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Abstract
Constrained Horn Clauses (CHCs) are an intermediate program representation that can be generated by

several verification tools, and that can be processed and solved by a number of Horn solvers. One of the

main challenges when using CHCs in verification is the encoding of heap-allocated data-structures: such

data-structures are today either represented explicitly using the theory of arrays, or transformed away

with the help of invariants or refinement types, defeating the purpose of CHCs as a representation that is

language-independent as well as agnostic of the algorithm implemented by the Horn solver. This paper

presents an SMT-LIB theory of heaps tailored to CHCs, with the goal of enabling a standard interchange

format for programs with heap data-structures. We introduce the syntax of the theory of heaps, define

its semantics in terms of axioms and using a reduction to SMT-LIB arrays and data-types, provide an

experimental evaluation and outline possible extensions and future work.
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1. Introduction

Constrained Horn Clauses (CHCs) are a convenient intermediate verification language that can

be generated by several verification tools in many settings, ranging from verification of smart

contracts [1] to verification of computer programs in various languages [2, 3, 4, 5, 6]. The CHC

interchange language provides a separation of concerns, allowing the designers of verification

systems to focus on high-level aspects like the applied proof rules and verification methodology,

while giving CHC solver developers a clean framework that can be instantiated using various

model checking algorithms and specialised decision procedures. Solver performance is evaluated

in the annually held CHC-COMP [7].

CHCs are usually expressed using the SMT-LIB standard, which itself is a common language

and interface for SMT solvers [8]. Abstractly, both SMT solvers and CHC solvers are tools that

determine if a first-order formula is satisfiable modulo background theories such as arithmetic,

bit-vectors, or arrays.

One of the main challenges when using CHCs, and in verification in general, is the encoding

of programs with mutable, heap-allocated data-structures. Since there is no native theory of

heaps in SMT-LIB, one approach to represent such data-structures is using the theory of arrays

(e.g., [9, 10]). This is a natural encoding since a heap can be seen as an array of memory locations;
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however, as the encoding is byte-precise, in the context of CHCs it tends to be low-level and

often yields clauses that are hard to solve.

An alternative approach is to transform away such data-structures with the help of invariants

or refinement types (e.g., [11, 12, 13, 4]). In contrast to approaches that use the theory of arrays,

the resulting CHCs tend to be over-approximate (i.e., can lead to false positives), even with

smart refinement strategies that aim at increasing precision. This is because every operation

that reads, writes, or allocates a heap object is replaced with assertions and assumptions about

local object invariants, so that global program invariants might not be expressible. In cases

where local invariants are sufficient, however, they can enable efficient and modular verification

even of challenging programs.

Both approaches leave little design choice with respect to handling of heap to CHC solvers.

Dealing with heap at encoding level implies repeated effort when designing verifiers for different

programming languages, makes it hard to compare different approaches to encode heap, and is

time-consuming when a verifier wants to switch to another encoding. The benefits of CHCs are

partly negated, since the discussed separation of concerns does not carry over to heap.

The vision of this paper is to extend CHCs to a standardised interchange format for programs

with heap data-structures. To this end, we present a high-level theory of heaps that does not

restrict the way in which CHC solvers approach heap, while covering the main functionality

of heap needed for program verification: (i) representation of the type system associated with

heap data; (ii) reading and updating of data on the heap; (iii) handling of object allocation.

We use algebraic data-types (ADTs), as already standardised by SMT-LIB v2.6, as a flexible

way to handle (i). The theory offers operations akin to the theory of arrays to handle (ii) and

(iii). The theory is deliberately kept simple, so that it is easy to add support to SMT and CHC

solvers: a solver can, for instance, internally encode heap using the existing theory of arrays

(we provide one such encoding in [14]), or implement transformational approaches like [12, 13].

Since we want to stay high-level, arithmetic operations on pointers are excluded in our theory,

as are low-level tricks like extracting individual bytes from bigger pieces of data through pointer

manipulation. Being language-agnostic, the theory of heaps allows for common encodings

across different applications, and is in the spirit of both CHCs and SMT-LIB.

Contributions of the paper are (i) the definition of syntax and semantics of the theory of

heaps, (ii) a collection of an initial set of benchmarks, (iii) experimental results.
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2. Motivating Example

We start with a high-level explanation how heap is handled by our theory. Listing 1 shows



Listing 1
The motivating example in Java

1 abstract c l a s s IntList {

2 p r o t e c t e d i n t _sz ;

3 abstract i n t hd ( ) ;

4 abstract vo id setHd ( i n t hd ) ;

5 abstract IntList tl ( ) ;

6 i n t sz ( ) { r e t u r n _sz ; } }

7

8 c l a s s Nil extends IntList {

9 Nil ( ) { _sz = 0 ; }

10 i n t hd ( ) { err ( ) ; }

11 vo id setHd ( i n t hd ) { err ( ) ; }

12 IntList tl ( ) { err ( ) ; } }

13

14 c l a s s Cons extends IntList {

15 i n t _hd ;

16 IntList _tl ;

17 i n t hd ( ) { r e t u r n _hd ; }

18 vo id setHd ( i n t hd ) { _hd=hd ; }

19 IntList tl ( ) { r e t u r n _tl ; }

20 Cons ( i n t hd , IntList tl ) {

21 _hd = hd ;

22 _tl = tl ;

23 _sz = 1 + tl . sz ( ) ; } }

24 c l a s s Motivation {

25 vo id main ( ) {

26 IntList l = new Cons ( 4 2 ,

27 new Nil ( ) ) ;

28 l . setHd ( l . hd ( ) + 1 ) ;

29 assert ( l . hd ( ) == 4 3 ) ;

30 }

31 }

a simple Java program that constructs a singly-linked list through heap operations such as

allocation on the heap (lines 26–27), reading (lines 28–29) and modifying (line 28) heap data.

In order to encode this program we use constrained Horn clauses (CHCs). We refer to sources

such as [18, 2] for a comprehensive explanation of using CHCs in this context. Although the

theory of heaps is presented in the context of CHCs, there is nothing CHC-specific in the theory

itself; the theory can be supported by both SMT and CHC solvers since it is kept deliberately

high level and simple. The encoding is given in Listing 2 in SMT-LIB v2.6 format.

Heap declaration To encode this program using the theory of heaps, first a heap has to be

declared that covers the program types as shown at lines 1–12 of Listing 2. Each heap comes

with its own sorts for the heap itself and for heap locations (or addresses). Lines 2 and 3 are the

names of declared heap and address sorts. We next need to define which data can be placed on

the heap, which is done by choosing the sort of heap objects; this sort can be any of the sorts

declared prior to or together with the heap declaration, excluding the heap sort itself. Line 4

specifies the object sort to be the ADT Object, declared later.

Line 5 defines the object assumed to be stored at unallocated heap locations. Since functions

in SMT-LIB are total, semantics has to be defined also for reads from such unallocated addresses.

The theory of heaps leaves the choice of object produced by such reads to the user; the term

specified at line 5 must have the object sort chosen at line 4. We call this the default object (or

defObj ), which in this case is created using the object constructor O_Empty. There are two

main reasons why the result of a read from an unallocated location is not left unspecified: 1. the

axioms become more complicated (for instance [row2] from Table 2 would require limiting 𝑝2
to allocated addresses); 2. deallocation semantics can be partly achieved (see Section 4).

The rest of the heap declaration at lines 6–12 corresponds to an SMT-LIB data-type declaration.

In line 6, in addition to Object we declare data-types IntList, Cons, and Nil, encoding the

classes of the program. The constructors at lines 7–9 specify the fields of each class, and in

addition give Cons and Nil each a field containing the parent IntList object. In lines 10–12,



the constructors of the Object sort are declared, which correspond to the classes Cons and

Nil, as well as the default object O_Empty. The class IntList is abstract and does not occur

directly on the heap, so that no constructor for this type is provided.

Since each heap theory has its own address sort, cases are immediately prevented in which

multiple heaps share the same address sort, or in which some other interpreted sort (say, Int)

is used to store addresses. This rules out accidental cases of pointer arithmetic, and leaves full

flexibility to solvers on how to internally represent addresses (e.g., see [4]). This choice also

implies that ADT declarations for heap objects that refer to address sorts need to be part of

declare-heap.

Within one heap, all pointers are represented using a single Addr sort. No distinction is made

between pointers to objects from different constructors. This is close in semantics to languages

like C, where casts between arbitrary pointer types are possible and it has to be verified for

each heap access that indeed an object of the right type is accessed. In languages like Java, the

Listing 2: SMT-LIB encoding of the motivating example from Listing 1. The symbols of some

sorts and operations of the theory are abbreviated and the list of quantified variables

is skipped in some cases for brevity.

1 ( declare-heap
2 Heap ; d e c l a r e d Heap s o r t

3 Addr ; d e c l a r e d Address s o r t

4 Object ; chosen O b j e c t s o r t

5 O_Empty ; t he d e f a u l t O b j e c t

6 ( ( IntList 0 ) ( Cons 0 ) ( Nil 0 ) ( Object 0 ) ) ; ADTs

7 ( ( ( IntList ( sz Int ) ) ) ; C l a s s c o n s t r u c t o r s

8 ( ( Cons ( parentCons IntList ) ( hd Int ) ( tl Addr ) ) )

9 ( ( Nil ( parentNil IntList ) ) )

10 ( ( O_Cons ( getCons Cons ) ) ; O b j e c t s o r t c o n s t r u c t o r s

11 ( O_Nil ( getNil Nil ) )

12 ( O_Empty ) ) ) )

13 ; i n v a r i a n t d e c l a r a t i o n s

14 ( declare-fun I1 ( Heap ) Bool ) ; <h>

15 ( declare-fun I2 ( Heap Addr ) Bool ) ; <h ,p>

16 ( declare-fun I3 ( Heap Addr ) Bool ) ; < h , l >

17 ( declare-fun I4 ( Heap Addr ) Bool ) ; < h , l >

18

19 ( assert ( I1 emptyHeap ) )

20 ( assert ( forall ( ( h Heap ) ( h1 Heap ) ( p1 Addr ) )

21 ( => ( and ( I1 h ) ( = ( ARHeap h1 p1 ) ( alloc h ( O_Nil ( Nil ( IntList 0 ) ) ) ) ) )

22 ( I2 h1 p1 ) ) ) )

23 ( assert ( forall ( . . . )

24 ( => ( and ( I2 h p )

25 ( = ( ARHeap h1 p1 ) ( alloc h ( O_Cons ( Cons ( IntList 1 ) 42 p ) ) ) ) )

26 ( I3 h1 p1 ) ) ) )

27 ( assert ( forall ( . . . )

28 ( => ( and ( I3 h l ) ( not ( valid h l ) ) ) false ) ) )

29 ( assert ( forall ( ( pn IntList ) ( head Int ) ( tail Addr ) . . . )

30 ( => ( and ( I3 h l ) ( = h1 ( write h l ( O_Cons ( Cons pn (+ 1 head ) tail ) ) ) )

31 ( = ( O_Cons ( Cons pn head tail ) ) ( read h l ) ) ) ( I4 h1 l ) ) ) )

32 ( assert ( forall ( . . . )

33 ( => ( and ( I3 h l ) ( = ( O_Nil ( Nil pn ) ) ( read h l ) ) ) false ) ) )

34 ( assert ( forall ( . . . )

35 ( => ( and ( I4 h l ) ( = ( O_Cons ( Cons pn head tail ) ) ( read h l ) )

36 ( not ( = head 4 3 ) ) ) false ) ) )

37 ( assert ( forall ( . . . )

38 ( => ( and ( I4 h l ) ( not ( is-O_Cons ( read h l ) ) ) ) false ) ) )



stronger type system will provide information about the objects a variable can refer to, but

exceptions can be raised when performing casts. The theory of heaps is flexible enough to cover

those different settings.

Apart from the sorts mentioned, the heap declaration implicitly declares (among others) an

ADT ARHeap (also called 𝐴𝑙𝑙𝑜𝑐𝑅𝑒𝑠𝑢𝑙𝑡Heap later in the paper) that holds pairs ⟨Heap,Addr⟩
returned as a result of allocations.

Program encoding Predicates representing program states are declared at lines 14–17. The

first set of arguments in the parentheses lists the sorts of the variables we want to keep track of

at that point. E.g., for line 17, we want to have a global view of the heap, as well as all variables

on the stack at that point. The only variable on the stack at this point is a temporary variable p
that corresponds to the newly allocated Nil object’s address (line 27 in Listing 1).

Line 19 is the program entry point, where the heap is initially empty. The function emptyHeap
returns an empty heap (i.e., unallocated at all locations) of the declared Heap sort specified at

line 2. Lines 20–26 allocate, respectively, a Nil object and a Cons object on the heap. Allocation

is done using the alloc function of the theory, which takes as arguments the old heap and the

new object to be put on the heap, and returns an ARHeap pair with the new heap and the

allocated address. Constructor calls are inlined and slightly simplified in the encoding. For

example, line 25 shows the simplified encoding of the Java constructor for Cons at lines 20–23

of Listing 1. The update of the _sz field is simplified by directly assigning a value to it, which

would actually require another clause with a read due to the statement at line 23.

Lines 27–33 illustrate the use of read and write functions. read reads from the provided heap

at the given location, and write writes the provided object to the heap at the specified location.

The assertion at lines 27–28 checks the validity of accesses in order to ensure memory safety.

The dynamic dispatch needed when calling hd is implemented through pattern matching using

the O_Cons and O_Nil constructors: in lines 29–31 the method call is successful, and the heap

object is subsequently updated, while the clause at lines 32–33 models the error when executing

Nil.hd. The same property can be expressed using the tester is-O_Cons in lines 37–38. Lastly,

lines 34–36 encode the assertion at line 29 from Listing 2.

3. Vocabulary and Syntax of the Theory of Heaps

3.1. SMT-LIB-style Declaration of Heaps

A theory of heaps is declared as follows:

(declare-heap 𝑐ℎ 𝑐𝑎 𝑐𝑜 𝜏𝑜 ((𝛿1𝑘1) ... (𝛿𝑛𝑘𝑛)) (𝑑1...𝑑𝑛))

where 𝑐ℎ, 𝑐𝑎, 𝑐𝑜 are symbols corresponding to the names of declared heap, declared address

and chosen object respectively. 𝜏𝑜 is a term of the chosen object which is returned on invalid

accesses (i.e. the default object). The object sort can be chosen as any sort without 𝑐ℎ in its

signature. The rest of the declaration resembles the declare-datatypes declaration from the

SMT-LIB standard v2.6 [8], with the exception that polymorphism is (currently) not supported

in constructor declarations (a discussion is provided in [14]), and that there should be 𝑛 (where



Table 1
Operations defined by the theory of heaps

emptyHeap : () → Heap (1)

nullAddr : () → Addr (2)

alloc : Heap ×Object → Heap ×Addr (3)

valid : Heap ×Addr → Bool (4)

read : Heap ×Addr → Object (5)

write : Heap ×Addr ×Object → Heap (6)

𝑛 ≥ 0) instead of 𝑛+1 ADT sort declarations (i.e., the object sort can also be declared before the

heap declaration and specified using 𝑐𝑜, if it does not use the address sort (𝑐𝑎) in its declaration).

The concrete syntax for the heap declaration is given below, which extends ⟨command⟩ in

the concrete syntax of SMT-LIB v2.6.

⟨command⟩ ::= ...

| ( declare-heap ⟨symbol⟩ ⟨symbol⟩ ⟨sort⟩ ⟨term⟩
( ⟨sort_dec⟩𝑛 ) ( ⟨heap_datatype_dec⟩𝑛 ) )

⟨heap_datatype_dec⟩ ::= ⟨constructor_dec⟩+

The first two symbols and the following sort in the declaration correspond respectively to 𝑐ℎ,

𝑐𝑎 and 𝑐𝑜 from the abstract syntax. ⟨term⟩ is the default object.

3.2. Sorts

Each heap declaration introduces several sorts: 1. a sort Heap of heaps, 2. a sort Addr of heap

addresses, 3. zero or more ADT sorts used to represent heap data, 4. an additional ADT sort

that holds the pair ⟨Heap,Addr⟩ which is the result of calling alloc. In order to make this ADT

sort distinguishable, it is suffixed with its associated heap sort Heap (e.g. 𝐴𝑙𝑙𝑜𝑐𝑅𝑒𝑠𝑢𝑙𝑡Heap).

The names of these sorts are defined by the variables in the declare-heap command, which

we assume in this paper to be Heap for 𝑐ℎ and Addr for 𝑐𝑎.

3.3. Operations and Semantics

A list of operations of the theory of heaps is given in Table 1. Although not listed in the table,

we also assume access to all ADT operations for the ADTs declared by the theory of heaps.

Some operations contain the symbols Heap and Addr in their signatures. This is done with the

assumption that the declared heap and address sorts are named Heap and Addr respectively.

E.g., nullAddress would be nullA if the declared address sort was named 𝐴, and it would

return a value of sort 𝐴. Including the sort name in some function and sort names makes it

possible to determine their associated heap declarations without using the SMT-LIB command

“as”. This is not required in sorts and operations where the associated heap sort is clear, such as

in read (its first argument is of heap sort).



A set of axioms formalising the semantics of the theory of heaps is given in Table 2. In

addition, a definition of the axioms in terms of the theory of arrays is provided in [14]. Below

we provide an informal description for each operation of the theory.

Function alloc takes a Heap and an Object , and returns a data-type 𝐴𝑙𝑙𝑜𝑐𝑅𝑒𝑠𝑢𝑙𝑡Heap repre-

senting the pair ⟨Heap,Addr⟩. The returned Heap at Addr contains the passed Object , with

all other locations unchanged. The pair ADT is required as the return sort since it is not possible

in SMT-LIB to return the two values separately. In Section 4 we discuss other alternatives such

as using multiple allocation functions.

Functions read and write are similar to the array select and store operations [19]; however,

unlike an array, a heap also carries information about allocatedness. The predicate valid checks

if accesses to a given Heap at a given Addr are valid. We say that an access is valid if and only

if that location was allocated beforehand by using the function alloc, and invalid otherwise.

The function nullAddr returns the Addr that is always unallocated and emptyHeap returns the

Heap that is unallocated at all locations.

The functions read and write behave as their array counterparts if the access is valid. Invalid

reads return a default Object to make the function total (as explained in Section 2). The

write function returns a new Heap if the access is valid, otherwise the original Heap is returned

without any changes. Validity of a write can be independently checked via memory-safety

assertions as shown in lines 27–28 of Listing 2.

We propose a further short-hand notation nthAddr𝑖, which is useful when presenting satisfy-

ing assignments. It is used to concisely represent Addr values which would be returned after 𝑖
alloc calls. This short-hand notation is only possible with the deterministic allocation axiom

[alloc2] given in Table 2.

The properties of the theory of heaps are given in [14]. In particular, satisfiability of quantifier-

free heap formulas is NP-complete (provided that the theory chosen to represent heap objects

is by itself in NP). Like for arrays, NP-completeness can be observed already for conjunctions of

heap literals.

4. Alternative Definitions and Extensions

This section explains the rationale behind some of the design choices in the theory of heaps, as

well as some natural extensions. It is intended as a starting point for further discussions and a

standardisation within SMT-LIB.

𝐴𝑙𝑙𝑜𝑐𝑅𝑒𝑠𝑢𝑙𝑡Heap Allocation on the heap needs to produce both a new heap and a fresh

address. In our theory, the pair of new heap and new address is handled using the ADT

𝐴𝑙𝑙𝑜𝑐𝑅𝑒𝑠𝑢𝑙𝑡Heap, which enables us to stick to just a single allocation function alloc. Alterna-

tively, alloc could be represented using a pair of functions, choosing for instance alloc(ℎ, 𝑜) =
⟨allocHeap(ℎ, 𝑜), allocAdress(ℎ, 𝑜)⟩; this would be preferable from a solver implementation

point of view, but not necessarily for users. Altogether this point is more of aesthetic concern.

Deterministic allocation In its current semantics, object allocation in the theory of heaps

is deterministic: since alloc is a function, it will always produce the same fresh address when



Table 2
Axiomatic semantics of the theory of heaps. All variables occurring in the axioms are universally

quantified with sorts ℎ : Heap, 𝑝 : Addr , 𝑟 : AddrRange , 𝑜 : Object and ar : 𝐴𝑙𝑙𝑜𝑐𝑅𝑒𝑠𝑢𝑙𝑡Heap.
Variables can appear subscripted. 𝐴𝑙𝑙𝑜𝑐𝑅𝑒𝑠𝑢𝑙𝑡Heap is a pair ⟨Heap,Addr⟩; we use the notation ar ._1
and ar ._2 to select the pair’s fields.

Read over

write

valid(ℎ, 𝑝) → read(write(ℎ, 𝑝, 𝑜), 𝑝) = 𝑜 [row1]

𝑝1 ̸= 𝑝2 → read(write(ℎ, 𝑝1, 𝑜), 𝑝2) = read(ℎ, 𝑝2) [row2]

Read over

allocate

alloc(ℎ, 𝑜) = 𝑎𝑟 → read(𝑎𝑟._1, 𝑎𝑟._2) = 𝑜 [roa1]

alloc(ℎ, 𝑜) = 𝑎𝑟 ∧ 𝑝 ̸= 𝑎𝑟._2 → read(𝑎𝑟._1, 𝑝) = read(ℎ, 𝑝) [roa2]

Allocation

alloc(ℎ, 𝑜) = 𝑎𝑟 → ¬valid(ℎ, 𝑎𝑟._2) ∧ valid(𝑎𝑟._1, 𝑎𝑟._2) ∧
(∀𝑝 : Addr .(𝑎𝑟._2 ̸= 𝑝 → (valid(ℎ, 𝑝) ↔ valid(𝑎𝑟._1, 𝑝))))

[alloc1]

(∀𝑝 : Addr .(valid(ℎ1, 𝑝) ↔ valid(ℎ2, 𝑝))) →
alloc(ℎ1, 𝑜1)._2 = alloc(ℎ2, 𝑜2)._2

[alloc2]

Invalid

access

¬valid(ℎ, 𝑝) → write(ℎ, 𝑝, 𝑜) = ℎ [ivwt]

¬valid(ℎ, 𝑝) → read(ℎ, 𝑝) = defObj [ivrd]

Validity

¬valid(emptyHeap, 𝑝) [vld1]

¬valid(ℎ, nullAddr) [vld2]

ℎ2 = write(ℎ1, 𝑝1, 𝑜1) → (valid(ℎ1, 𝑝2) ↔ valid(ℎ2, 𝑝2)) [vld3]

Extensionality
(∀𝑝 : Addr .(valid(ℎ1, 𝑝) ↔ valid(ℎ2, 𝑝)) ∧
read(ℎ1, 𝑝) = read(ℎ2, 𝑝)) → ℎ1 = ℎ2

[ext]

No-junk

(constructability)

∃𝑓 : N → Heap, 𝑔 : N → Addr .𝑓(0) = emptyHeap ∧
𝑔(0) = nullAddr ∧

∀𝑖 : N. ⟨𝑓(𝑖+ 1), 𝑔(𝑖+ 1)⟩ = alloc(𝑓(𝑖), defObj ) ∧
∀𝑝 : Addr . ∃𝑖 : N. 𝑔(𝑖) = 𝑝

[cons]

applied to the same arguments. Moreover, [alloc2] implies that the new address is determined

entirely by the set of already allocated addresses on the heap. Determinism simplifies the

presentation of models and counterexamples through the function nthAddr. Determinism also

simplifies the computation of program invariants, since it implies the existence of a linear order

of the heap addresses (as witnessed by the array semantics discussed in [14]): an invariant

can distinguish fresh and used addresses using a simple inequality. Determinism will in many

practical cases not be observable in programs: the syntax of the theory of heaps prevents

arithmetic on addresses, and normal program semantics does not allow alloc to be called

repeatedly on the same heap in any case.

In cases where it is needed, there is an elegant way to reintroduce non-determinism: the

alloc function can be given a third argument (nonce/entropy), as in alloc(ℎ, 𝑜, 𝑒), and the axiom

[cons] be relativised to only hold for fixed values of 𝑒. The axiom [alloc2] could be dropped.

The translation of programs to CHCs can then choose a non-deterministic value for 𝑒 when

encoding an allocation operation like new. A side effect of this change would be that decision

procedures and correct encoding of heaps using arrays become more complex, and for instance



Table 3
Extended operations over address ranges

batchAlloc : Heap ×Object × N → Heap ×AddrRange (7)

batchWrite : Heap ×AddrRange ×Object → Heap (8)

nthInRange : AddrRange × N → Addr (9)

contains : AddrRange ×Addr → Bool (10)

validRange : Heap ×AddrRange → Bool (11)

have to store the allocation status of each address using a bit-array.

Deallocation A natural extension of the theory is the addition of a function for deallocating

objects, which would be helpful to capture languages without garbage collection like C/C++; for

such languages deallocation otherwise has to be encoded using an explicit flag added to objects.

The effect on the theory semantics would be similar as for non-deterministic allocation: decision

procedures would need to maintain a bit-array to remember the allocatedness of addresses.

The theory of heaps already provides a way to obtain partial deallocation semantics without

the additional bit-array. If the default object sort is chosen to be one of the sorts not correspond-

ing to any program type, then the semantics of deallocation in most programming languages

can be achieved by writing back the default object to deallocated locations. Then valid heap/ad-

dress pairs that return the default object on a read imply that they were deallocated. Although

this covers most properties to be verified (i.e., detecting memory leaks and deallocation of

unallocated locations), this is partial semantics because those addresses can still not be returned

from an allocation.

Sorts and operations ranging over sequences of addresses Program arrays can be

modelled by introducing an additional AddrRange sort and related operations, such as those

shown in Table 3. batchAlloc would return an AddrRange containing 𝑛 addresses, where 𝑛
is its last argument. batchWrite can be used to batch update an address range, nthInRange to

extract an address from an address range, contains to check if an address range contains an

address, and validRange to check whether all addresses in a range are allocated. In our tools

TriCera and Eldarica, we are already using this extended version of the theory of heaps.

5. Related Work

Separation Logic extends the assertions of Hoare’s logic [20] to succinctly express properties

of heap and shared mutable data-structures [21]. Research has been done on specialised decision

procedures for separation logic in SMT [22, 23], and there is a proposal for encoding separation

logic in SMT-LIB 2.5 [24].

The theory of heaps and separation logic both provide mechanisms for reasoning about

the heap; however, their approaches are orthogonal. Separation logic extends the assertion



language with additional operators, while the theory of heaps provides an interchange format

for encoding programs with the goal of preserving as much information about the heap as

possible. Both could be used in a complementary way to encode program assertions and the

program itself.

Linear Maps provide a similar proof strategy to that of separation logic, while staying within

the confines of classical logic [25]. The authors describe a two-way erasure transformation,

transforming between imperative programs with a single unified heap and programs with

multiple disjoint linear maps. Since the transformation is completely in classical logic, off-the-

shelf SMT solvers and theorem provers can be used without a special decision procedure by

making use of the existing theories such as the theory of arrays and the theory of sets.

Unlike the transformational approach of linear maps, the theory of heaps aims to defer the

handling of heap to the solvers. In fact, the linear maps strategy could also make use of the

theory of heaps in order to have access to more specialised decision procedures, and not be

restricted to the theory of arrays.

Other related work The authors of [26] extend an SMT solver with a decision procedure to

decide unbounded heap reachability with support for Boolean and integer data fields. [27] also

describes a decision procedure for verification of heap-manipulating programs. Both papers are

about verifying heap reachability, and both of them highlight the need for a standard theory

of heaps as that would have provided a framework for the research and ease the adoption of

proposed decision procedures by different solvers.

6. Experiments

In order to highlight the feasibility of using the theory in a more concrete setting, we have

collected C benchmarks from the ReachSafety and MemSafety categories of SV-COMP 2022 [28].

TriCera
1
, a CHC-based model checker for C programs, was extended to produce CHCs in the

theory of heaps. To create a preliminary set of CHC benchmarks modulo heaps, we filtered out

programs that require heap, but none of the features not yet supported by TriCera (e.g., stack

pointers, floats etc.). We have also excluded benchmarks that any of the tested tools reported a

parsing error for, in the end, 361 benchmarks remained.

In order to focus on the evaluation of the theory of heaps rather than that of bit-vectors

(which are already challenging for Horn solvers on their own [29]), integer types in the CHCs

were encoded using mathematical integers. This meant some benchmarks did not return their

expected result, as some of them depend on the correct modelling of overflow; however, no

conflicting answers were observed in the results by Eldarica and Z3/Spacer.

We then compared the performance of different solvers on those 361 benchmarks. As tools

providing (early) native support for the theory of heaps, the SMT solver Princess [30] was

extended to support the theory using the reasoning and interpolation procedures from [17],

and the CHC solver Eldarica [31] was extended to make use of the newly added theory in

Princess. Other solvers can process CHCs output by TriCera after converting constraints

1

https://github.com/uuverifiers/tricera

https://github.com/uuverifiers/tricera


Table 4
Results for the 361 heap benchmarks with Eldarica, Z3/Spacer, and CPAchecker. Eldarica is run

on both heap benchmarks and their array encodings. Z3/Spacer is only run on the array encoded

benchmarks. Portfolio row shows the combined best results of the previous three rows. The last row

shows CPAchecker’s performance on the same set of benchmarks using their original C files.

sat unsat unknown

Eldarica (heap) 14 40 307

Eldarica (array) 41 57 263

Z3/Spacer (array) 25 47 289

Portfolio 42 63 256

CPAchecker 7 71 283

in the theory of heaps to array constraints; we used an extended
2

version of the encoding

given in [32] implemented in the tool heap2array3
for this conversion. Both Eldarica and

Z3/Spacer [33] were run on the array versions of the benchmarks. Lastly, we provide results

that CPAchecker [34] (version 2.1.1), one of the top C model checkers [35], produced on the

source SV-Comp benchmarks. We have made available all benchmarks used in our experiments

[36].

The experiments were run on an AMD Opteron 2220 SE (2.8 GHZ with 4 CPUs) machine

running 64-bit Linux with 6 GB of RAM and a wall-clock timeout of 900 seconds.

The results are shown in Table 4. In the first three rows, Eldarica with the array encoded

benchmarks performed best. One benchmark could only be solved by Eldarica (heap), 16

benchmarks only by Eldarica (array) and one benchmark only by Z3/Spacer. The best results

that can be obtained using a portfolio approach (i.e., running the solvers in parallel and taking

the first result) are shown in the Portfolio row. The last row shows CPAchecker’s performance

on the source C programs with the combined results of checking memory safety and reachability

properties. There were 27 benchmarks that could only be solved by CPAchecker.

The comparison with CPAchecker shows that real-world C programs can indeed be encoded

and analysed using the proposed theory of heaps, resulting in a competitive verification tool.

Although our current decision procedure for the theory of heaps does not perform as well as its

array counterpart yet, the theory provides a uniform representation of programs that can easily

be mapped to different back-ends.

7. Conclusions and Outlook

We have proposed a theory of heaps, along with its syntax and semantics, and discussed possible

alternative definitions and extensions. The intention is that the ideas presented here will initiate

discussions, and eventually result in a common interchange language for programs with heap.

2

encoding of sorts and operations ranging over sequences of addresses discussed in Section 4

3

https://github.com/zafer-esen/heap2array

https://github.com/zafer-esen/heap2array


As a long-term goal, we would like to include a heap track also at the CHC-COMP competition;

a part of the benchmarks in the LIA-nonlin-Arrays-nonrecADT category of CHC-COMP 2022

already stems from heap theory benchmarks, using an encoding into the theory of arrays.

The algorithms from [17] are direct and unrefined adaptions of procedures for the theory

of arrays, and more work is needed to obtain, e.g., practical interpolation methods. However,

now that the design choice is shifted to the solvers, alternative approaches can be employed to

improve the results without changing the CHC representation of programs. In this context, two

directions we are currently pursuing are improved decision and interpolation procedures for

the heap theory, and the adaptation of the invariant-based heap encoding used in JayHorn [4].
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