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Abstract One of the main challenges in software verification is efficient and pre-
cise analysis of programs with procedures and loops. Interpolation methods remain
among the most promising techniques for such verification. To accommodate the
demands of various programming language features, over the past years several ex-
tended forms of interpolation have been introduced. We give a precise ontology of
such extended interpolation methods, and investigate the relationship between inter-
polation and fragments of constrained recursion-free Horn clauses. We also introduce
a new notion of interpolation, disjunctive interpolation, which solves a more general
class of problems in one step compared to previous notions of interpolants, such as
tree interpolants or inductive sequences of interpolants. We present algorithms and
complexity for construction of interpolants, as well as the corresponding decision
problems for recursion-free Horn fragments. Finally, we give an extensive empirical
evaluation using a solver for (recursive) Horn problems, in particular comparing the
performance of tree interpolation and disjunctive interpolation for constraints mod-
elling software verification tasks.

1 Introduction

Software model checking has greatly benefited from the combination of a num-
ber of seminal ideas: automated abstraction through theorem proving [15], explo-
ration of finite-state abstractions, and counterexample-driven refinement [3]. Even
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though these techniques can be viewed independently, the effectiveness of verifica-
tion has been consistently improving by providing more sophisticated communica-
tion between these steps. Often, carefully chosen search aspects are being pushed
into a learning-enabled constraint solver, resulting in better overall verification per-
formance. An essential advance was to use interpolants derived from unsatisfiability
proofs to refine the abstraction [22]. In recent years, we have seen significant progress
in interpolating methods for different logical constraints [8, 9, 34], and a wealth of
more general forms of interpolation [1, 21, 34, 37].

As a promising direction to extend the reach of automated verification methods
to programs with procedures, and concurrent programs, among others, recently the
use of Horn constraints as intermediate representation has been proposed [16,17,34].
This paper examines the relationship between various forms of Craig interpolation
and syntactically defined fragments of recursion-free Horn clauses, observing in par-
ticular a natural correspondence between Craig interpolation and several natural frag-
ments of Horn clauses. Extrapolating from this correspondence, we identify a new
notion, disjunctive interpolants, which are more general than tree interpolants and
inductive sequences of interpolants, but can still effectively be computed. Like tree in-
terpolation [21,34], a disjunctive interpolation query is a tree-shaped constraint spec-
ifying the interpolants to be derived; however, in disjunctive interpolation, branching
in the tree can represent both conjunctions and disjunctions. We present an algorithm
for solving the interpolation problem, relating it to a subclass of recursion-free Horn
clauses [17,35,36]. We then consider solving general recursion-free Horn clauses and
show that this problem is solvable whenever the logic admits interpolation. We estab-
lish tight complexity bounds for solving recursion-free Horn clauses for propositional
logic (PSPACE) and for integer linear arithmetic (co-NEXPTIME). In contrast, the
disjunctive interpolation problem remains in coNP for these logics. We also show
how to use solvers for recursion-free Horn clauses to verify recursive Horn clauses
using counterexample-driven predicate abstraction. We present an algorithm and ex-
perimental results on publicly available benchmarks.

Organisation. Related work is surveyed in Sect. 1.1, following in Sect. 2 by an ex-
ample of (recursive) Horn clauses. Sect. 3 formally introduces the concept of Horn
clauses. Sect. 4 investigates the relationship between several Horn fragments and
Craig interpolation; in more detail, Sect. 5 introduces tree interpolants, and Sect. 6
disjunctive interpolants. Sect. 7 considers the problem of solving general recursion-
free sets of Horn clauses. Sect. 8 gives results about the computational complexity
of solving recursion-free Horn clauses, and corresponding interpolation problems.
Finally, Sect. 9 defines model checking algorithms on the basis of the various inter-
polation approaches, and Sect. 9.2 provides an empirical evaluation.

1.1 Related Work

There is a long line of research on Craig interpolation methods, and generalised
forms of interpolation tailored to verification. For an overview of interpolation in the
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presence of theories, we refer the reader to [8, 9]. Binary Craig interpolation for im-
plications A → C goes back to [10], was used on conjunctions A ∧ B in [32], and
generalised to inductive sequences of interpolants in [22, 33]. The concept of tree in-
terpolation, strictly generalising inductive sequences of interpolants, is presented in
the documentation of the interpolation engine iZ3 and in [34]; the computation of tree
interpolants by computing a sequence of binary interpolants is also described in [21].
In this paper (extending work in [39,40]), we present a new form of interpolation, dis-
junctive interpolation, which is strictly more general than sequences of interpolants
and tree interpolants. Our implementation supports Presburger arithmetic, including
divisibility constraints [8], which is rarely supported by existing tools, yet helpful in
practice [24].

A further generalisation of inductive sequences of interpolants are restricted DAG
interpolants [1], which also include disjunctiveness in the sense that multiple paths
through a program can be handled simultaneously. Disjunctive interpolants are in-
comparable in power to restricted DAG interpolants, since the former does not handle
interpolation problems in the form of DAGs, while the latter does not subsume tree
interpolation. A combination of the two kinds of interpolants (“disjunctive DAG in-
terpolation”) is strictly more powerful (and harder) than disjunctive interpolation, see
Sect. 8 for a complexity-theoretic analysis. We discuss techniques and heuristics to
practically handle shared sub-trees in disjunctive interpolation, extending the benefits
of DAG interpolation to recursive programs.

Horn clauses have extensively been used in the context of (constraint) logic pro-
gramming community, for the purpose of program analysis and related application
(e.g., [4,13,20,36]). The use of Horn clauses as intermediate representation for model
checking was proposed in [17], with the verification of concurrent programs as main
application. The underlying procedure for solving sets of recursion-free Horn clauses,
over the combined theory of linear rational arithmetic and uninterpreted functions,
was presented in [18]. Our paper extends this direction by presenting general results
about solvability and computational complexity, independent of any particular cal-
culus. Our experiments are with linear integer arithmetic, arguably a more faithful
model of discrete computation than rationals [24].

An algorithm to solve recursion-free systems of Horn constraints by repeated
computation of binary interpolants was given in [43], for the purpose of type in-
ference. Further techniques for solving Horn clauses were developed in [26]. Horn
clauses are also used as a format for verification problems supported by the SMT
solver Z3 [23], generalising the IC3 algorithm; several recent papers propose optimi-
sations of the algorithm by integrating abstraction [29] and under-approximations [28].

In addition to methods for ordinary (constrained) Horn clauses, a range of exten-
sions have been proposed in literature. This includes support for restricted forms of
existential quantification [5], for the computation of solutions in presence of well-
foundedness constraints [19], as well as for derivation of quantified predicates in
solutions of Horn clauses [7]. Verification methods on the basis of Horn clauses, in-
cluding inter-procedural model checking, were given in [16].

Inter-procedural software model checking with interpolants has been an active
area of research. In the context of predicate abstraction, it has been discussed how
well-scoped invariants can be inferred [22] in the presence of function calls. Based



4 Philipp Rümmer, Hossein Hojjat, Viktor Kuncak

(1) gcd(M,N,R)← M = N ∧ R = M
(2) gcd(M,N,R)← M > N ∧ M1 = M − N ∧ gcd(M1,N,R)
(3) gcd(M,N,R)← M < N ∧ N1 = N − M ∧ gcd(M,N1,R)
(4) false ← M ≥ 0 ∧ M = N ∧ gcd(M,N,R) ∧ R > M

Fig. 1 Horn clauses computing the greatest common divisor of two numbers and an assertion on result.
Variables are universally quantified in each clause.

(1) gcd(M,N,R)← M = N ∧ R = M
(1’) gcd1(M,N,R)← M = N ∧ R = M
(2’) gcd(M,N,R)← M > N ∧ M1 = M − N ∧ gcd1(M1,N,R)
(3’) gcd(M,N,R)← M < N ∧ N1 = N − M ∧ gcd1(M,N1,R)
(4) false ← M ≥ 0 ∧ M = N ∧ gcd(M,N,R) ∧ R > M

Fig. 2 Extended recursion-free approximation of the Horn clauses in Fig. 1.

on the concept of Horn clauses, a predicate abstraction-based algorithm for bottom-up
construction of function summaries was presented in [16]. Verification of programs
with procedures is described in [21] (using nested word automata) as well as in [2].
Function summaries generated using interpolants have also been used in bounded
model checking [41]. Researchers also showed how to lift these techniques to higher-
order programs [25, 44].

2 Example: Verification of Recursive Predicates

We start by showing how our approach can verify programs encoded as Horn clauses,
by means of predicate abstraction and a theorem prover for Presburger arithmetic.
Fig. 1 shows an example of a system of Horn clauses that compute the greatest com-
mon divisor of its first and its second argument in its third argument. After invoking
the gcd operation on the equal positive numbers M and N, we wish to check whether
it is possible for the result R to be more than the M. In general, we encode error
conditions as Horn clauses with false in their head, and refer to such clauses as error
clauses, although such clauses do not have a special semantic status in our system.
When executed with these clauses as input, our verification tool automatically iden-
tifies that the definition of gcd(M,N,R) as the predicate (M = N) → (M ≥ R) gives
a solution to these Horn clauses. In terms of safety (partial correctness), this means
that the error condition cannot be reached.

Our approach uses counterexample-driven refinement to perform verification. In
this example, the abstraction of Horn clauses starts with a trivial set of predicates,
containing only the predicate false, which is assumed to be a valid approximation un-
til proven otherwise. Upon examining a clause that has a concrete satisfiable formula
on the right-hand side (e.g. M = N ∧ R = M), we rule out false as the approxima-
tion of gcd. In the absence of other candidate predicates, the approximation of gcd
becomes the conjunction of an empty set of predicates, which is true. Using this ap-
proximation the error clause is no longer satisfied. At this point the algorithm checks
whether a true error is reached by directly chaining the clauses involved in comput-
ing the approximation of predicates. This amounts to checking whether the following
recursion-free subset of clauses has a solution:
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(1) gcd(M,N,R)← M = N ∧ R = M
(4) false ← M ≥ 0 ∧ M = N ∧ gcd(M,N,R) ∧ R > M

The solution to above problem is any formula I(M,N,R) such that

I (M,N,R)← M = N ∧ R = M
false ← M ≥ 0 ∧ M = N ∧ I(M,N,R) ∧ R > M

This is precisely an interpolant of M = N ∧ R = M and M ≥ 0 ∧ M = N ∧ R > M.
A valid interpolant is P1(M,N,R) ≡ M ≥ R. Choosing this interpolant eliminates
the current contradiction for Horn clauses and P1 is added into a list of abstraction
predicates for the relation gcd. Because the predicates approximating gcd are now
updated, we consider the abstraction of the system in terms of these predicates.

The predicate P1 is not a conjunct in a valid approximation for gcd in clause (2),
so the following recursion-free unfolding is not solved by the approximation so far:
(1) gcd(M,N,R)← M = N ∧ R = M
(2’) gcd1(M,N,R)← M > N ∧ M1 = M − N ∧ gcd(M1,N,R)
(4’) false ← M ≥ 0 ∧ M = N ∧ gcd1(M,N,R) ∧ R > M

This particular problem could be reduced to solving an interpolation sequence,
but it is more natural to think of it simply as a solution for recursion-free Horn
clauses. A solution is an interpretation of the relations gcd and gcd1 as ternary re-
lations on integers, such that the clauses are true. Note that this problem could also
be viewed as the computation of tree interpolants, which are also a special case of
solving recursion-free Horn clauses, as are DAG interpolants and a new notion of
disjunctive tree interpolants that we introduce. In line with [16–18] we observe that
recursion-free clauses are a perfect fit for counterexample-driven verification: they
allow us to provide the theorem proving procedure with much more information that
they can use to refine abstractions. In the limit, the original set of clauses or its recur-
sive unfoldings are its own approximations, some of them exact, but the advantage of
recursion-free Horn clauses is that their solvability is decidable under very general
conditions. This provides us with a solid theorem proving building block to construct
robust and predictable solvers for the undecidable recursive case. Our paper describes
a new such building block: disjunctive interpolants, which correspond to a subclass
of non-recursive Horn clauses.

To illustrate disjunctive interpolants, Fig. 2 provides another recursion-free ap-
proximations of the problem. In this approximation we can distinguish 3 different
paths from the error clause (4) through the clauses (1’), (2’) and (3’) to ground for-
mulae. The traditional refinement approach using e.g. tree interpolation typically re-
moves the 3 instances of the spurious counter-examples using 3 interpolation calls.
A novelty of disjunctive interpolation is removing the different choices of counter-
examples altogether using a single call to the interpolating theorem prover. Eliminat-
ing more counter-examples at once can reduce the number of iterations and increase
convergence.

3 Formulae and Horn Clauses

Constraint languages. Throughout this paper, we assume that a first-order vocabu-
lary of interpreted symbols has been fixed, consisting of a setF of fixed-arity function
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symbols, and a set P of fixed-arity predicate symbols. Interpretation of F and P is
determined by a class S of structures (U, I) consisting of non-empty universe U, and
a mapping I that assigns to each function in F a set-theoretic function over U, and
to each predicate in P a set-theoretic relation over U. As a convention, we assume
the presence of an equation symbol “=” in P, with the usual interpretation. Given a
countably infinite set X of variables, a constraint language is a set Constr of first-
order formulae over F ,P,X For example, the language of quantifier-free Presburger
arithmetic has F = {+,−, 0, 1, 2, . . .} and P = {=,≤, |}).

A constraint is called satisfiable if it holds for some structure in S and some as-
signment of the variables X, otherwise unsatisfiable. We say that a set Γ ⊆ Constr of
constraints entails a constraint φ ∈ Constr if every structure and variable assignment
that satisfies all constraints in Γ also satisfies φ; this is denoted by Γ |= φ.

fv(φ) denotes the set of free variables in constraint φ. We write φ[x1, . . . , xn] to
state that a constraint contains (only) the free variables x1, . . . , xn, and φ[t1, . . . , tn]
for the result of substituting the terms t1, . . . , tn for x1, . . . , xn. Given a constraint φ
containing the free variables x1, . . . , xn, we write Cl∀(φ) for the universal closure
∀x1, . . . , xn.φ.

Positions. We denote the set of positions in a constraint φ by positions(φ). For in-
stance, the constraint a ∧ ¬a has 4 positions, corresponding to the sub-formulae a ∧
¬a,¬a, and the two occurrences of a. The sub-formula of a formula φ underneath a
position p is denoted by φ ↓ p, and we write φ[p/ψ] for the result of replacing the
sub-formula φ ↓ p with ψ. Further, we write p ≤ q if position p is above q (that is, q
denotes a position within the sub-formula φ↓ p), and p < q if p is strictly above q.

Craig interpolation is the main technique used to construct and refine abstractions
in software model checking. A binary interpolation problem is a conjunction A ∧ B
of constraints. A Craig interpolant is a constraint I such that A |= I and B |= ¬I, and
such that fv(I) ⊆ fv(A) ∩ fv(B). The existence of an interpolant implies that A ∧ B is
unsatisfiable. We say that a constraint language has the interpolation property if also
the opposite holds: whenever A ∧ B is unsatisfiable, there is an interpolant I.

3.1 Horn Clauses

To define the concept of Horn clauses, we fix a set R of uninterpreted fixed-arity
relation symbols, disjoint from P and F . A Horn clause is a formula C ∧ B1 ∧ · · · ∧

Bn → H where

– C is a constraint over F ,P,X;
– each Bi is an application p(t1, . . . , tk) of a relation symbol p ∈ R to first-order

terms over F ,X;
– H is similarly either an application p(t1, . . . , tk) of p ∈ R to first-order terms, or is

the constraint false.

H is called the head of the clause, C ∧ B1 ∧ · · · ∧ Bn the body. In case C = true,
we usually leave out C and just write B1 ∧ · · · ∧ Bn → H. First-order variables
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(fromX) in a clause are considered implicitly universally quantified; relation symbols
represent set-theoretic relations over the universe U of a structure (U, I) ∈ S. Notions
like (un)satisfiability and entailment generalise straightforwardly to formulae with
relation symbols.

A relation symbol assignment is a mapping sol : R → Constr that maps each
n-ary relation symbol p ∈ R to a constraint sol(p) = Cp[x1, . . . , xn] with n free
variables. The instantiation sol(h) of a Horn clause h is defined by:

sol
(
C ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n)→ p(t̄)

)
= C ∧ sol(p1)[t̄1] ∧ · · · ∧ sol(pn)[t̄n]→ sol(p)[t̄]

sol
(
C ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n)→ false

)
= C ∧ sol(p1)[t̄1] ∧ · · · ∧ sol(pn)[t̄n]→ false

Definition 1 (Solvability) LetHC be a set of Horn clauses over relation symbols R.

1. HC is called semantically solvable if for every structure (U, I) ∈ S there is an
interpretation of the relation symbols R as set-theoretic relations over U such that
the universal closure Cl∀(h) of every clause h ∈ HC holds in (U, I).

2. HC is called syntactically solvable if there is a relation symbol assignment sol
such that for every structure (U, I) ∈ S and every clause h ∈ HC it is the case that
Cl∀(sol(h)) is satisfied.

Note that, in the special case when S contains only one structure, S = {(U, I)},
semantic solvability reduces to the existence of relations interpreting R that extend
the structure (U, I) in such a way to make all clauses true. In other words, Horn clauses
are solvable in a structure if and only if the extension of the theory of (U, I) by relation
symbols R in the vocabulary and by given Horn clauses as axioms is consistent.

A set HC of Horn clauses induces a dependence relation →HC on R, defining
p →HC q if there is a Horn clause in HC that contains p in its head, and q in the
body. The set HC is called recursion-free if →HC is acyclic, and recursive other-
wise. In the next sections we study the solvability problem for recursion-free Horn
clauses; in particular, Theorem 3 below characterises the relationship between syn-
tactic and semantic solvability for recursion-free Horn clauses. This case is relevant,
since solvers for recursion-free Horn clauses form a main component of many general
Horn-clause-based verification systems [16, 17].

3.2 Semantic and Syntactic Solvability

Clearly, if a set of Horn clauses is syntactically solvable, then it is also semantically
solvable. The converse is not true in general, because the solution need not be ex-
pressible in the constraint language. Consider the following clause setHC:
multA(X,Y,Z)← X = 0 ∧ Z = 0
multA(X,Y,Z)← multA(X1,Y,Z1) ∧ X1 = X − 1 ∧ Z = Z1 + Y
multB(X,Y,Z)← X = 0 ∧ Z = 0
multB(X,Y,Z)← multB(X1,Y,Z1) ∧ X1 = X − 1 ∧ Z = Z1 + Y
false ← multA(X,Y,Z1) ∧ multB(X,Y,Z2) ∧ Z1 , Z2

The clauses define two version of a multiplication and assert that the result is func-
tionally determined by the first two arguments. Let a, b ⊆ Z3 denote the interpreta-
tions of multA and multB, respectively, in any solution that satisfies all Horn clauses.
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Form of interpolation Fragment of Horn clauses

Binary interpolation [10, 32]
A ∧ B

Pair of Horn clauses
A→ p(x̄), B∧ p(x̄)→ false with {x̄} = fv(A) ∩ fv(B)

Inductive interpolant seq. [22, 33]
T1 ∧ T2 ∧ · · · ∧ Tn

Linear tree-like Horn clauses
T1 → p1(x̄1), p1(x̄1) ∧ T2 → p2(x̄2), . . .
with {x̄i} = fv(T1, . . . ,Ti) ∩ fv(Ti+1, . . . ,Tn)

Tree interpolants (Sect. 5) Tree-like Horn clauses

(Restricted) DAG interpolants [1] Linear Horn clauses

Disjunctive interpolants (Sect. 6) Body disjoint Horn clauses

Table 1 Equivalence of interpolation problems and systems of Horn clauses.

We show that the only possibility is that a = b = m where m = {(x, y, z) ∈ Z3 | z = xy}
is the multiplication relation. Indeed, by induction we can easily prove that m ⊆ a and
m ⊆ b, using the first four clauses. To show the converse, suppose on the contrary,
that (x, y, z) ∈ a where z , xy (the case for (x, y, z) ∈ b is symmetrical). Because
(x, y, xy) ∈ b and x , z, the last clause does not hold, a contradiction.

Therefore, the clauses have a unique solution a = b = m, but this solution is not
definable in a Presburger arithmetic (e.g., by semilinearity of the solution sets, or by
decidability of Presburger arithmetic vs. undecidability of its extension with multipli-
cation). Therefore, the above clauses give an example of clauses that are semantically
but not syntactically solvable in Presburger arithmetic.

Further such examples can be constructed by using Horn clauses to define other
total computable functions that are not definable in Presburger arithmetic alone.

4 The Relationship between Craig Interpolation and Horn Clauses

It has become common to work with generalised forms of Craig interpolation, such
as inductive sequences of interpolants, tree interpolants, and restricted DAG inter-
polants. We show that a variety of such interpolation approaches can be reduced
to recursion-free Horn clauses. Recursion-free Horn clauses thus provide a general
framework unifying and subsuming a number of earlier notions. As a side effect,
we can formulate a general theorem about existence of the individual kinds of inter-
polants in Sect. 8, applicable to any constraint language with the (binary) interpola-
tion property.

An overview of the relationship between specific forms of interpolation and spe-
cific fragments of recursions-free Horn clauses is given in Table 1, and will be ex-
plained in more detail in the rest of this section. Table 1 refers to the following frag-
ments of recursion-free Horn clauses:

Definition 2 (Horn clause fragments) We say that a finite, recursion-free set HC
of Horn clauses

1. is linear if the body of each Horn clause contains at most one relation symbol,
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2. is body-disjoint if for each relation symbol p there is at most one clause contain-
ing p in its body; furthermore, every clause contains p at most once;

3. is head-disjoint if for each relation symbol p there is at most one clause contain-
ing p in its head;

4. is tree-like [18] if it is body-disjoint and head-disjoint.

Theorem 1 (Interpolation and Horn clauses) For each line of Table 1 it holds that:

1. an interpolation problem of the stated form can be polynomially reduced to (syn-
tactically) solving a set of Horn clauses, in the stated fragment;

2. solving a set of Horn clauses (syntactically) in the stated fragment can be poly-
nomially reduced to solving a sequence of interpolation problems of the stated
form.

As an illustration, consider the case of a binary interpolation problem A ∧ B,
in which a constraint I such that A |= I, B |= ¬I, and fv(I) ⊆ fv(A) ∩ fv(B) has
to be determined. To encode a binary interpolation problem into Horn clauses, we
first determine the set x̄ = fv(A) ∩ fv(B) of variables that can possibly occur in the
interpolant. We then pick a relation symbol p of arity |x̄|, and define two Horn clauses
expressing that p(x̄) is an interpolant:

A→ p(x̄), B ∧ p(x̄)→ false

It is clear that every syntactic solution for the two Horn clauses corresponds to an
interpolant of A ∧ B. Vice versa, for every pair of complementary Horn clauses
C1 → p(t̄) and C2 ∧ p(s̄) → false, we can determine solutions by first normalis-
ing the clauses to C1 ∧ t̄ = x̄→ p(x̄) and C2 ∧ s̄ = x̄∧ p(x̄)→ false, and then finding
solutions for the binary interpolation problem (C1 ∧ t̄ = x̄) ∧ (C2 ∧ s̄ = x̄).

Proofs for the most cases of Theorem 1, in particular for inductive sequences of
interpolants and DAG interpolants, are given in [38]. On the next pages, we first give
a proof for a particularly important form of interpolation, tree interpolation, and then
present a generalisation to disjunctive interpolation.

5 Tree Interpolants

Tree interpolants [21, 31] strictly generalise inductive sequences of interpolants, and
are designed with the application of inter-procedural verification in mind: in this con-
text, the tree structure of the interpolation problem corresponds to (a part of) the call
graph of a program. Tree interpolation problems correspond to recursion-free tree-
like sets of Horn clauses.

Suppose (V, E) is a finite directed tree, writing E(v,w) to express that the node w
is a direct child of v. Further, suppose φ : V → Constr is a function that labels each
node v of the tree with a formula φ(v). A labelling function I : V → Constr is called
a tree interpolant (for (V, E) and φ) if the following properties hold:

1. for the root node v0 ∈ V , it is the case that I(v0) = false,
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2. for any node v ∈ V , the following entailment holds:

φ(v) ∧
∧

(v,w)∈E

I(w) |= I(v) ,

3. for any node v ∈ V , every non-logical symbol (in our case: variable) in I(v) occurs
both in some formula φ(w) for w such that E∗(v,w), and in some formula φ(w′)
for some w′ such that ¬E∗(v,w′). (E∗ is the reflexive transitive closure of E).

Since the case of tree interpolants is instructive for solving recursion-free sets
of Horn clauses in general, we give a result about the existence of tree interpolants.
The proof of the lemma computes tree interpolants by repeated derivation of binary
interpolants; however, as for inductive sequences of interpolants, there are solvers
that can compute all formulae of a tree interpolant simultaneously [17, 18, 31].

Lemma 1 Suppose the constraint language Constr that has the interpolation prop-
erty. Then a tree (V, E) with labelling function φ : V → Constr has a tree interpolant I
if and only if

∧
v∈V φ(v) is unsatisfiable.

Proof “⇒” follows from the observation that every interpolant I(v) is a consequence
of the conjunction

∧
(v,w)∈E+ φ(w).

“⇐”: let v1, v2, . . . , vn be an inverse topological ordering of the nodes in (V, E),
i.e., an ordering such that ∀i, j. (E(vi, v j) ⇒ i > j). We inductively construct a se-
quence of formulae I1, I2, . . . , In, such that for every i ∈ {1, . . . , n} the following prop-
erties hold:

1. the following conjunction is unsatisfiable:∧
{Ik | k ≤ i, ∀ j. (E(v j, vk)⇒ j > i)} ∧

(
φ(vi+1) ∧ φ(vi+2) ∧ · · · ∧ φ(vn)

)
(1)

2. the following entailment holds:

φ(vi) ∧
∧

(vi,v j)∈E

I j |= Ii

3. every non-logical symbol in Ii occurs both in a formula φ(w) with E∗(vi,w), and
in a formula φ(w′) with ¬E∗(vi,w′).

Assume that the formulae I1, I2, . . . , Ii have been constructed, for i ∈ {0, . . . , n − 1}.
We then derive the next interpolant Ii+1 by solving the binary interpolation problem(

φ(vi+1) ∧
∧

E(vi+1,v j)

I j

)
∧

(∧
{Ik | k ≤ i, ∀ j. (E(v j, vk)⇒ j > i + 1)} ∧ φ(vi+2) ∧ · · · ∧ φ(vn)

)
(2)

That is, we construct Ii+1 so that the following entailments hold:

φ(vi+1) ∧
∧

E(vi+1,v j)

I j |= Ii+1,∧
{Ik | k ≤ i, ∀ j. (E(v j, vk)⇒ j > i + 1)} ∧ φ(vi+2) ∧ · · · ∧ φ(vn) |= ¬Ii+1
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Furthermore, Ii+1 only contains non-logical symbols that are common to the left and
the right side of the conjunction.

Note that (2) is equivalent to (1), therefore unsatisfiable, and a well-formed inter-
polation problem. It is also easy to see that the properties 1–3 hold for Ii+1. Also, we
can verify that the labelling function I : vi 7→ Ii is a solution for the tree interpolation
problem defined by (V, E) and φ. ut

Tree interpolation as Tree-like Horn clauses. In order to encode a tree interpolation
problem as a tree-like set of Horn clauses, we first introduce a fresh relation symbol pv

for each node v ∈ V of a tree interpolation problem (V, E), φ, assuming that for each
v ∈ V the vector x̄v =

⋃
E∗(v,w) fv(φ(w)) ∩

⋃
¬E∗(v,w) fv(φ(w)) represents the set of

variables that can occur in the interpolant I(v). The interpolation problem is then
represented by the following clauses:

p0(x̄0)→ false,
{
φ(v) ∧

∧
(v,w)∈E

pw(x̄w)→ pv(x̄v)
}
v∈V

Tree-like Horn clauses as tree interpolation. SupposeHC is a finite, recursion-free,
and tree-like set of Horn clauses. We can solve the system of Horn clauses by comput-
ing a tree interpolant for every connected component of the→HC-graph. As before,
we first normalise the Horn clauses by fixing, for every relation symbol p, a unique
vector of variables x̄p, and rewriting HC such that p only occurs in the form p(x̄p).
We also ensure that every variable x that is not argument of a relation symbol occurs
in at most one clause. The tree interpolation graph (V, E) is then defined by choosing
the set V = R ∪ {false} of relation symbols as nodes, and the child relation E(p, q)
to hold whenever p occurs as head, and q within the body of a clause. The labelling
function φ is defined by φ(p) = C whenever there is a clause with head symbol p and
constraint C, and φ(p) = false if p does not occur as head of any clause.

Example 1 We consider the following recursion-free set of Horn clauses:

r1(X, R) ← true
r2(X’, R) ← r1(X, R) ∧ X’ ≥ 0
r3(N, C, T) ← true
r4(N, C, T) ← r3(N, C, T) ∧ N ≤ 0
r5(N, C’, T) ← r4(N, C, T) ∧ C’ = 1
r6(N, C) ← r5(N, C, T)
r7(X, R’) ← r2(X, R) ∧ r6(X, R’)
false ← r7(X, R) ∧ R , X + 1

Note that this recursion-free subset of the clauses is body-disjoint and head-
disjoint, and thus tree-like. In order to compute a (syntactic) solution of the clauses,
we set up the corresponding tree interpolation problem. Fig. 3 (left) shows the tree
with the labelling φ to be interpolated (in grey), as well as the head literals of the
clauses generating the nodes of the tree; the labelling φ contains additional equations
needed to match up the arguments of the various relation symbols. A tree interpolant
solving the interpolation problem is given in Fig. 3 (right). The tree interpolant can
straightforwardly be mapped to a solution of the original tree-like Horn, for instance
we set r4(n4, c4, t4) = (n4 ≤ 0) and r5(n5, c5, t5) = (n5 ≤ −1 ∨ (c5 = 1 ∧ n5 = 0)).
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false:
r7 , x7 + 1

r7(x7, r7):
x7 = x2 ∧ x7 = n6 ∧ r7 = c6

r6(n6, c6):
n6 = n5 ∧ c6 = c5

r5(n5, c5, t5):
n5 = n4 ∧ c5 = 1 ∧ t5 = t4

r4(n4, c4, t4):

n4 = n3 ∧ n4 ≤ 0 ∧
c4 = c3 ∧ t4 = t3

r3(n3, c3, t3):
true

r2(x2, r2):
x2 ≥ 0 ∧ r2 = r1

r1(x1, r1):
true

false

r7 = x7 + 1

n6 ≤ −1 ∨
(c6 = 1 ∧ n6 = 0)

n5 ≤ −1 ∨
(c5 = 1 ∧ n5 = 0)

n4 ≤ 0

true

x2 ≥ 0

true

Fig. 3 Tree interpolation problem for the clauses in Example 1 (left), and a tree interpolant solving the
interpolation problem (right).

6 Disjunctive Interpolants and Body-Disjoint Horn Clauses

We now present our notion of disjunctive interpolants, and the corresponding class of
Horn clauses. Our inspiration are generalized forms of Craig interpolation, such as
inductive sequences of interpolants [22,33] or tree interpolants [21,34]. We introduce
disjunctive interpolation as a new form of interpolation that is tailored to the refine-
ment of abstractions in Horn clause verification, strictly generalising both inductive
sequences of interpolants and tree interpolation. Disjunctive interpolation problems
can specify both conjunctive and disjunctive relationships between interpolants, and
are thus applicable for simultaneous analysis of multiple paths in a program, but also
tailored to inter-procedural analysis or verification of concurrent programs [16].

Disjunctive interpolation problems correspond to a specific fragment of recursion-
free Horn clauses, namely recursion-free body-disjoint Horn clauses (see Sect. 6.1).
The definition of disjunctive interpolation is chosen deliberately to be as general as
possible, while still avoiding the high computational complexity of solving general
systems of recursion-free Horn clauses. Computational complexity is discussed in
Sect. 8.

We introduce disjunctive interpolants as a form of sub-formula abstraction. For
example, given an unsatisfiable constraint φ[α] containing α as a sub-formula in a
positive position, the goal is to find an abstraction α′ such that α |= α′ and α[α′] |=
false, and such that α′ only contains variables common to α and φ[true]. Generalizing
this to any number of subformulas, we obtain the following.
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Definition 3 (Disjunctive interpolant) Let φ be a constraint, and pos ⊆ positions(φ)
a set of positions in φ that are only underneath the connectives ∧ and ∨. A disjunctive
interpolant is a map I : pos→ Constr from positions to constraints such that:

1. For each position p ∈ pos, with direct children
{q1, . . . , qn} = {q ∈ pos | p < q and ¬∃r ∈ pos. p < r < q} we have(

φ[q1/I(q1), . . . , qn/I(qn)]
)
↓ p |= I(p) ,

2. For the topmost positions {q1, . . . , qn} = {q ∈ pos | ¬∃r ∈ pos. r < q} we have

φ[q1/I(q1), . . . , qn/I(qn)] |= false ,

3. For each position p ∈ pos, we have fv(I(p)) ⊆ fv(φ↓ p) ∩ fv(φ[p/true]).

Example 2 Consider Ap∧B, with position p pointing to the sub-formula A, and pos =

{p}. The disjunctive interpolants for A ∧ B and pos coincide with the ordinary binary
interpolants for A ∧ B.

Example 3 Consider the formula φ =
(
· · ·

(((
T1

)
p1
∧T2

)
p2
∧T3

)
p3
∧ · · ·

)
pn−1
∧Tn and

positions pos = {p1, . . . , pn−1}. Disjunctive interpolants for φ and pos correspond to
inductive sequences of interpolants [22, 33]. Note that we have the entailments
T1 |= I(p1), I(p1) ∧ T2 |= I(p2), . . . , I(pn−1) ∧ Tn |= false.

Example 4 Tree interpolation (Sect. 5) corresponds to disjunctive interpolation with
a set pos of positions that are only underneath ∧ (and never underneath ∨).

Example 5 We consider the example given in Fig. 2, Sect. 2. To compute a solution
for the Horn clauses, we first expand the Horn clauses into a constraint, by means
of exhaustive inlining/resolution (see Sect. 7), obtaining a disjunctive interpolation
problem:

false { M ≥ 0 ∧ M = N ∧ gcd(M,N,R) ∧ R > M

{

 M ≥ 0
∧ M = N
∧ R > M

 ∧


M = N ∧ R = M
∨

M > N ∧ M1 = M − N ∧ gcd1(M1,N,R)
∨

M < N ∧ N1 = N − M ∧ gcd1(M,N1,R)



{

 M ≥ 0
∧ M = N
∧ R > M

 ∧


M = N ∧ R = M
∨

M > N ∧ M1 = M − N ∧ (M1 = N ∧ R = M1)q

∨

M < N ∧ N1 = N − M ∧ (M = N1 ∧ R = M)r


p

In the last formula, the positions p, q, r corresponding to the relation symbol gcd and
the two occurrences of gcd1 are marked. It can be observed that the last formula is
unsatisfiable, and that I = {p 7→ ((M = N) → (M ≥ R)), q 7→ true, r 7→ true}
is a disjunctive interpolant. A solution for the Horn clauses can be derived from the
interpolant by conjoining the constraints derived for the two occurrences of gcd1:

gcd(M,N,R) = ((M = N)→ (M ≥ R)), gcd1(M,N,R) = true



14 Philipp Rümmer, Hossein Hojjat, Viktor Kuncak

Theorem 2 Suppose φ is a constraint, and suppose pos ⊆ positions(φ) is a set of
positions in φ that are only underneath the connectives ∧ and ∨. If Constr is a con-
straint language that has the interpolation property, then a disjunctive interpolant I
exists for φ and pos if and only if φ is unsatisfiable.

Proof “⇒” By means of simple induction, we can derive that φ↓ p |= I(p) holds for
every disjunctive interpolant I for φ and pos, and for every p ∈ pos. From Def. 3, it
then follows that φ is unsatisfiable.

“⇐” Suppose φ is unsatisfiable. We encode the disjunctive interpolation prob-
lem into a (conjunctive) tree interpolation problem by adding auxiliary Boolean vari-
ables.1 Wlog, we assume that pos contains the root position root of φ. The graph
of the tree interpolation problem is (pos, E), with the edge relation E = {(p, q) |
p < q and ¬∃r.p < r < q}. For every p ∈ pos, let ap be a fresh Boolean variable.
We label the nodes of the tree using the function φL : pos → Constr. For each posi-
tion p ∈ pos, with direct children {q1, . . . , qn} = {q ∈ pos | E(p, q)} we define

φL(p) =

φ[q1/aq1 , . . . , qn/aqn ] if p = root
¬ap ∨

(
φ[q1/aq1 , . . . , qn/aqn ]

)
↓ p otherwise

Observe that
∧

p∈pos φL(p) is unsatisfiable. According to [37], a tree interpolant IT

exists for this labelling function. By construction, for non-root positions p ∈ pos \
{root} the interpolant labelling is equivalent to IT (p) ≡ ¬ap ∨ Ip, where Ip does not
contain any further auxiliary Boolean variables. We can then construct a disjunctive
interpolant I for the original problem as

I(p) =

false if p = root
Ip otherwise

To see that I is a disjunctive interpolant, observe that for each position p ∈ pos with
direct children {q1, . . . , qn} = {q ∈ pos | E(p, q)} the following entailment holds
(since IT is a tree interpolant): φL(p) ∧ (¬aq1 ∨ Iq1 ) ∧ · · · ∧ (¬aqn ∨ Iqn ) |= IT (p)
Via Boolean reasoning this implies:

(
φ[q1/Iq1 , . . . , qn/Iqn ]

)
↓ p |= I(p). ut

The proof provides a constructive method to solve disjunctive interpolation prob-
lems, by means of transformation to a tree interpolation problem. This is also the
algorithm that we used in our experiments in Sect. 9.2; practical aspects of this ap-
proach are discussed in the beginning of Sect. 9.

6.1 Solvability of Body-Disjoint Horn Clauses

Disjunctive interpolation corresponds to a specific class of recursion-free clauses,
namely Horn clauses that are body disjoint (Def. 2); in contrast, the Horn clauses do
not have to be head disjoint,, i.e., it is possible to consider multiple clauses with the
same head symbol. Syntactic solutions of a set HC of body-disjoint Horn clauses

1 The concept of auxiliary Boolean variables to represent interpolation problems has also been used
in [41] and [2], for the purpose of extracting function summaries in model checking.
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can be computed by solving a disjunctive interpolation problem; vice versa, every
disjunctive interpolation problem can be translated into an equivalent set of body-
disjoint clauses.

In order to extract an interpolation problem from HC, we first normalise the
clauses: for every relation symbol p ∈ R, we fix a unique vector of variables x̄p, and
rewriteHC such that p only occurs in the form p(x̄p). This is possible due to the fact
thatHC is body disjoint. The translation from Horn clauses to a disjunctive interpo-
lation problem is done recursively, similar in spirit to inlining of function invocations
in a program; thanks to body-disjointness, the encoding is polynomial.

enc
(
HC

)
=

∨
(C∧B1∧···∧Bn→false) ∈HC

C ∧ enc′(B1) ∧ · · · ∧ enc′(Bn)

enc′
(
p(x̄p)

)
=

 ∨
(C∧B1∧···∧Bn→p(x̄p)) ∈HC

C ∧ enc′(B1) ∧ · · · ∧ enc′(Bn)


lp

Note that the resulting formula enc(HC) contains a unique position lp at which the
definition of a relation symbol p is inlined; in the second equation, this position is
marked with lp. Any disjunctive interpolant I for this set of positions represents a
syntactic solution ofHC, and vice versa.

7 Solvability of Recursion-free Horn Clauses

The previous section discussed how the class of recursion-free body-disjoint Horn
clauses can be solved by reduction to disjunctive interpolation. We next show that this
construction can be generalised to arbitrary systems of recursion-free Horn clauses.
In absence of the body-disjointness condition, however, the encoding of Horn clauses
as interpolation problems can incur a potentially exponential blowup. We give a
complexity-theoretic argument justifying that this blowup cannot be avoided in gen-
eral. This puts disjunctive interpolation (and, equivalently, body-disjoint Horn clauses)
at a sweet spot: preserving the relatively low complexity of ordinary binary Craig in-
terpolation, while carrying much of the flexibility of the Horn clause framework.

We first introduce the exhaustive expansion exp(HC) of a setHC of Horn clauses,
which generalises the Horn clause encoding from the previous section. We write C′∧
B′1 ∧ · · · ∧ B′n → H′ for a fresh variant of a Horn clause C ∧ B1 ∧ · · · ∧ Bn → H,
i.e., the clause obtained by replacing all free first-order variables with fresh variables.
Expansion is then defined by the following recursive functions:

exp
(
HC

)
=

∨
(C∧B1∧···∧Bn→false) ∈HC

C′ ∧ exp′(B′1) ∧ · · · ∧ exp′(B′n)

exp′
(
p(t̄)

)
=

∨
(C∧B1∧···∧Bn→p(s̄)) ∈HC

C′ ∧ exp′(B′1) ∧ · · · ∧ exp′(B′n) ∧ t̄ = s̄′

Note that exp is only well-defined for finite and recursion-free sets of Horn clauses,
since the expansion might not terminate otherwise.
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Theorem 3 (Solvability of recursion-free Horn clauses) Let HC be a finite and
recursion-free set of Horn clauses. If the underlying constraint language has the in-
terpolation property, then the following statements are equivalent:

1. HC is semantically solvable;
2. HC is syntactically solvable;
3. exp(HC) is unsatisfiable.

Proof 2 ⇒ 1 holds because a syntactic solution gives rise to a semantic solution by
interpreting the solution constraints. ¬3 ⇒ ¬1 holds because a model of exp(HC)
witnesses domain elements that every semantic solution of HC has to contain, but
which violate at least one clause of the form C ∧ B1 ∧ · · · ∧ Bn → false, implying that
no semantic solution can exist.

3⇒ 2 is shown by encodingHC into a disjunctive interpolation problem (Sect. 6),
which can solved with the help of Theorem 2. To this end, clauses are first duplicated
to obtain a problem that is body disjoint, and subsequently normalised as described
in Sect. 6.1. More details are given in Appendix A of [40]. ut

8 The Complexity of Recursion-free Horn Clauses

Theorem 3 gives rise to a general algorithm for (syntactically) solving recursion-free
sets HC of Horn clauses, over constraint languages for which interpolation proce-
dures are available. The general algorithm requires, however, to generate and solve
the expansion exp(HC) of the Horn clauses, which can be exponentially bigger than
HC (in caseHC is not body disjoint), and might therefore require exponential time.
This leads to the question whether more efficient algorithms are possible for solving
Horn clauses.

8.1 Complexity for Boolean Constraints

We give a number of complexity results about (semantic) Horn clause solvability.
Most importantly, we can observe that solvability is PSPACE-hard, for every non-
trivial constraint language Constr. The authors of [30] conjecture a similar complex-
ity result for the case of programs with procedures. In [14] a similar result is proved
for non-recursive Boolean programs.

Lemma 2 Suppose a constraint language can distinguish at least two values, i.e.,
there are two ground terms t0 and t1 such that t0 , t1 is satisfiable. Then the semantic
solvability problem for recursion-free Horn clauses is PSPACE-hard.

Proof We reduce the unsatisfiability problem of quantified Boolean formulae (QBF,
known to be PSPACE-hard) to solvability of recursion-free Horn clauses. Assume an
arbitrary QBF of the shape φ = Q1x1.Q2x2....Qnxn.F, where Qi ∈ ∃,∀ are quanti-
fiers, xi are all variables occurring in the formula, and F is a quantifier-free Boolean
formula in CNF.

We translate φ into a recursion-free set of Horn clauses:
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function ShowExpSat(HC : set of Horn clauses)
nondet. choose clause

(
C ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n)→ false

)
∈ HC

for i = 1, . . . , n do
nondet. choose Boolean values āi ∈ B

α(pi)

ShowLiteral(pi, āi,HC)
end for
Assume C ∧

∧n
i=1 t̄i = āi is satisfiable

returnHC is satisfiable
end function

procedure ShowLiteral(p : R, ā : Bα(p), HC : set of Horn clauses)
nondet. choose clause

(
C ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n)→ p(t̄)

)
∈ HC

for i = 1, . . . , n do
nondet. choose Boolean values āi ∈ B

α(pi)

ShowLiteral(pi, āi,HC)
end for
Assume C ∧ t̄ = ā ∧

∧n
i=1 t̄i = āi is satisfiable

end procedure

Fig. 4 Algorithm for proving satisfiability of a formula exp(HC) with polynomial space.

– a literal xi of a clause C j in F becomes a Horn clause
xi = t1 → Ci, j(x1, x2, . . . , xi−1, t1, xi+1, . . . , xn)

– a literal ¬xi of a clause C j in F becomes a Horn clause
xi = t0 → Ci, j(x1, x2, . . . , xi−1, t0, xi+1, . . . , xn)

– a clause C j in F becomes a set of Horn clauses
C1, j(x1, . . .)→ C j(x1, . . .), C2, j(x1, . . .)→ C j(x1, . . .), . . .

– the body F becomes the Horn clause
C1(x1, . . .) ∧C2(x1, . . .) ∧ · · · → Fn(x1, . . .)

– a quantifier Qi = ∃ is translated as the two clauses
Fi+1(x1, . . . , xi−1, 0)→ Fi(x1, . . . , xi−1), Fi+1(x1, . . . , xi−1, 1)→ Fi(x1, . . . , xi−1)

– a quantifier Qi = ∀ is translated as the clause
Fi+1(x1, . . . , xi−1, 0) ∧ Fi+1(x1, . . . , xi−1, 1)→ Fi(x1, . . . , xi−1)

– finally, we add the clause F1() ∧ t0 , t1 → false.

It is now easy to see that the expansion exp(HC) of the Horn clauses coincides with
the result of expanding all quantifiers in φ. By Theorem 3, unsatisfiability of the
expansion is equivalent to solvability of the set of Horn clauses. ut

Looking for upper bounds, it is easy to see that solvability of Horn clauses is
in co-NEXPTIME for any constraint language with satisfiability problem in NP (for
instance, quantifier-free Presburger arithmetic). This is because the size of the ex-
pansion exp(HC) is at most exponential in the size of HC. Individual constraint
languages admit more efficient solvability checks:

Theorem 4 Semantic solvability of recursion-free Horn clauses over the constraint
language of Booleans is PSPACE-complete.
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Proof In combination with Lemma 2, it suffices to show that solvability of a setHC
of recursion-free Horn clauses is in PSPACE. This can be done by constructing an
algorithm ShowExpSat(HC) for checking satisfiability of exp(HC), and proving that
the algorithm runs in polynomial space. Importantly, this satisfiability check can
be done without explicit construction of the (worst-case exponentially big) formula
exp(HC).

The algorithm is shown in Fig. 4, and is kept non-deterministic for reasons of pre-
sentation; it could easily be made deterministic by turning non-deterministic choices
into explicit loops. α(p) in the algorithm denotes the arity of a relation symbol p.

To see that the algorithm runs in polynomial space, first observe that the recursion
depth of the procedures is bounded by the number of available relation symbols, and
thus by the size of HC. At each recursive call, only data linear in the size of one
clause in HC has to be stored, so that the overall memory consumption is linear in
the size ofHC. ut

8.2 Complexity for Presburger Arithmetic Constraints

Constraint languages that are more expressive than the Booleans lead to a significant
increase in the complexity of solving Horn clauses. The lower bound in the following
theorem can be shown by simulating time-bounded non-deterministic Turing ma-
chines.

Theorem 5 Semantic solvability of head-disjoint recursion-free Horn clauses over
the constraint language of quantifier-free Presburger arithmetic is co-NEXPTIME-
complete.

Proof It has already been observed that solvability is in co-NEXPTIME, so we pro-
ceed to show hardness by direct reduction of exponential-time-bounded Turing ma-
chines (possibly non-deterministic, with binary tape) to head-disjoint Horn clauses
over quantifier-free PA. A Turing machine M = (Q, δ, q0, F) is defined by

– a finite non-empty set Q of states,
– an initial state q0 ∈ Q,
– a final state f ∈ Q,
– a transition relation δ ⊆ ((Q \ { f }) × {0, 1}) × (Q × {0, 1} × {L,R}).

Wlog, we assume that Q = {0, 1, . . . , f } ⊆ Z and q0 = 0.
We define a relation symbol step(q, l, r, q′, l′, r′) to represent single execution

steps of the machine. The parameters l, r, l′, r′ represent the tape, which is encoded
as non-negative integers; the bits in the binary representation of the integers are the
contents of the tape cells. l is the tape left of the head, r the tape right of the head. The
least-significant bit of r is the tape cell at the head position. l′, r′ are the corresponding
post-state variables after one execution step.

A tuple (q, b, q′, b′, L) ∈ δ (moving the tape to the left) is represented by a clause

step(q, x, b + 2y, q′, b′ + 2x, y) (3)
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where x, y are implicitly universally quantified variables of the clause, and q, b, q′, b′

concrete numeric constants. Similarly, a tuple (q, b, q′, b′,R) ∈ δ is encoded as

0 ≤ x ≤ 1→ step(q, x + 2y, b + 2z, q′, y, x + 2b′ + 4z) (4)

Finally, to represent termination, we add a clause

step( f , x, y, f , x, y) (5)

implying that the machine will stay in the final state f forever. Note that clauses (3),
(4), (5) can be merged to a single clause to establish head-disjointness.

We then introduce n further clauses to model an execution sequence of length 2n:

step(x, y, z, x′, y′, z′) ∧ step(x′, y′, z′, x′′, y′′, z′′)→ step1(x, y, z, x′′, y′′, z′′)

step1(x, y, z, x′, y′, z′) ∧ step1(x′, y′, z′, x′′, y′′, z′′)→ step2(x, y, z, x′′, y′′, z′′)
· · ·

step n−1(x, y, z, x′, y′, z′) ∧ step n−1(x′, y′, z′, x′′, y′′, z′′)→ stepn(x, y, z, x′′, y′′, z′′)

The final clauses expresses that the Turing machine does not terminate within 2n

steps, when started with the initial tape t: stepn(0, 0, t, f , x, y)→ false.
Clearly, the expansion exp(HC) of the resulting setHC of Horn clauses is unsat-

isfiable (i.e., HC can be solved) if and only if no execution of the Turing machine,
starting with the initial tape t, terminates within 2n steps. ut

The lower bounds in Lemma 2 and Theorem 5 hinge on the fact that sets of
Horn clauses can contain shared relation symbols in bodies. Neither result holds if
we restrict ourselves to body-disjoint Horn clauses, which correspond to disjunctive
interpolation as introduced in Sect. 6. Since the expansion exp(HC) of body-disjoint
Horn clauses is linear in the size of the set of Horn clauses, also solvability can be
checked efficiently:

Theorem 6 Semantic solvability of a set of body-disjoint Horn clauses, and equiva-
lently the existence of a solution for a disjunctive interpolation problem, is in co-NP
when working over the constraint languages of Booleans and quantifier-free Pres-
burger arithmetic.

Body-disjoint Horn clauses are still expressive: they can directly encode acyclic
control-flow graphs, as well as acyclic unfolding of many simple recursion patterns.

A similar complexity result holds for linear Horn clauses:

Lemma 3 Semantic solvability of recursion-free linear Horn clauses is in co-NP
when working over the constraint languages of Booleans and quantifier-free Pres-
burger arithmetic..

Proof A set HC of recursion-free linear Horn clauses is solvable if and only if the
expansion exp(HC) is unsatisfiable. For linear clauses, exp(HC) is a disjunction
of (possibly) exponentially many formulae, each of which is linear in the size of
exp(HC). Consequently, satisfiability of exp(HC) is in NP, and unsatisfiability in co-
NP. ut
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Fig. 5 Relationship between different forms of Craig interpolation, and different fragments of recursion-
free Horn clauses. An arrow from A to B expresses that problem A is (strictly) subsumed by B. The
complexity classes “co-NP” and “co-NEXPTIME” refer to the problem of checking solvability of Horn
clauses over quantifier-free Presburger arithmetic.

We conclude by giving an overview of the various fragments of recursion-free
Horn clauses, and the corresponding interpolation problem, in Fig. 5. The diagram
also shows the complexity of deciding (semantic or syntactic) solvability of a set of
Horn clauses, for Horn clauses over the constraint language of quantifier-free Pres-
burger arithmetic.

9 Model Checking with Recursive Horn Clauses

Where recursion-free Horn clauses generalise the concept of Craig interpolation,
solving recursive Horn clauses corresponds to the verification of general programs
with loops, recursion, or concurrency features [16]. Procedures to solve recursion-
free Horn clauses can serve as a building block within model checking algorithms
for recursive Horn clauses [16], and are used to construct or refine abstractions by
analysing spurious counterexamples. In particular, our disjunctive interpolation can
be used for this purpose, and offers a high degree of flexibility due to the possibility to
analyse counterexamples combining multiple execution traces. We illustrate the use
of disjunctive interpolation within a predicate abstraction-based algorithm for solv-
ing Horn clauses. Our model checking algorithm is similar in spirit to the procedure
in [16], and is explained in Sect. 9.1.



On Recursion-free Horn Clauses and Craig Interpolation 21

And/or trees of clauses. For sake of presentation, in our algorithm we represent coun-
terexamples (i.e., recursion-free sets of Horn clauses) in the form of and/or trees la-
belled with clauses. Such trees are defined by the following grammar:

AOTree ::= And(h,AOTree, . . . ,AOTree) | Or(AOTree, . . . ,AOTree)

where h ranges over (possibly recursive) Horn clauses. We only consider well-formed
trees, in which the children of every And-node have head symbols that are consistent
with the body literals of the clause stored in the node, and the sub-trees of an Or-node
all have the same head symbol. And/or trees are turned into body-disjoint recursion-
free sets of clauses by renaming relation symbols appropriately.

Example 6 The clauses in Fig. 2 can be represented by the following and/or tree
(referring to clauses in Fig. 1).

And
(
(4), Or

(
And((1)), And((2), And((1))), And((3), And((1)))

))
Solving and/or dags. Counterexamples extracted from model checking problems of-
ten assume the form of and/or dags, rather than and/or trees. Since and/or-dags cor-
respond to Horn clauses that are not body-disjoint, the complexity-theoretic results
of the last section imply that it is in general impossible to avoid the expansion of
and/or-dags to and/or-trees; there are, however, various effective techniques to speed-
up handling of and/or-dags (related to the techniques in [30]). We highlight two of
the techniques we use in our interpolation engine Princess [8], which we used in our
experimental evaluation of the next section:

1) counterexample-guided expansion iteratively considers only parts of the fully
expanded and/or dag, until an unsatisfiable fragment of the fully expanded tree has
been found; such a fragment is sufficient to compute a solution. Counterexamples
are useful in two ways: they can determine which or-branch of an and/or-dag is still
satisfiable and has to be expanded further, but also whether it is necessary to create
further copies of a shared subtree.

2) and/or dag restructuring factors out some common sub-dag s underneath an
Or-node, making the and/or-dag more tree-like. This transformation corresponds to
the following rewriting of and/or-dags, for a suitable fresh relation symbol q, and can
significantly reduce the interpolation effort:

Or
(
And

(
p(x̄) ∧ B→ r(ȳ), s, t̄

)
, And

(
p(x̄) ∧ B′ → r(ȳ), s, t̄′

))
{ And

(
p(x̄) ∧ q(. . .)→ r(ȳ), s, Or

(
And(B→ q(. . .), t̄ ), And(B′ → q(. . .), t̄′)

))
9.1 A Predicate Abstraction-based Model Checking Algorithm

Our model checking algorithm is in Fig. 6, and similar in spirit as the procedure
in [16]; it has been implemented in the model checker Eldarica.2 Solutions for Horn

2 http://lara.epfl.ch/w/eldarica
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clauses are constructed in disjunctive normal form by building an abstract reachabil-
ity graph over a set of given predicates. When a counterexample is detected (a clause
with consistent body literals and head false), a theorem prover is used to verify that
the counterexample is genuine; spurious counterexamples are eliminated by generat-
ing additional predicates by means of disjunctive interpolation.

In Fig. 6, Π : R → Pfin(Constr) denotes a mapping from relation symbols to
the current (finite) set of predicates used to approximate the relation symbol. Given a
(possibly recursive) setHC of Horn clauses, we define an abstract reachability graph
(ARG) as a hyper-graph (S , E), where

– S ⊆ {(p,Q) | p ∈ R,Q ⊆ Π(p)} is the set of nodes, each of which is a pair
consisting of a relation symbol and a set of predicates.

– E ⊆ S ∗ × HC × S is the hyper-edge relation, with each edge being labelled with
a clause. An edge E(〈s1, . . . , sn〉, h, s), with h = (C ∧ B1 ∧ · · · ∧ Bn → H) ∈ HC,
implies that

– si = (pi,Qi) and Bi = pi(t̄i) for all i = 1, . . . , n, and
– s = (p,Q), H = p(t̄), and Q = {φ ∈ Π(p) | C ∧ Q1[t̄1] ∧ · · · ∧ Qn[t̄n] |= φ[t̄]},

where we write Qi[t̄i] for the conjunction of the predicates Qi instantiated for
the argument terms ti.

An ARG (S , E) is called closed if the edge relation represents all Horn clauses in
HC. This means, for every clause h = (C ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n) → H) ∈ HC and
every sequence (p1,Q1), . . . , (pn,Qn) ∈ S of nodes one of the following properties
holds:

– C ∧ Q1[t̄1] ∧ · · · ∧ Qn[t̄n] |= false, or
– there is an edge E(〈(p1,Q1), . . . , (pn,Qn)〉,C, s) such that s = (p,Q), H = p(t̄),

and Q = {φ ∈ Π(p) | C ∧ Q1[t̄1] ∧ · · · ∧ Qn[t̄n] |= φ[t̄]}.

Lemma 4 A set HC of Horn clauses has a closed ARG (S , E) if and only if HC is
syntactically solvable.

Proof “⇒”: Define each relation symbol p as the disjunction
∨

(p,Q)∈S
∧

Q. Since S
is closed under the edge relation, this yields a solution for the setHC of Horn clauses.

“⇐”: Suppose HC is syntactically solvable, with each relation symbol p being
mapped to the constraint Cp. We define the predicate abstraction Π(p) = {Cp}, and
construct the ARG with nodes S = {(p,Cp)}, and the maximum edge relation E,
which is closed. ut

The function ExtractCEX extracts an and/or-tree representing a set of counterex-
amples, which can be turned into a recursion-free body-disjoint set of Horn clauses,
and solved as described in Sect. 6.1. In general, the tree contains both conjunctions
(from clauses with multiple body literals) and disjunctions, generated when following
multiple hyper-edges (the case |T | > 1). Disjunctions make it possible to eliminate
multiple counterexamples simultaneously. The algorithm is parametric in the precise
strategy used to compute counterexamples (represented as non-deterministic choice
in the pseudo code). The strategies we evaluated in the experiments (shown in the
next section) are:
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S := ∅, E := ∅, Π := {p 7→ ∅ | p ∈ R} . Empty graph, no predicates
function ConstructARG

while true do
nondet. choose clause h = (C ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n)→ H) ∈ HC

and nodes (p1,Q1), . . . , (pn,Qn) ∈ S
such that ¬∃s. (〈(p1,Q1), . . . , (pn,Qn)〉, h, s) ∈ E
and C ∧ Q1[t̄1] ∧ · · · ∧ Qn[t̄n] 6|= false

if no such clauses and nodes exist then returnHC is solvable
end if
if H = false then . Refinement needed

tree := And(h,ExtractCEX(p1,Q1), . . . ,ExtractCEX(pn,Qn)
if tree is unsatisfiable then

extract disjunctive interpolant from tree, add predicates to Π
delete part of (S , E) used to construct tree

else returnHC is unsolvable, with counterexample trace tree
end if

else . Add edge to ARG
then H = p(t̄)
Q := {φ ∈ Π(p) | {C} ∪ Q1 ∪ . . . ∪ Qn |= φ}
e := (〈(p1,Q1), . . . , (pn,Qn)〉, h, (p,Q))
S := S ∪ {(p,Q)}, E := E ∪ {e}

end if
end while

end function

function ExtractCEX(root : S ) . Extract disjunctive interpolation problem
nondet. choose ∅ , T ⊆ E with ∀e ∈ T. e = ( , , root)
return Or

{
And(h,ExtractCEX(s1), . . . ,ExtractCEX(sn)) |
(〈s1, . . . , sn〉, h, root) ∈ T

}
end function

Fig. 6 Algorithm for construction of abstract reachability graphs.

TI extraction of a single counterexamples with minimal depth
(which means that disjunctive interpolation reduces to Tree Interpolation), and

DI simultaneous extraction of all counterexamples with minimal depth
(so that genuine Disjunctive Interpolation is used).

Example 7 We consider the Horn clauses given in Fig. 1,
Sect. 2. Starting with an empty predicate map Π , the function
ConstructARG will construct the reachability graph shown
on the right (edges are labelled with the clauses from Fig. 1).
Since false is reachable, function ExtractCEX will be called
to extract a counterexample; possible results of executing Ex-
tractCEX include:

(gcd, ∅)

false

(1)

(4)(2) (3)

tree1 = And
(
(4), And((1))

)
,
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# Benchmarks # Solved
TI DI Z3

(a) Loop Invariants Using Abduction [11]
46 30 31 35
(b) Control Flow and Integer Variables [6]
13 9 13 13
(c) Benchmarks from HSF [16]
15 10 11 11
(d) Benchmarks from [27]
56 56 56 53
(e) Benchmarks from Reve [12]
72 46 48 24

Fig. 7 Number of solved benchmarks for TI = Tree Interpolation, DI = Disjunctive Interpolation and Z3.
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(b) Model checking runtime

Fig. 8 Comparison of the number of required refinement steps, and the runtime (in seconds), for the case
of single counterexamples (TI) and simultaneous extraction of all minimal-depth counterexamples (DI).
All experiments were done on an AMD OpteronTMProcessor 6220 16-core machine with 3GHz and 32Gb
of memory. The timeout is 2 minutes.

tree2 = And
(
(4), Or(And((1)), And((2),And((1))), And((3),And((1))))

)
The counterexample tree2 corresponds to the clauses shown in Fig. 2. Elimination of
this counterexample with the help of disjunctive interpolation yields the predicates
discussed in Example 5, which are sufficient to construct a closed ARG.

9.2 Experimental Evaluation

We have evaluated our algorithm on a library of more than 200 benchmarks in inte-
ger linear arithmetic from 5 different sources: benchmarks that are used in inductive
loop invariant generation using abduction [11], control flow and integer variables pro-
grams of the International Competition on Software Verification (SVCOMP) [6], the
library of benchmarks from the HSF tool [16], benchmarks for consistency analysis
of decision-making programs [27], and automatic regression benchmarks [12].

Table 7 gives the total number of benchmarks that the approaches of tree inter-
polation and disjunctive interpolation can solve in each category. It also gives the
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number of successfully handled benchmarks for Z33. Scatter plots comparing the re-
sults for the Tree Interpolation and Disjunctive Interpolation runs are given in Fig. 8.
These plots compare the execution time and the number of iterations for the bench-
marks for which both TI and DI succeed.

The total number of solved problems within the time bounds in Table 7 reveals
that in 4 out of 5 categories DI has solved more benchmarks comparing to TI and
in one category both approaches could solve all the benchmarks. This means that in
general DI is able to converge faster with a smaller number of abstraction refinement
steps. Studying the results more closely for the benchmarks that both approaches suc-
ceed, we observed that DI consistently led to a smaller number of abstraction refine-
ment steps as the scatter plot in Fig. 8 shows. DI is indeed able to eliminate multiple
counterexamples simultaneously, and to rapidly generate predicates that are useful for
abstraction. The experiments also showed that there is a trade-off between the time
spent generating predicates, and the quality of the predicates. In some benchmarks
DI was slower than TI, despite fewer refinement steps. This may change as we make
further improvements to our prototype implementation of disjunctive interpolation.

10 Conclusions

We have given a systematic study of different forms of Craig interpolation, the con-
nection between Craig interpolation and fragments of recursion-free Horn clauses,
as well the complexity for solving constraints. In addition, we introduced disjunc-
tive interpolation as a new form of Craig interpolation tailored to model checkers
based on Horn clauses. Disjunctive interpolation can be identified as solving body-
disjoint systems of recursion-free Horn clauses, and subsumes a number of previous
forms of interpolation, including tree interpolation. We believe that the flexibility of
disjunctive interpolation is highly beneficial for building interpolation-based model
checkers.

Acknowledgements We would like to thank Shaz Qadeer for discussions about the
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