
Free Variables and Theories:
Revisiting Rigid E -Unification?

Peter Backeman and Philipp Rümmer

Uppsala University, Sweden

Abstract. The efficient integration of theory reasoning in first-order
calculi with free variables (such as sequent calculi or tableaux) is a long-
standing challenge. For the case of the theory of equality, an approach
that has been extensively studied in the 90s is rigid E -unification, a vari-
ant of equational unification in which the assumption is made that every
variable denotes exactly one term (rigid semantics). The fact that simul-
taneous rigid E -unification is undecidable, however, has hampered prac-
tical adoption of the method, and today there are few theorem provers
that use rigid E -unification.
One solution is to consider incomplete algorithms for computing (simul-
taneous) rigid E -unifiers, which can still be sufficient to create sound
and complete theorem provers for first-order logic with equality; such
algorithms include rigid basic superposition proposed by Degtyarev and
Voronkov, but also the much older subterm instantiation approach intro-
duced by Kanger in 1963 (later also termed minus-normalisation). We
introduce bounded rigid E -unification (BREU) as a new variant of E -
unification corresponding to subterm instantiation. In contrast to general
rigid E -unification, BREU is NP-complete for individual and simultane-
ous unification problems, and can be solved efficiently with the help of
SAT; BREU can be combined with techniques like congruence closure
for ground reasoning, and be used to construct theorem provers that are
competitive with state-of-the-art tableau systems. We outline ongoing
research how BREU can be generalised to other theories than equality.

1 Introduction

The integration of efficient equality reasoning, and theory reasoning in general,
in tableaux and sequent calculi is a long-standing challenge, and has led to
a wealth of theoretically intriguing, yet surprisingly few practically satisfying
solutions. Among others, a family of approaches related to the (undecidable)
problem of computing simultaneous rigid E-unifiers have been developed, by
utilising incomplete unification procedures in such a way that an overall complete
first-order calculus is obtained [11, 4, 9]. Following the line of research started
by Kanger [11], we recently introduced simultaneous bounded rigid E-unification
(BREU) [2], a new version of rigid E -unification that is bounded in the sense that

? This work was partly supported by the Microsoft PhD Scholarship Programme and
the Swedish Research Council.

variables only represent terms from finite domains, thus preserving decidability
even for simultaneous E -unification problems. As demonstrated in [2], BREU can
be used to design sound and complete calculi for first-order logic with equality,
and to implement theorem provers that compare favourably to state-of-the-art
tableau provers in terms of performance on problems with equality.

In this paper, we study the problem of generalising from BREU to bounded
rigid unification modulo theories beyond equality. To this end, we first investigate
different ways of defining semantics of BREU problems: BREU problems can be
interpreted both syntactically and semantically, leading to two formalisms that
differ in terms of expressiveness and complexity. We discuss how the semantic
setting lends itself to generalisation rather naturally, in particular for theories
that admit quantifier elimination. We conclude by outlining resulting challenges.

2 Background

2.1 Rigid E-Unification

We start by illustrating the rigid E -unification approach using the following
problem from [4]:

φ = ∃x, y, u, v.
(

(a ≈ b → g(x, u, v) ≈ g(y, f(c), f(d))) ∧
(c ≈ d → g(u, x, y) ≈ g(v, f(a), f(b)))

)
To show validity of φ, a Gentzen-style proof (or, equivalently, a tableau) can be
constructed, using free variables for x, y, u, v:

A
a ≈ b ` g(X,U, V) ≈ g(Y, f(c), f(d))

B
c ≈ d ` g(U,X, Y) ≈ g(V, f(a), f(b))

` (a ≈ b→ g(X,U, V) ≈ g(Y, f(c), f(d))) ∧ (c ≈ d→ g(U,X, Y) ≈ g(V, f(a), f(b)))

` φ

To finish this proof, both A and B need to be closed by applying further
rules, and substituting concrete terms for the variables. The substitution σl =
{X 7→ Y,U 7→ f(c), V 7→ f(d)} makes it possible to close A through equational
reasoning, and σr = {X 7→ f(a), U 7→ V, Y 7→ f(b)} closes B, but neither closes
both. Finding a substitution that closes both branches is known as simultaneous
rigid E-unification (SREU), and has first been formulated in [8]:

Definition 1 (Rigid E-Unification). Let E be a set of equations, and s, t be
terms. A substitution σ is called a rigid E -unifier of s and t if sσ ≈ tσ follows
from Eσ via ground equational reasoning. A simultaneous rigid E -unifier σ is a
common rigid E-unifier for a set (Ei, si, ti)

n
i=1 of rigid E-unification problems.

In our example, two rigid E -unification problems have to be solved:

E1 = {a ≈ b}, s1 = g(X,U, V), t1 = g(Y, f(c), f(d)),

E2 = {c ≈ d}, s2 = g(U,X, Y), t2 = g(V, f(a), f(b)).

2

We can observe that σs = {X 7→ f(a), Y 7→ f(b), U 7→ f(c), V 7→ f(d)} is a
simultaneous rigid E -unifier, and suffices to finish the proof of φ.

The SREU problem famously turned out undecidable [3], which makes the
style of reasoning shown here problematic in automated theorem provers. Differ-
ent solutions have been proposed to address this situation, including potentially
non-terminating, but complete E -unification procedures [7], and terminating but
incomplete algorithms that are nevertheless sufficient to create complete proof
procedures [11, 4, 9]. The practical impact of such approaches has been limited;
to the best of our knowledge, there is no (at least no actively maintained) theo-
rem prover based on such explicit forms of SREU.

2.2 Subterm Instantiation and Bounded Rigid E-Unification

An early solution in the class of “terminating, but incomplete” algorithms for
SREU was introduced as dummy instantiation in the seminal work of Kanger [11]
(in 1963, i.e., even before the introduction of unification), and later studied under
the names subterm instantiation and minus-normalisation [5, 6]; the relationship
to SREU was observed in [4]. In contrast to full SREU, subterm instantiation
only considers E -unifiers where substituted terms are taken from some prede-
fined finite set, which directly implies decidability. The impact of subterm instan-
tiation on practical theorem proving was again limited, however, among others
because no efficient search procedures for dummy instantiation were available [6].

In recent work, we have introduced bounded rigid E-unification (BREU),
a new restricted version of SREU that captures the decision problem to be
solved in the subterm instantiation method, and developed symbolic algorithms
for computing bounded rigid E -unifiers [2, 1]. We illustrate the application of
BREU on the example from the previous section; for sake of presentation, BREU
operates on formulae that are normalised by means of flattening (observe that
φ and φ′ are equivalent):

φ′ = ∀z1, z2, z3, z4.
(
f(a) 6≈ z1 ∨ f(b) 6≈ z2 ∨ f(c) 6≈ z3 ∨ f(d) 6≈ z4 ∨

∃x, y, u, v. ∀z5, z6, z7, z8.

g(x, u, v) 6≈ z5 ∨ g(y, z3, z4) 6≈ z6 ∨
g(u, x, y) 6≈ z7 ∨ g(v, z1, z2) 6≈ z8 ∨
((a 6≈ b ∨ z5 ≈ z6) ∧ (c 6≈ d ∨ z7 ≈ z8))

A proof constructed for φ′ has the same structure as the one for φ, with the

difference that all function terms are now isolated in the antecedent:

A′

. . . , g(X,U, V) ≈ o5, a ≈ b ` o5 ≈ o6
B′

. . . , g(U,X, Y) ≈ o7, c ≈ d ` o7 ≈ o8
...

f(a) ≈ o1 ∨ f(b) ≈ o2 ∨ f(c) ≈ o3 ∨ f(d) ≈ o4 ` ∃x, y, u, v. ∀z5, z6, z7, z8. . . .
(∗)

...

` ∀z1, z2, z3, z4. . . .

To obtain a bounded rigid E -unification problem, we now restrict the terms
considered for instantiation of X,Y, U, V to the symbols that were in scope

3

when the variables were introduced (at (∗) in the proof): X ranges over con-
stants {o1, o2, o3, o4}, Y over {o1, o2, o3, o4, X}, and so on. Since the problem is
flat, those sets contain representatives of all existing ground terms at point (∗)
in the proof. It is therefore possible to find a simultaneous E -unifier, namely the
substitution σb = {X 7→ o1, Y 7→ o2, U 7→ o3, V 7→ o4}.

Despite the restriction to terms of only bounded size, the subterm instantia-
tion strategy gives rise to a sound and complete calculus for first-order logic with
equality [2]; intuitively, the calculus will eventually generate all required terms
by repeated instantiation of quantified formulae. The finiteness of considered
BREU problems, at any point during proof search, enables the use of efficient
techniques from the SAT and SMT domain to check for the existence of unifiers.

2.3 Bounded Rigid E-Unification Formally

Given countably infinite sets C of constants (denoted by c, d, . . .), Vb of bound
variables (written x, y, . . .), and V of free variables (denoted by X,Y, . . .), as well
as a finite set F of fixed-arity function symbols (written f, g, . . .), the syntactic
categories of formulae φ and terms t are defined by

φ ::= φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ || t ≈ t , t ::= c || x || X || f(t, . . . , t) .

We sometimes write φ → ψ as shorthand notation for ¬φ ∨ ψ, and generally
assume that bound variables x only occur underneath quantifiers ∀x or ∃x.
Semantics of terms and formulae without free variables is defined as is common
using first-order structures (U, I) consisting of a non-empty universe U , and an
interpretation function I.

We call constants and (free or bound) variables atomic terms, and all other
terms compound terms. A flat equation is an equation between atomic terms, or
an equation of the form f(t1, . . . , tn) ≈ t0, where t0, . . . , tn are atomic terms. A
substitution is a mapping of variables to terms, such that all but finitely many
variables are mapped to themselves. Symbols σ, θ, . . . denote substitutions, and
we use post-fix notation φσ or tσ to denote application of substitutions. An
atomic substitution is a substitution that maps variables only to atomic terms.
We write u[r] do denote that r is a subexpression of a term or formula u, and
u[s] for the term or formula obtained by replacing the subexpression r with s.

Definition 2 (Replacement relation [13]). The replacement relation →E

induced by a set of equations E is defined by: u[l] → u[r] if l ≈ r ∈ E. The
relation ↔∗E represents the reflexive, symmetric and transitive closure of →E.

Definition 3 (BREU). A bounded rigid E -unification (BREU) problem is a
triple (�, E, e), with � being a partial order over atomic terms such that for all
variables X the set {s | s � X} is finite; E is a finite set of flat formulae; and
e = s ≈ t is an equation between atomic terms (the target equation). An atomic
substitution σ is called a bounded rigid E -unifier of s and t if sσ ↔∗Eσ tσ and
Xσ � X for all variables X.

4

Definition 4 (Simultaneous BREU). A simultaneous bounded rigid E -uni-
fication problem is a pair (�, (Ei, ei)ni=1) such that each triple (�, Ei, ei) is a
bounded rigid E-unification problem. A substitution σ is a simultaneous bounded
rigid E -unifier if it is a bounded rigid E-unifier for each problem (�, Ei, ei).

In the following, we say that a (possibly simultaneous) BREU problem is
syntactically solvable if a bounded rigid E -unifier exists. As has been shown in
[2], checking syntactic solvability is NP-hard, and can effectively be solved via
an encoding to SAT, or with SMT-style reasoning.

Example 5. We revisit the example introduced in Sect. 2.1, which can be cap-
tured as the following simultaneous BREU problem (�, {(E1, e1), (E2, e2)}):

E1 = E ∪ {a ≈ b}, e1 = o5 ≈ o6, E2 = E ∪ {c ≈ d}, e2 = o7 ≈ o8,

E =

{
f(a) ≈ o1, f(b) ≈ o2, f(c) ≈ o3, f(d) ≈ o4,
g(X,U, V) ≈ o5, g(Y, o3, o4) ≈ o6, g(U,X, Y) ≈ o7, g(V, o1, o2) ≈ o8

}
with a ≺ b ≺ c ≺ d ≺ o1 ≺ o2 ≺ o3 ≺ o4 ≺ X≺ Y ≺ U≺ V ≺ o5 ≺ o6 ≺ o7 ≺ o8.

A unifier for this problem is sufficient to close all goals of the tree up to
equational reasoning; one solution is σ = {X 7→ o1, Y 7→ o2, U 7→ o3, V 7→ o4}.

The remainder of the paper considers the question how the notion of BREU
can be carried over to other theories than just equality. As we will see, to this
end it is useful to provide a more relaxed characterisation of BREU solvability.

3 Semantically Solving BREU

Definition 6 (Forest-shaped BREU). A BREU problem (�, (Ei, ei)ni=1) is
forest-shaped if (i) the order � forms a forest, that is, whenever a � b and
a′ � b it is the case that a � a′ or a′ � a; and (ii) components (Ei, ei) (for
i ∈ {1, . . . , n}) do not mix atomic terms from several branches of �, that is,
whenever (Ei, ei) contains atomic terms s, t it is the case that s � t or t � s.

The BREU problem given in Example 5, and generally all BREU problems
extracted from proofs (as defined in [2]) are forest-shaped; the structure of �
will reflect the proof tree from which the BREU problem was derived. Impor-
tantly, forest-shaped problems can be reinterpreted as formulae by translating
the order � to a prefix of quantifiers, and replacing equations Ei with Acker-
mann constraints. Without loss of generality, we assume that every equation in
a set Ei of a BREU problem (�, (Ei, ei)ni=1) contains a function symbol; equa-
tions a ≈ b between constants or variables can be rewritten to f() ≈ a, f() ≈ b
by introducing a fresh zero-ary function f .

Definition 7 (BREU formula encoding). Suppose B = (�, (Ei, si ≈ ti)ni=1)
is a forest-shaped simultaneous BREU problem, and S the (finite) set of atomic
terms occurring in B, with k = |S|. Let further Sb = {x1, . . . , xk} ⊆ Vb be fresh
bound variables (not occurring in B), and σ : S → Sb a bijection such that σ(s) =

5

xi, σ(t) = xj and s � t imply i ≤ j. Then the formula Q1x1.Qkxk.
∧n
j=1Gj

with

Qi =

{
∀ if σ−1(xi) ∈ C is a constant

∃ otherwise

Gj =
(∧
f(ā)≈b,f(ā′)≈b′∈Ej

σ(ā) ≈ σ(ā′)→ σ(b) ≈ σ(b′)
)
→ σ(sj) ≈ σ(tj)

is called a formula encoding of B.

Example 8. Consider the BREU problem B = (�, E, e) defined by

E = {f(X) ≈ c, f(a) ≈ a, f(b) ≈ b}, e = a ≈ b, a ≺ b ≺ c ≺ X .

To encode B as a formula, we fix fresh variables x1, . . . , x4 and the mapping σ =
{a 7→ x1, b 7→ x2, c 7→ x3, X 7→ x4}, and obtain

∀x1.∀x2.∀x3.∃x4. (x4 ≈ x1 → x3 ≈ x1)∧ (x4 ≈ x2 → x3 ≈ x2)→ x1 ≈ x2 . (1)

Here, the assumption x4 ≈ x1 → x3 ≈ x1 stems from the Ackermann con-
straint X ≈ a → c ≈ a, and x4 ≈ x2 → x3 ≈ x2 from X ≈ b → c ≈ b;
other Ackermann constraints are either tautologies, or equivalent to the two
constraints given, and have been left out for sake of brevity.

The formula encoding of a BREU problem is a first-order formula with equal-
ity, but without functions symbols; the validity of the encoding is therefore de-
cidable. It can also be observed that Def. 7 in principle admits multiple formula
encodings for a BREU problem, but those different encodings are guaranteed to
be equivalent, thanks to the fact that the BREU problem is forest-shaped.

We say that a BREU problem is semantically solvable if its formula encoding
is valid. Semantic solvability is a weaker property than syntactic solvability (as in
Def. 3). In particular, it can easily be checked that (1) is valid, but the problem B
from Example 8 does not have any syntactic E -unifiers: such a unifier would have
to map X to one of X, a, b, c, but in no case it is possible to conclude a ≈ b.

Lemma 9. If a (possibly simultaneous) forest-shaped BREU problem B has an
E-unifier, then the formula encoding of B is valid.

Proof. Any syntactic E -unifier defines how existential quantifiers in the formula
encoding have to be instantiated to satisfy the formula. ut

3.1 Semantic Solvability in a First-order Calculus

The sequent calculus for first-order logic with equality introduced in [2] uses
BREU to implement a global closure rule for free-variable proofs:

∗
Γ1 ` ∆1

. . . ∗
Γn ` ∆n

breu

. . .
...

Γ ` ∆

where Γ1 ` ∆1, . . . , Γn ` ∆n are all open goals
of the proof, Ei = {t ≈ s ∈ Γi} are flat
antecedent equations, ei =

∨
{t ≈ s ∈ ∆i} are

succedent equations, and the simultaneous
BREU problem (�, (Ei, ei)

n
i=1) is solvable

6

The rule uses a slightly generalised version of BREU in which a target con-
straint ei can be a disjunction of equations; such problems can easily be trans-
lated to normal BREU at the cost of introducing additional function symbols.
The order � in the rule is derived from the structure of a proof, and the BREU
problem (�, (Ei, ei)ni=1) is in particular forest-shaped. Given the alternative no-
tion of semantic solvability, the question arises whether overall soundness and
completeness of the first-order calculus from [2] are preserved when reformulat-
ing the breu rule to be applicable whenever “the simultaneous BREU prob-
lem (�, (Ei, ei)ni=1) is semantically solvable.” We will call the new rule breusem.

The answer is positive in both cases. From Lem. 9, it follows directly that
replacing breu with breusem preserves completeness of the calculus, because
the weaker side condition only entails that breusem might be applicable in more
cases than breu. Soundness cannot be concluded from the soundness proof given
in [2] for the syntactic case, but we can instead find a simple inductive argument
that the formula encoding of the BREU problem (�, (Ei, ei)ni=1) constructed in
breusem is always an under-approximation of the root sequent of a proof. Thus,
if the formula encoding is valid, also the validity of the root sequent follows:

Lemma 10. Suppose Γ ` ∆ is a sequent without free variables, and P a proof
constructed from Γ ` ∆. If B is the BREU problem constructed in an application
of breusem to P , then the formula encoding φB of B implies

∧
Γ →

∨
∆.

3.2 The Complexity of Semantic Solvability

Example 8 illustrates that the notion of semantic solvability does not coincide
with (and is therefore strictly weaker than) syntactic solvability; this implies
that the use of the relaxed rule breusem can sometimes lead to shorter proofs
compared to the original rule breu. The resulting gain in efficiency is offset,
however, by the increased computational complexity of checking BREU solv-
ability: in the syntactic case, this problem is NP-complete [2], whereas it turns
out that semantic solvability is PSPACE-complete. For membership in PSPACE,
observe that the formula encoding of a BREU problem can directly be mapped
to a Quantified Boolean Formula (QBF), since it is only necessary to consider
universes with as many individuals as the formula contains quantifiers.

Lemma 11 (PSPACE-hardness). Checking whether a (possibly simultane-
ous) forest-shaped BREU problem has a valid formula encoding is PSPACE-hard.

Proof. We show that QBF formulae φ can be translated to BREU problems Bφ,
in such a way that the formula encoding of Bφ is equivalent to φ. Assume that
φ = Q1x1.Qkxk.ψ is in prenex normal form, with Qi ∈ {∃,∀}, and ψ is a
Boolean formula over the variables x1, . . . , xk and connectives ¬,∨.

To represent truth values, two constants 0,1 ∈ C are introduced. Then,
to handle the quantifiers, for each variable xi with Qi = ∃ a fresh free vari-
able Xi ∈ V is picked, and for each xi with Qi = ∀ a fresh variable Xi ∈ V

7

and a fresh constant di ∈ C. In addition, in the latter case we define two BREU
sub-problems (E0

i , e
0
i) and (E1

i , e
1
i) with

E0
i = {di ≈ 0}, e0

i = Xi ≈ 0, E1
i = {di ≈ 1}, e1

i = Xi ≈ 1 .

To represent the Boolean structure of ψ, like in [2] two function symbols for
and fnot are introduced, which are axiomatised by equations EB = {for (0,0) ≈
0, for (0,1) ≈ 1, for (1,0) ≈ 1, for (1,1) ≈ 1, fnot(0) ≈ 1, fnot(1) ≈ 0}. Each
sub-formula θ of ψ is then encoded using a fresh constant cθ and an equation eθ:

eθ = Xi ≈ cθ if θ = xi,

eθ = fnot(cθ1) ≈ cθ if θ = ¬θ1,

eθ = for(cθ1 , cθ2) ≈ cθ if θ = θ1 ∨ θ2 .

We write Eψ = {eθ | θ a sub-formula of ψ} for the set of all such equations.
Finally, the resulting (forest-shaped) BREU problem is

Bφ = (�, {(E0
i , e

0
i), (E

1
i , e

1
i) | i ∈ {1, . . . , k}, Qi = ∀} ∪ {(EB ∪ Eψ, cψ ≈ 1)})

with a total order � that satisfies {0,1} ≺ {d1, X1} ≺ · · · ≺ {dk, Xk} ≺
{cθ | θ a sub-formula of ψ} as well as di ≺ Xi for all Qi = ∀.

To see that φ and the formula encoding φE of Bφ are equivalent, we observe
that the two formulae have essentially the same quantifier structure, with the dif-
ference that (i) φE starts with quantifiers ∀x0∀x1 binding the truth values 0,1;
(ii) every quantifier ∃xi in φ is translated to a quantifier ∃xXi

in φE ; (iii) universal
quantifiers ∀xi are translated to ∀xdi∃xXi , with the additional goals (E0

i , e
0
i) and

(E1
i , e

1
i) expressing xdi ≈ x0 → xXi ≈ x0 and xdi ≈ x1 → xXi ≈ x1; and (iv) ad-

ditional ∀-quantifiers are added to represent the propositional structure of the
matrix ψ. (The somewhat elaborate translation of ∀xi ensures that universal
quantifiers in φE effectively only range over truth values.) Equivalence of φ and
φE follows from the fact that satisfying assignments of the existentially quanti-
fied variables can be mapped back and forth between φ and φE . ut

4 Towards Bounded Rigid Theory Unification

The notion of semantic solvability offers a natural path to generalise from BREU
to Bounded Rigid T -Unification (BRTU), for theories T other than equality. The
construction in particular applies to theories that admit quantifier elimination,
including various forms of arithmetic. For sake of presentation, we assume that
equality≈ is still the only predicate in our logic, but we partition the set F = Fi∪
Fu into a set Fi of interpreted T -functions, and a disjoint set Fu of uninterpreted
functions. We further assume that the T -validity of first-order formulae φ without
uninterpreted functions is decidable.

While the general definition of a BREU problem can be kept as in Def. 3 and
4, we redefine formula encodings to take theory symbols into account:

8

Definition 12 (BRTU formula encoding). Suppose B = (�, (Ei, si ≈ ti)ni=1)
is a forest-shaped simultaneous BREU problem, and S the (finite) set of atomic
terms occurring in B, with k = |S|. Let further Sb = {x1, . . . , xk} ⊆ Vb be fresh
bound variables (not occurring in B), and σ : S → Sb a bijection such that σ(s) =
xi, σ(t) = xj and s � t imply i ≤ j. Then the formula Q1x1.Qkxk.

∧n
j=1G

T
j

with

Qi =

{
∀ if σ−1(xi) ∈ C is a constant

∃ otherwise

GTj =

∧
f(ā)≈b∈Ej

f∈Fi

f(σ(ā)) ≈ σ(b) ∧∧
f(ā)≈b,f(ā′)≈b′∈Ej

f∈Fu

σ(ā) ≈ σ(ā′)→ σ(b) ≈ σ(b′)

→ σ(sj) ≈ σ(tj)

is called a T -formula encoding of B.

Compared to Def. 7, the main change occurs in the definition of GTj , where
now interpreted functions are kept instead of being replaced with Ackermann
constraints. Similarly as before, we say that a BREU problem is semantically
T -solvable if its T -formula encoding is valid in T .

Example 13. To illustrate the definition, we consider the theory A of linear (inte-
ger or rational) arithmetic, and the implication f(0) ≈ 0∧f(X+1) ≈ f(X)+1→
f(1) ≈ 1, with X ranging over terms {0, 1, f(1)}. The literals 0, 1 represent in-
terpreted nullary function symbols, + is an interpreted binary function symbol,
and f is an uninterpreted function. Flattening the formula yields a well-formed
BREU problem B = (�, E, e) with

E =

{
0 ≈ c0, 1 ≈ c1, f(c0) ≈ c0, f(c1) = c2,
X + c1 ≈ c4, f(c4) ≈ c6, f(X) ≈ c5, c5 + c1 ≈ c6

}
, e = c2 ≈ c1,

c0 ≺ c1 ≺ c2 ≺ X ≺ c4 ≺ c5 ≺ c6 .

Without taking theory A into account (treating 0, 1,+ as uninterpreted func-
tions), B is solvable neither syntactically nor semantically. The A-formula en-
coding of B is obtained by eliminating f through Ackermann constraints (X
is mapped to x3, and constants ci to xi for i ∈ {0, 1, 2, 4, 5, 6}; redundant con-
straints are left out), and is a valid formula in theory A:

∀x0, x1, x2. ∃x3. ∀x4, x5, x6.0 ≈ x0 ∧ 1 ≈ x1 ∧ x3 + x1 ≈ x4 ∧ x5 + x1 ≈ x6 ∧
(x0 ≈ x1 → x0 ≈ x2) ∧ (x0 ≈ x4 → x0 ≈ x6) ∧ (x0 ≈ x3 → x0 ≈ x5) ∧
(x1 ≈ x4 → x2 ≈ x6) ∧ (x1 ≈ x3 → x2 ≈ x5) ∧ (x4 ≈ x3 → x6 ≈ x5)

→ x2 ≈ x1

5 Challenges and Conclusion

Since Lem. 10 carries over to any of the theories T considered in Sect. 4, the
encoding from Def. 12 can in principle be used to implement sound calculi for

9

first-order logic modulo T with bounded free-variable reasoning. For reasons of
practicality, of course, various refinements of the overall approach are possible
and advisable, along the lines of the procedures presented in [12, 2]; among oth-
ers, also procedures for ground reasoning in T can be integrated. For the special
case of linear integer arithmetic, this style of reasoning was essentially imple-
mented in the theorem prover Princess [12]. There are several more conceptual
challenges remaining, however:

Syntactically solving BRTU. We have outlined how solvability of BREU can
be characterised semantically, through an encoding as a formula, and then be
generalised to theories other than equality. However, both steps have a severe im-
pact on the computational complexity of checking solvability; checking semantic
solvability for BRTU modulo linear integer arithmetic, for instance, necessitates
a potentially doubly exponential validity check. A crucial question is whether
a notion of (theory-dependent) syntactic solvability for BRTU exists, and to
investigate the impact on the completeness of an overall proof procedure:

Syntactic BREU
(NP-complete)

Semantic BREU
(PSPACE-complete)

Semantic BRTU
(≥ PSPACE)

?

The completeness of proof procedures. It is well-known that no complete calculi
exist for first-order logic modulo various theories, for instance modulo linear
arithmetic [10]. This leads to the question how the completeness of first-order
calculi constructed with the help of BRTU can be characterised, and for which
fragments completeness is indeed achieved. The question is partly addressed in
[12], but only for linear integer arithmetic and in a setting where uninterpreted
functions were replaced with uninterpreted predicates.

References

1. Backeman, P., Rümmer, P.: Efficient algorithms for bounded rigid E-Unification.
In: Tableaux. LNCS, Springer (2015), to appear

2. Backeman, P., Rümmer, P.: Theorem proving with bounded rigid E-Unification.
In: CADE. LNCS, Springer (2015), to appear

3. Degtyarev, A., Voronkov, A.: Simultaneous rigid E-Unification is undecidable. In:
Büning, H.K. (ed.) CSL. LNCS, vol. 1092, pp. 178–190. Springer (1995)

4. Degtyarev, A., Voronkov, A.: What you always wanted to know about rigid E-
Unification. J. Autom. Reasoning 20(1), 47–80 (1998)

5. Degtyarev, A., Voronkov, A.: Equality reasoning in sequent-based calculi. In: Hand-
book of Automated Reasoning (in 2 volumes). Elsevier and MIT Press (2001)

6. Degtyarev, A., Voronkov, A.: Kanger’s Choices in Automated Reasoning. Springer
(2001)

10

7. Fitting, M.C.: First-Order Logic and Automated Theorem Proving. Graduate
Texts in Computer Science, Springer-Verlag, Berlin, 2nd edn. (1996)

8. Gallier, J.H., Raatz, S., Snyder, W.: Theorem proving using rigid e-unification
equational matings. In: LICS. pp. 338–346. IEEE Computer Society (1987)

9. Giese, M.: A model generation style completeness proof for constraint tableaux
with superposition. In: Tableaux. LNCS, vol. 2381, pp. 130–144. Springer (2002)

10. Halpern, J.Y.: Presburger arithmetic with unary predicates is Π1
1 complete. Jour-

nal of Symbolic Logic 56 (1991)
11. Kanger, S.: A simplified proof method for elementary logic. In: Siekmann, J.,

Wrightson, G. (eds.) Automation of Reasoning 1: Classical Papers on Computa-
tional Logic 1957-1966, pp. 364–371. Springer, Berlin, Heidelberg (1983), originally
appeared in 1963

12. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: LPAR. LNCS, Springer (2008)

13. Tiwari, A., Bachmair, L., Rueß, H.: Rigid E-Unification revisited. In: CADE. pp.
220–234. CADE-17, Springer-Verlag, London, UK, UK (2000)

11

