof. Thus, enabling a flag f j absent in the proof does not invalidate the proof
of k-inductivity and hence, does not break equivalence.

Thus, mutations absent in the proof do not need to be checked as these are
unobservable.

Inductive Invariant. An inductive invariant represents a set of safe states with
respect to a certain property of the model. Consider the composition of the
two models M and Mo (where ∀i . (si.i = s′i.i)) and let ∀i . (si.o = s′i.o) be the
property in question.

Theorem 2. Let J(s, s′) represent an invariant over the state space of the two
models that warrants the equivalence of M and Mo, i.e., that ∀i .J(si, s

′
i) ⇒

(si.o = s′i.o) holds. Furthermore, let R′ be the transition function of Mo, only
that the jth mutation is enabled (f j = T). If

I(s0) ∧ I ′(s′0)⇒ J(s0, s
′
0) and

J(si, s
′
i) ∧R(si, si+1) ∧R′(s′i, s′i+1)⇒ J(si+1, s

′
i+1)

holds, then the jth mutation is unobservable.

Proof. The inductive invariant J is also an inductive invariant of the resulting
mutated system and therefore establishes equivalence.

6 Conclusion

We have defined a methodology for automated test case generation for Simulink
models. By formulating test coverage and goals in terms of fault models, we

achieve a flexible and general framework that subsumes standard coverage crite-
ria and is directly related to functional and non-functional requirements specifi-
cations. The use of equivalence checking and bounded model checking makes it
possible to explore the behavior of models with high precision, taking intricate
details such as the actual floating-point semantics of execution platforms into
account. We implemented this approach in our test-case generation tool Cover,
which is based on the model checker Cbmc. The evaluation of Cover on indus-
trial case studies developed in the European projects MOGENTES and CESAR
is currently in progress.

In order to handle the size of real-world Simulink models, we have introduced
two main concepts to keep the complexity of test case generation manageable:
a strategy to compute small test suites by maximizing the number of mutations
that are covered by each test case, and techniques to efficiently detect unobserv-
ability of mutations. An experimental evaluation of both techniques is planned
as future work.

References

1. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
2. Gadkari, A., Yeolekar, A., Suresh, J., Ramesh, S., Mohalik, S., Shashidar, K.C.:

AutoMOTGen: Automatic model oriented test generator for embedded control
systems. In Gupta, A., Malik, S., eds.: Computer Aided Verification (CAV). Volume
5123/2008 of LNCS., Springer (2008) 204–208

3. Kroening, D., Clarke, E.M., Yorav, K.: Behavioral consistency of C and Verilog pro-
grams using bounded model checking. In: Design Automation Conference (DAC),
ACM (2003) 368–371

4. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: Systematic test case
generation for dynamic analysis and measurement. In: Computer Aided Verifica-
tion (CAV). Volume 5123 of LNCS., Springer (2008) 209–213

5. Angeletti, D., Giunchiglia, E., Narizzano, M., Puddu, A., Sabina, S.: Automatic
test generation for coverage analysis using CBMC. In: Computer Aided Systems
Theory (EUROCAST). Volume 5717 of LNCS., Springer (2009) 287–294

6. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Query-driven program test-
ing. In: Verification, Model Checking and Abstract Interpretation (VMCAI). Vol-
ume 5403 of LNCS., Springer (2009) 151–166

7. Ball, T.: A theory of predicate-complete test coverage and generation. In: Formal
Methods for Components and Objects (FMCO). Volume 3657 of LNCS., Springer
(2005) 1–22

8. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: International Conference on Software Engineering
(ICSE). (2004) 326–335

9. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering (TSE) (2010)

10. Kupferman, O., Li, W., Seshia, S.A.: A theory of mutations with applications to
vacuity, coverage, and fault tolerance. In: Formal Methods in Computer-Aided
Design (FMCAD), IEEE (2008) 1–9

11. Ruthruff, J.R., Burnett, M.M., Rothermel, G.: Interactive fault localization tech-
niques in a spreadsheet environment. IEEE Transactions on Software Engineering
(TSE) 32 (2006) 213–239

12. Schuler, D., Dallmeier, V., Zeller, A.: Efficient mutation testing by checking in-
variant violations. In: International Symposium on Software Testing and Analysis
(ISSTA), ACM (2009) 69–80

13. Meenakshi, B., Bhatnagar, A., Roy, S.: Tool for translating simulink models into
input language of a model checker. In: Formal Engineering (ICFEM). Volume 4260
of LNCS., Springer (2006) 606–620

14. Fehnker, A., Krogh, B.H.: Hybrid system verification is not a sinecure: The elec-
tronic throttle control case study. In: Automated Technology for Verification and
Analysis (ATVA). Volume 3299 of LNCS., Springer (2004) 263–277

15. Joshi, A., Heimdahl, M.P.E.: Model-based safety analysis of Simulink models us-
ing SCADE design verifier. In: Computer Safety, Reliability, and Security (SAFE-
COMP). Volume 3688 of LNCS., Springer (2005) 122–135

16. Ryabtsev, M., Strichman, O.: Translation validation: From simulink to c. In:
Computer Aided Verification (CAV). Volume 5643 of LNCS., Springer (2009) 696–
701

17. The Mathworks: Simulink design verifier user’s guide. http://www.mathworks.

com/access/helpdesk/help/toolbox/sldv/ (2009) version 1.5.
18. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arith-

metic. In: Formal Methods in Computer-Aided Design (FMCAD), IEEE (2009)
69–76

19. Kuehlmann, A., van Eijk, C.A.J.: Combinational and sequential equivalence check-
ing. In: Logic Synthesis and Verification. Kluwer International Series in Engineering
and Computer Science Series. Kluwer, Norwell, MA, USA (2002) 343–372

20. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Computer
Aided Verification (CAV). Volume 1254 of LNCS. Springer (1997) 72–83

21. Kroening, D., Clarke, E.: Checking consistency of C and Verilog using predicate
abstraction and induction. In: IEEE/ACM International conference on Computer-
aided design, IEEE (2004) 66–72

22. Victor A., C.: Interpretation of IEEE-854 floating-point standard and definition
in the HOL system. Technical report, NASA Langley (1995)

23. Harrison, J.: Formal verification of square root algorithms. Formal Methods in
System Design (FMSD) 22 (2003) 143–153

24. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Programming
Language Design and Implementation (PLDI), ACM (2003) 196–207

25. Min, A.: Relational abstract domains for the detection of floating-point run-time
errors. In: European Symposium on Programming (ESOP). Volume 2986 of LNCS.,
Springer (2004) 3–17

26. Kroening, D., Strichman, O.: Decision Procedures. Springer (2008)
27. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Theory and Applications of

Satisfiability Testing (SAT). Volume 2919 of LNCS., Springer (2004) 502–518
28. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction

and a SAT-solver. In: Formal Methods in Computer-Aided Design (FMCAD).
Volume 1954 of LNCS., Springer (2000) 108–125

29. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers 35 (1986) 677–691

30. McMillan, K.L.: Interpolation and SAT-based model checking. In: Computer Aided
Verification (CAV). Volume 2725 of LNCS., Springer (2003) 1–13

31. Chockler, H., Kroening, D., Purandare, M.: Coverage in interpolation-based model
checking. In: Design Automation Conference (DAC), ACM (2010)

