
Classifying and Solving Horn Clauses for Verification

Philipp Rümmer1, Hossein Hojjat2, and Viktor Kuncak2

1 Uppsala University, Sweden
2 Swiss Federal Institute of Technology Lausanne (EPFL)

Abstract. As a promising direction to overcome difficulties of verification, re-
searchers have recently proposed the use of Horn constraints as intermediate rep-
resentation. Horn constraints are related to Craig interpolation, which is one of the
main techniques used to construct and refine abstractions in verification, and to
synthesise inductive loop invariants. We give a classification of the different forms
of Craig interpolation problems found in literature, and show that all of them cor-
respond to natural fragments of (recursion-free) Horn constraints. For a logic that
has the binary interpolation property, all of these problems are solvable, but have
different complexity. In addition to presenting the theoretical classification and
solvability results, we present a publicly available collection of benchmarks to
evaluate solvers for Horn constraints, categorized according to our classification.
The benchmarks are derived from real-world verification problems. The behavior
with our tools as well as with Z3 prover indicates the importance of Horn clause
solving as distinct from the general problem of solving quantified constraints by
quantifier instantiation.

1 Introduction

Predicate abstraction [14] has emerged as a prominent and effective way for model
checking software systems. A key ingredient in predicate abstraction is analyzing the
spurious counter-examples to refine abstractions [4]. The refinement problem saw a
significant progress when Craig interpolants extracted from unsatisfiability proofs were
used as relevant predicates [20]. While interpolation has enjoyed a significant progress
for various logical constraints [7–9,24], there have been substantial proposals for more
general forms of interpolation [1, 19, 24].

As a promising direction to extend the reach of automated verification methods to
programs with procedures, and concurrent programs, among others, recently the use
of Horn constraints as intermediate representation has been proposed [15, 16, 28]. This
paper examines the relationship between various forms of Craig interpolation and syn-
tactically defined fragments of recursion-free Horn clauses. We systematically exam-
ine binary interpolation, inductive interpolant sequences, tree interpolants, restricted
DAG interpolants, and disjunctive interpolants, and show the recursion-free Horn clause
problems to which they correspond. We present algorithms for solving each of these
classes of problems by reduction to elementary interpolation problems. We also give
a taxonomy of the various interpolation problems, and the corresponding systems of
Horn clauses, in terms of their computational complexity.

The contributions of the paper are:

2 Rümmer, Hojjat, Kuncak

– a systematic study of relevant recursion-free Horn fragments, their relationship to
forms of Craig interpolation, and their computational complexity;

– a library of recursion-free Horn problems, designed for benchmarking Horn solvers
and interpolation engines;

– the generalisation of our results from recursion-free Horn clauses to general well-
founded constraints, i.e., to constraints without infinite resolution proofs.

Organisation. Related work is surveyed in Sect. 2, following in Sect. 3 by an example
of (recursive) Horn clauses. Sect. 4 formally introduces the concept of Horn clauses.
Sect. 5 investigates the relationship between Horn fragments and Craig interpolation,
and Sect. 6 their respective computational complexity. Sect. 7 presents our library of
Horn benchmarks. Sect. 8 generalises from Horn clauses to well-founded clauses.

2 Related Work

Horn clauses have been used to represent analysis tasks in the context of constraint pro-
gramming for a long time, for instance [29]. The authors of [16] propose Horn clauses
for verification of multi-threaded programs. The underlying procedure for solving sets
of recursion-free Horn clauses, over the combined theory of linear integer arithmetic
and uninterpreted functions, was presented in [17], and a solver in [18]. A range of fur-
ther applications of Horn clauses, including inter-procedural model checking, was given
in [15]. Horn clauses are also proposed as intermediate/exchange format for verification
problems in [6], and are natively supported by the SMT solver Z3 [11].

There is a long line of research on Craig interpolation methods, and generalised
forms of interpolation, tailored to verification. For an overview of interpolation in the
presence of theories, we refer the reader to [8, 9]. Binary Craig interpolation for impli-
cations A → C goes back to [10], was carried over to conjunctions A ∧ B in [25], and
generalised to inductive sequences of interpolants in [20, 27]. The concept of tree in-
terpolation, strictly generalising inductive sequences of interpolants, is presented in the
documentation of the interpolation engine iZ3 [24]; the computation of tree interpolants
by computing a sequence of binary interpolants is also described in [19]. Restricted
DAG interpolants [1] and disjunctive interpolants [30] are further generalisations of
inductive sequences of interpolants, designed to enable the simultaneous analysis of
multiple counterexamples or program paths.

The use of Craig interpolation for solving Horn clauses is discussed in [28], con-
centrating on the case of tree interpolation. Our paper extends this work by giving a
systematic study of the relationship between different forms of Craig interpolation and
Horn clauses, as well as general results about solvability and computational complexity,
independent of any particular calculus used to perform interpolation.

Inter-procedural software model checking with interpolants has been an active
area of research for the last decade. In the context of predicate abstraction, it has been
discussed how well-scoped invariants can be inferred [20] in the presence of function
calls. Based on the concept of Horn clauses, a predicate abstraction-based algorithm for
bottom-up construction of function summaries was presented in [15]. Generalisations
of the Impact algorithm [27] to programs with procedures are given in [19] (formulated

Classifying and Solving Horn Clauses for Verification 3

def f (n : Int)
returns rec : Int =

if (n > 0) {
tmp = f(n−1)
rec = tmp + 1
} else {

rec = 1
}

def main() {
var res : Int
havoc(x: Int ≥ 0)
res = f (x)
assert(res == x + 1)
}

�� ��/.-,()*+q1

havoc (x) ∧ x′ ≥ 0
��

/.-,()*+q5n>0

��

¬(n>0)

��/.-,()*+q2

res′= f (x)
��

/.-,()*+q6

tmp′= f (n − 1)
��

/.-,()*+q8

rec′=1

zz

/.-,()*+q3

res,x + 1
???

��?
??

res=x + 1

����
��

��
�

/.-,()*+q7

rec′=tmp + 1 ++/.-,()*+q4 /.-,()*+e /.-,()*+q9

Fig. 1. A recursive program and its control flow graph (see Sect. 3).

(1) r1(X, Res) ← true
(2) r2(X’, Res) ← r1(X, Res) ∧ X’ ≥ 0
(3) r3(X, Res’) ← r2(X, Res) ∧ rf(X, Res’)
(4) r4(X, Res) ← r3(X, Res) ∧ Res = X + 1
(5) false ← r3(X, Res) ∧ Res , X + 1

(6) r5(N, Rec, Tmp) ← true
(7) r6(N, Rec, Tmp) ← r5(N, Rec, Tmp) ∧ N > 0
(8) r7(N, Rec, Tmp’) ← r6(N, Rec, Tmp) ∧ rf(N − 1, Tmp’)
(9) r8(N, Rec, Tmp) ← r5(N, Rec, Tmp) ∧ N ≤ 0
(10) r9(N, Rec’, Tmp) ← r7(N, Rec, Tmp) ∧ Rec’ = Tmp + 1
(11) r9(N, Rec’, Tmp) ← r8(N, Rec, Tmp) ∧ Rec’ = 1
(12) rf (N, Rec) ← r9(N, Rec, Tmp)

Fig. 2. The encoding of the program in Fig. 1 into a set of recursive Horn clauses.

using nested word automata) and [2]. Finally, function summaries generated using in-
terpolants have also been used to speed up bounded model checking [31].

Several other tools handle procedures by increasingly inlining and performing under-
and/or over-approximation [22,32,33], but without the use of interpolation techniques.

3 Example

We start with an example illustrating the use of Horn clauses to verify a recursive pro-
gram. Fig. 1 shows an example of a recursive program, which is encoded as a set of
(recursive) Horn constraints in Fig. 2. The encoding is done in such a way that the set
of Horn constraints is satisfiable if and only if the program is safe, i.e., the assertion
in function main cannot fail. We will use different subsets of the complete set of Horn
constraints as examples throughout the paper.

4 Rümmer, Hojjat, Kuncak

r1(x, res) ≡ true r2(x, res) ≡ x ≥ 0

r3(x, res) ≡ res = x + 1 r4(x, res) ≡ true

r5(n, rec, tmp) ≡ true r6(n, rec, tmp) ≡ n ≥ 1

r7(n, rec, tmp) ≡ n = tmp r9(n, rec, tmp) ≡ rec = n + 1 ∨ (n ≤ 0 ∧ rec = 1)

r8(n, rec, tmp) ≡ n ≤ 0 r f (n, rec) ≡ rec = n + 1 ∨ (n ≤ 0 ∧ rec = 1)

Fig. 3. Syntactic solution of the Horn clauses in Fig. 2.

For translation to Horn clauses we assign an uninterpreted relation symbol ri to
each state qi of the control flow graph. The arguments of the relation symbol ri act as
placeholders of the visible variables in the state qi. The relation symbol rf corresponds
to the summary of the function f. In the relation symbol rf we do not include the local
variable tmp in the arguments since it is invisible from outside the function f. The first
argument of rf is the input and the second one is the output. We do not dedicate any
relation symbol to the error state e.

The initial states of the functions are not constrained at the beginning; they are just
implied by true. The clause that has false as its head corresponds to the assertion in the
program. In order to satisfy the assertion with the head false, the body of the clause
should also be evaluated to false. We put the condition leading to error in the body of
this clause to ensure the error condition is not happening. The rest of the clauses are
one to one translation of the edges in the control flow graph.

For the edges with no function calls we merely relate the variables in the previous
state to the variables in the next state using the transfer functions on the edges. For
example, the clause (2) expresses that res is kept unchanged in the transition from q1 to
q2 and the value of x is greater than or equal to 0 in q2. For the edges with function call
we should also take care of the passing arguments and the return values. For example,
the clause (3) corresponds to the edge containing a function call from q2 to q3. This
clause sets the value of res in the state q3 to the return value of the function f. Note
that the only clauses in this example that have more than one relation symbols in the
body are the ones related to edges with function calls.

The solution of the obtained system of Horn clauses demonstrates the correctness
of the program. In a solution each relation symbol is mapped to an expression over
its arguments. If we replace the relation symbols in the clauses by the expressions in
the solution we should obtain only valid clauses. In a system with a genuine path to
error we cannot find any solution to the system since we have no way to satisfy the
assertion clause. Fig. 3 gives one possible solution of the Horn clauses in terms of
concrete formulae, found by our verification tool Eldarica.3

This paper discusses techniques to automatically construct solutions of Horn clauses.
Although the Horn clauses encoding programs are typically recursive, it has been ob-
served that the case of recursion-free Horn clauses is instrumental for constructing ver-
ification procedures operating on Horn clauses [15, 16, 28]. Sets of recursion-free Horn

3 http://lara.epfl.ch/w/eldarica

Classifying and Solving Horn Clauses for Verification 5

clauses are usually extracted from recursive clauses by means of finite unwinding; ex-
amples are given in Sect. 5.3 and 5.5.

4 Formulae and Horn Clauses

Constraint languages. Throughout this paper, we assume that a first-order vocabulary
of interpreted symbols has been fixed, consisting of a set F of fixed-arity function
symbols, and a set P of fixed-arity predicate symbols. Interpretation of F and P is
determined by a class S of structures (U, I) consisting of non-empty universe U, and
a mapping I that assigns to each function in F a set-theoretic function over U, and
to each predicate in P a set-theoretic relation over U. As a convention, we assume
the presence of an equation symbol “=” in P, with the usual interpretation. Given a
countably infinite set X of variables, a constraint language is a set Constr of first-
order formulae over F ,P,X For example, the language of quantifier-free Presburger
arithmetic has F = {+,−, 0, 1, 2, . . .} and P = {=,≤, |}).

A constraint is called satisfiable if it holds for some structure in S and some as-
signment of the variables X, otherwise unsatisfiable. We say that a set Γ ⊆ Constr of
constraints entails a constraint φ ∈ Constr if every structure and variable assignment
that satisfies all constraints in Γ also satisfies φ; this is denoted by Γ |= φ.

fv(φ) denotes the set of free variables in constraint φ. We write φ[x1, . . . , xn] to state
that a constraint contains (only) the free variables x1, . . . , xn, and φ[t1, . . . , tn] for the
result of substituting the terms t1, . . . , tn for x1, . . . , xn. Given a constraint φ containing
the free variables x1, . . . , xn, we write Cl∀(φ) for the universal closure ∀x1, . . . , xn.φ.

Craig interpolation is the main technique used to construct and refine abstractions in
software model checking. A binary interpolation problem is a conjunction A ∧ B of
constraints. A Craig interpolant is a constraint I such that A |= I and B |= ¬I, and
such that fv(I) ⊆ fv(A) ∩ fv(B). The existence of an interpolant implies that A ∧ B is
unsatisfiable. We say that a constraint language has the interpolation property if also
the opposite holds: whenever A ∧ B is unsatisfiable, there is an interpolant I.

4.1 Horn Clauses

To define the concept of Horn clauses, we fix a setR of uninterpreted fixed-arity relation
symbols, disjoint from P and F . A Horn clause is a formula C ∧ B1 ∧ · · · ∧ Bn → H
where

– C is a constraint over F ,P,X;
– each Bi is an application p(t1, . . . , tk) of a relation symbol p ∈ R to first-order terms

over F ,X;
– H is similarly either an application p(t1, . . . , tk) of p ∈ R to first-order terms, or is

the constraint false.

H is called the head of the clause, C∧B1∧· · ·∧Bn the body. In case C = true, we usually
leave out C and just write B1 ∧ · · · ∧ Bn → H. First-order variables (from X) in a clause
are considered implicitly universally quantified; relation symbols represent set-theoretic

6 Rümmer, Hojjat, Kuncak

relations over the universe U of a structure (U, I) ∈ S. Notions like (un)satisfiability and
entailment generalise straightforwardly to formulae with relation symbols.

A relation symbol assignment is a mapping sol : R → Constr that maps each n-ary
relation symbol p ∈ R to a constraint sol(p) = Cp[x1, . . . , xn] with n free variables. The
instantiation sol(h) of a Horn clause h is defined by:

sol
(
C ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n)→ p(t̄)

)
= C ∧ sol(p1)[t̄1] ∧ · · · ∧ sol(pn)[t̄n]→ sol(p)[t̄]

sol
(
C ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n)→ false

)
= C ∧ sol(p1)[t̄1] ∧ · · · ∧ sol(pn)[t̄n]→ false

Definition 1 (Solvability). LetHC be a set of Horn clauses over relation symbols R.

1. HC is called semantically solvable if for every structure (U, I) ∈ S there is an
interpretation of the relation symbols R as set-theoretic relations over U such the
universally quantified closure Cl∀(h) of every clause h ∈ HC holds in (U, I).

2. A HC is called syntactically solvable if there is a relation symbol assignment sol
such that for every structure (U, I) ∈ S and every clause h ∈ HC it is the case that
Cl∀(sol(h)) is satisfied.

Note that, in the special case when S contains only one structure, S = {(U, I)},
semantic solvability reduces to the existence of relations interpreting R that extend the
structure (U, I) in such a way to make all clauses true. In other words, Horn clauses
are solvable in a structure if and only if the extension of the theory of (U, I) by relation
symbols R in the vocabulary and by given Horn clauses as axioms is consistent.

A set HC of Horn clauses induces a dependence relation →HC on R, defining
p →HC q if there is a Horn clause in HC that contains p in its head, and q in the
body. The set HC is called recursion-free if →HC is acyclic, and recursive otherwise.
In the next sections we study the solvability problem for recursion-free Horn clauses
and then show how to use such results in general Horn clause verification systems.

Definition 2 (Normal Form). A setHC of Horn clauses is in normal form [15] iff

1. every relation symbol has a unique, pairwise distinct vector of arguments,
2. every non-argument variable occurs in at most one clause.

5 The Relationship between Craig Interpolation and Horn Clauses

It has become common to work with generalised forms of Craig interpolation, such as
inductive sequences of interpolants, tree interpolants, and restricted DAG interpolants.
We show that a variety of such interpolation approaches can be reduced to recursion-
free Horn clauses. Recursion-free Horn clauses thus provide a general framework uni-
fying and subsuming a number of earlier notions. As a side effect, we can formulate
a general theorem about existence of the individual kinds of interpolants in Sect. 6,
applicable to any constraint language with the (binary) interpolation property.

An overview of the relationship between specific forms of interpolation and specific
fragments of recursions-free Horn clauses is given in Table 1, and will be explained in
more detail in the rest of this section. Table 1 refers to the following fragments of
recursion-free Horn clauses:

Classifying and Solving Horn Clauses for Verification 7

Form of interpolation Fragment of Horn clauses

Binary interpolation [10, 25]
A ∧ B

Pair of Horn clauses
A→ p(x̄), B ∧ p(x̄)→ false with {x̄} = fv(A) ∩ fv(B)

Inductive interpolant seq. [20, 27]
T1 ∧ T2 ∧ · · · ∧ Tn

Linear tree-like Horn clauses
T1 → p1(x̄1), p1(x̄1) ∧ T2 → p2(x̄2), . . .

with {x̄i} = fv(T1, . . . ,Ti) ∩ fv(Ti+1, . . . ,Tn)

Tree interpolants [19, 24] Tree-like Horn clauses

Restricted DAG interpolants [1] Linear Horn clauses

Disjunctive interpolants [30] Body disjoint Horn clauses

Table 1. Equivalence of interpolation problems and systems of Horn clauses.

Definition 3 (Horn clause fragments). We say that a finite, recursion-free set HC of
Horn clauses

1. is linear if the body of each Horn clause contains at most one relation symbol,
2. is body-disjoint if for each relation symbol p there is at most one clause containing

p in its body; furthermore, every clause contains p at most once;
3. is head-disjoint if for each relation symbol p there is at most one clause containing

p in its head;
4. is tree-like [17] if it is body-disjoint and head-disjoint.

Theorem 1 (Interpolation and Horn clauses). For each line of Table 1 it holds that:

1. an interpolation problem of the stated form can be polynomially reduced to (syn-
tactically) solving a set of Horn clauses, in the stated fragment;

2. solving a set of Horn clauses (syntactically) in the stated fragment can be polyno-
mially reduced to solving a sequence of interpolation problems of the stated form.

5.1 Binary Craig Interpolants [10, 25]

The simplest form of Craig interpolation is the derivation of a constraint I such that A |=
I and I |= ¬B, and such that fv(I) ⊆ fv(A)∩fv(B). Such derivation is typically constructed
by efficiently processing the proof of unsatisfiability of A ∧ B. To encode a binary
interpolation problem into Horn clauses, we first determine the set x̄ = fv(A) ∩ fv(B) of
variables that can possibly occur in the interpolant. We then pick a relation symbol p of
arity |x̄|, and define two Horn clauses expressing that p(x̄) is an interpolant:

A→ p(x̄), B ∧ p(x̄)→ false

It is clear that every syntactic solution for the two Horn clauses corresponds to an inter-
polant of A ∧ B.

8 Rümmer, Hojjat, Kuncak

5.2 Inductive Sequences of Interpolants [20, 27]

Given an unsatisfiable conjunction T1 ∧ . . . ∧ Tn (in practice, often corresponding
to an infeasible path in a program), an inductive sequence of interpolants is a se-
quence I0, I1, . . . , In of formulae such that

1. I0 = true, In = false,
2. for all i ∈ {1, . . . , n}, the entailment Ii−1 ∧ Ti |= Ii holds, and
3. for all i ∈ {0, . . . , n}, it is the case that fv(Ii) ⊆ fv(T1, . . . ,Ti) ∩ fv(Ti+1, . . . ,Tn).

While inductive sequences can be computed by repeated computation of binary inter-
polants [20], more efficient solvers have been developed that derive a whole sequence
of interpolants simultaneously [8, 9, 24].

Inductive sequences as linear tree-like Horn clauses. An inductive sequence of inter-
polants can straightforwardly be encoded as a set of linear Horn clauses, by introducing
a fresh relation symbol pi for each interpolant Ii to be computed. The arguments of the
relation symbols have to be chosen reflecting condition 3 of the definition of interpolant
sequences: for each i ∈ {0, . . . , n}, we assume that x̄i = fv(T1, . . . ,Ti) ∩ fv(Ti+1, . . . ,Tn)
is the vector of variables that can occur in Ii. Conditions 1 and 2 are then represented
by the following Horn clauses:

p0(x̄0), p0(x̄0) ∧ T1 → p1(x̄1), p1(x̄1) ∧ T2 → p2(x̄2), . . . , pn(x̄n)→ false

Linear tree-like Horn clauses as inductive sequences. SupposeHC is a finite, recursion-
free, linear, and tree-like set of Horn clauses. We can solve the system of Horn clauses
by computing one inductive sequence of interpolants for every connected component
of the→HC-graph. Since HC is recursion-free and body-disjoint, it can be normalised
according to Def. 2 by renaming variables. A connected component represents the fol-
lowing Horn clauses.

C1 → p1(x̄1), C2∧p1(x̄1)→ p2(x̄2), C3∧p2(x̄2)→ p3(x̄3), . . . , Cn∧pn(x̄n)→ false .

(If the first or the last of the clauses is missing, we assume that its constraint is false.)
Any inductive sequence of interpolants for C1 ∧C2 ∧C3 ∧ · · · ∧Cn solves the clauses.

5.3 Tree Interpolants [19, 24]

Tree interpolants strictly generalise inductive sequences of interpolants, and are de-
signed with the application of inter-procedural verification in mind: in this context, the
tree structure of the interpolation problem corresponds to (a part of) the call graph of
a program. Tree interpolation problems correspond to recursion-free tree-like sets of
Horn clauses.

Suppose (V, E) is a finite directed tree, writing E(v,w) to express that the node w
is a direct child of v. Further, suppose φ : V → Constr is a function that labels each
node v of the tree with a formula φ(v). A labelling function I : V → Constr is called a
tree interpolant (for (V, E) and φ) if the following properties hold:

Classifying and Solving Horn Clauses for Verification 9

1. for the root node v0 ∈ V , it is the case that I(v0) = false,
2. for any node v ∈ V , the following entailment holds:

φ(v) ∧
∧

(v,w)∈E

I(w) |= I(v) ,

3. for any node v ∈ V , every non-logical symbol (in our case: variable) in I(v) occurs
both in some formula φ(w) for w such that E∗(v,w), and in some formula φ(w′) for
some w′ such that ¬E∗(v,w′). (E∗ is the reflexive transitive closure of E).

Since the case of tree interpolants is instructive for solving recursion-free sets of
Horn clauses in general, we give a result about the existence of tree interpolants. The
proof of the lemma computes tree interpolants by repeated derivation of binary inter-
polants; however, as for inductive sequences of interpolants, there are solvers that can
compute all formulae of a tree interpolant simultaneously [16, 17, 24].

Lemma 1. Suppose the constraint language Constr that has the interpolation property.
Then a tree (V, E) with labelling function φ : V → Constr has a tree interpolant I if and
only if

∧
v∈V φ(v) is unsatisfiable.

Proof. “⇒” follows from the observation that every interpolant I(v) is a consequence
of the conjunction

∧
(v,w)∈E+ φ(w).

“⇐”: let v1, v2, . . . , vn be an inverse topological ordering of the nodes in (V, E), i.e.,
an ordering such that ∀i, j. (E(vi, v j) ⇒ i > j). We inductively construct a sequence of
formulae I1, I2, . . . , In, such that for every i ∈ {1, . . . , n} the following properties hold:

1. the following conjunction is unsatisfiable:∧
{Ik | k ≤ i, ∀ j. (E(v j, vk)⇒ j > i)} ∧

(
φ(vi+1) ∧ φ(vi+2) ∧ · · · ∧ φ(vn)

)
(1)

2. the following entailment holds:

φ(vi) ∧
∧

(vi,v j)∈E

I j |= Ii

3. every non-logical symbol in Ii occurs both in a formula φ(w) with E∗(vi,w), and in
a formula φ(w′) with ¬E∗(vi,w′).

Assume that the formulae I1, I2, . . . , Ii have been constructed, for i ∈ {0, . . . , n − 1}.
We then derive the next interpolant Ii+1 by solving the binary interpolation problem(

φ(vi+1) ∧
∧

E(vi+1,v j)

I j

)
∧

(∧
{Ik | k ≤ i, ∀ j. (E(v j, vk)⇒ j > i + 1)} ∧ φ(vi+2) ∧ · · · ∧ φ(vn)

)
(2)

That is, we construct Ii+1 so that the following entailments hold:

φ(vi+1) ∧
∧

E(vi+1,v j)

I j |= Ii+1,∧
{Ik | k ≤ i, ∀ j. (E(v j, vk)⇒ j > i + 1)} ∧ φ(vi+2) ∧ · · · ∧ φ(vn) |= ¬Ii+1

10 Rümmer, Hojjat, Kuncak

Furthermore, Ii+1 only contains non-logical symbols that are common to the left and the
right side of the conjunction.

Note that (2) is equivalent to (1), therefore unsatisfiable, and a well-formed interpo-
lation problem. It is also easy to see that the properties 1–3 hold for Ii+1. Also, we can
easily verify that the labelling function I : vi 7→ Ii is a solution for the tree interpolation
problem defined by (V, E) and φ. ut

Tree interpolation as tree-like Horn clauses. The encoding of a tree interpolation prob-
lem as a tree-like set of Horn clauses is very similar to the encoding for inductive se-
quences of interpolants. We introduce a fresh relation symbol pv for each node v ∈ V
of a tree interpolation problem (V, E), φ, assuming that for each v ∈ V the vector x̄v =⋃

E∗(v,w) fv(φ(w))∩
⋃
¬E∗(v,w) fv(φ(w)) represents the set of variables that can occur in the

interpolant I(v). The interpolation problem is then represented by the following clauses:

p0(x̄0)→ false,
{
φ(v) ∧

∧
(v,w)∈E

pw(x̄w)→ pv(x̄v)
}
v∈V

Tree-like Horn clauses as tree interpolation. SupposeHC is a finite, recursion-free, and
tree-like set of Horn clauses. We can solve the system of Horn clauses by computing a
tree interpolant for every connected component of the→HC-graph. As before, we first
normalise the Horn clauses according to Def. 2. The interpolation graph (V, E) is then
defined by choosing the set V = R ∪ {false} of relation symbols as nodes, and the child
relation E(p, q) to hold whenever p occurs as head, and q within the body of a clause.
The labelling function φ is defined by φ(p) = C whenever there is a clause with head
symbol p and constraint C, and φ(p) = false if p does not occur as head of any clause.

Example 1. We consider a subset of the Horn clauses given in Fig. 2:

(1) r1(X, Res) ← true
(2) r2(X’, Res) ← r1(X, Res) ∧ X’ ≥ 0
(3) r3(X, Res’) ← r2(X, Res) ∧ rf(X, Res’)
(5) false ← r3(X, Res) ∧ Res , X + 1
(6) r5(N, Rec, Tmp) ← true
(9) r8(N, Rec, Tmp) ← r5(N, Rec, Tmp) ∧ N ≤ 0
(11) r9(N, Rec’, Tmp) ← r8(N, Rec, Tmp) ∧ Rec’ = 1
(12) rf (N, Rec) ← r9(N, Rec, Tmp)

Note that this recursion-free subset of the clauses is body-disjoint and head-disjoint,
and thus tree-like. Since the complete set of clauses in Fig. 2 is solvable, also any subset
is; in order to compute a (syntactic) solution of the clauses, we set up the corresponding
tree interpolation problem. Fig. 4 shows the tree with the labelling φ to be interpolated
(in grey), as well as the head literals of the clauses generating the nodes of the tree.
A tree interpolant solving the interpolation problem is given in Fig. 5. The tree inter-
polant can be mapped to a solution of the original tree-like Horn, for instance we set
r8(n8, rec8, tmp8) = (n8 ≤ 0) and r9(n9, rec9, tmp9) = (n9 ≤ −1 ∨ (rec9 = 1 ∧ n9 = 0)).

Symmetric Interpolants A special case of tree interpolants, symmetric interpolants,
was introduced in [26]. Symmetric interpolants are equivalent to tree interpolants with

Classifying and Solving Horn Clauses for Verification 11

false:
res3 , x3 + 1

r3(x3, res3):
x3 = x2 ∧ x3 = n f ∧ res3 = rec f

r f (n f , rec f):
n f = n9 ∧ rec f = rec9

r9(n9, rec9, tmp9):
n9 = n8 ∧ rec9 = 1 ∧ tmp9 = tmp8

r8(n8, rec8, tmp8):
n8 = n5 ∧ n8 ≤ 0 ∧ rec8 = rec5 ∧ tmp8 = tmp5

r5(n5, rec5, tmp5):
true

r2(x2, res2):
x2 ≥ 0 ∧ res2 = res1

r1(x1, res1):
true

Fig. 4. Tree interpolation problem for the clauses in Example 1

a flat tree structure (V, E), i.e., V = {root, v1, . . . , vn}, where the nodes v1, . . . , vn are the
direct children of root.

5.4 Restricted (and Unrestricted) DAG Interpolants [1]

Restricted DAG interpolants are a further generalisation of inductive sequence of inter-
polants, introduced for the purpose of reasoning about multiple paths in a program si-
multaneously [1]. Suppose (V, E, en, ex) is a finite connected DAG with entry node en ∈
V and exit node ex ∈ V , further LE : E → Constr a labelling of edges with constraints,
andLV : V → Constr a labelling of vertices. A restricted DAG interpolant is a mapping
I : V → Constr with

1. I(en) = true, I(ex) = false,
2. for all (v,w) ∈ E the entailment I(v)∧LV (v)∧LE(v,w) |= I(w)∧LV (w) holds, and
3. for all v ∈ V it is the case that4

fv(I(v)) ⊆
(⋃

(a,v)∈E

fv(LE(a, v))
)
∩

(⋃
(v,a)∈E

fv(LE(v, a))
)
.

4 The definition of DAG interpolants in [1, Def. 4] implies that fv(I(v)) = ∅ for every inter-
polant I(v), v ∈ V , i.e., only trivial interpolants are allowed. We assume that this is a mistake
in [1, Def. 4], and corrected the definition as shown here.

12 Rümmer, Hojjat, Kuncak

false

res3 = x3 + 1

n f ≤ −1 ∨ (rec f = 1 ∧ n f = 0)

n9 ≤ −1 ∨ (rec9 = 1 ∧ n9 = 0)

n8 ≤ 0

true

x2 ≥ 0

Fig. 5. Tree interpolant solving the interpolation problem in Fig. 4

The UFO verification system [3] is able to compute DAG interpolants, based on
the interpolation functionality of MathSAT [9]. We can observe that DAG interpolants
(despite their name) are incomparable in expressiveness to tree interpolation. This is
because DAG interpolants correspond to linear Horn clauses, and might have shared
relation symbol in bodies, while tree interpolants correspond to possibly nonlinear tree-
like Horn clauses, but do not allow shared relation symbols in bodies.

Encoding of restricted DAG interpolants as linear Horn clauses. For every v ∈ V , let

{x̄v} =
(⋃

(a,v)∈E

fv(LE(a, v))
)
∩

(⋃
(v,a)∈E

fv(LE(v, a))
)

be the variables allowed in the interpolant to be computed for v, and pv be a fresh
relation symbol of arity |x̄v|. The interpolation problem is then defined by the following
set of linear Horn clauses:

For each (v,w) ∈ E: LV (v) ∧ LE(v,w) ∧ pv(x̄v)→ pw(x̄w),
LV (v) ∧ ¬LV (w) ∧ LE(v,w) ∧ pv(x̄v)→ false,

For en, ex ∈ V: true→ pen(x̄en), pex(x̄ex)→ false

Encoding of linear Horn clauses as DAG interpolants. SupposeHC is a finite, recursion-
free, and linear set of Horn clauses. We can solve the system of Horn clauses by com-
puting a DAG interpolant for every connected component of the →HC-graph. As in
Sect. 5.2, we normalise Horn clauses according to Def. 2. We also assume that multiple
clauses C ∧ p(x̄p) → q(x̄q) and D ∧ p(x̄p) → q(x̄q) with the same relation symbols are
merged to (C ∨ D) ∧ p(x̄p)→ q(x̄q).

Let {p1, . . . , pn} be all relation symbols of one connected component. We then define
the DAG interpolation problem (V, E, en, ex),LE ,LV by

Classifying and Solving Horn Clauses for Verification 13

– the vertices V = {p1, . . . , pn} ∪ {en, ex}, including two fresh nodes en, ex,
– the edge relation

E = {(p, q) | there is a clause C ∧ p(x̄p)→ q(x̄q) ∈ HC}
∪ {(en, p) | there is a clause D→ p(x̄p) ∈ HC}
∪ {(p, ex) | there is a clause E ∧ p(x̄p)→ false ∈ HC} ,

– for each (v,w) ∈ E, the edge labelling

LE(v,w) =

C ∧ x̄v = x̄v ∧ x̄w = x̄w if C ∧ v(x̄v)→ w(x̄w) ∈ HC
D ∧ x̄w = x̄w if v = en and D→ w(x̄w) ∈ HC
E ∧ x̄v = x̄v if w = ex and E ∧ v(x̄v)→ false ∈ HC

Note that the labels include equations like x̄v = x̄v to ensure that the right variables
are allowed to occur in interpolants.

– for each v ∈ V , the node labelling LV (v) = true.

By checking the definition of DAG interpolants, it can be verified that every interpolant
solving the problem (V, E, en, ex),LE ,LV is also a solution of the linear Horn clauses.

5.5 Disjunctive Interpolants [30]

Disjunctive interpolants were introduced in [30] as a generalisation of tree interpolants.
Disjunctive interpolants resemble tree interpolants in the sense that the relationship of
the components of an interpolant is defined by a tree; in contrast to tree interpolants,
however, this tree is an and/or-tree: branching in the tree can represent either conjunc-
tions or disjunctions. Disjunctive interpolants correspond to sets of body-disjoint Horn
clauses; in this representation, and-branching is encoded by clauses with multiple body
literals (like with tree interpolants), while or-branching is interpreted as multiple clauses
sharing the same head symbol. For a detailed account on disjunctive interpolants, we
refer the reader to [30].

The solution of body-disjoint Horn clauses can be computed by solving a sequence
of tree-like sets of Horn clauses:

Lemma 2. Let HC be a finite set of recursion-free body-disjoint Horn clauses. HC
has a syntactic/semantic solution if and only if every maximum tree-like subset of HC
has a syntactic/semantic solution.

Proof. We outline direction “⇐” for syntactic solutions. Solving the tree-like subsets of
HC yields, for each relation symbol p ∈ R, a set SCp of solution constraints. A global
solution of HC can be constructed by forming a positive Boolean combination of the
constraints in SCp for each p ∈ R. ut

Example 2. We consider a recursion-free unwinding of the Horn clauses in Fig. 2. To
make the set of clauses body-disjoint, the clauses (6), (9), (11), (12) were duplicated,
introducing primed copies of all relation symbols involved. The clauses are not head-
disjoint, since (10) and (11) share the same head symbol:

14 Rümmer, Hojjat, Kuncak

(1) r1(X, Res) ← true
(2) r2(X’, Res) ← r1(X, Res) ∧ X’ ≥ 0
(3) r3(X, Res’) ← r2(X, Res) ∧ rf(X, Res’)
(5) false ← r3(X, Res) ∧ Res , X + 1

(6) r5(N, Rec, Tmp) ← true
(7) r6(N, Rec, Tmp) ← r5’(N, Rec, Tmp) ∧ N > 0
(8) r7(N, Rec, Tmp’) ← r6(N, Rec, Tmp) ∧ rf’(N − 1, Tmp’)
(9) r8(N, Rec, Tmp) ← r5(N, Rec, Tmp) ∧ N ≤ 0
(10) r9(N, Rec’, Tmp) ← r7(N, Rec, Tmp) ∧ Rec’ = Tmp + 1
(11) r9(N, Rec’, Tmp) ← r8(N, Rec, Tmp) ∧ Rec’ = 1
(12) rf (N, Rec) ← r9(N, Rec, Tmp)

(6’) r5 ’(N, Rec, Tmp) ← true
(6’’) r5’’(N, Rec, Tmp) ← true
(9’) r8 ’(N, Rec, Tmp) ← r5’’(N, Rec, Tmp) ∧ N ≤ 0
(11’) r9 ’(N, Rec’, Tmp) ← r8’(N, Rec, Tmp) ∧ Rec’ = 1
(12’) rf ’(N, Rec) ← r9’(N, Rec, Tmp)

There are two maximum tree-like subsets: T1 = {(1), (2), (3), (5), (6), (9), (11), (12)},
and T2 = {(1), (2), (3), (5), (7), (8), (10), (12), (6′), (6′′), (9′), (11′), (12′)}. The subset T1
has been discussed in Example 1. In the same way, it is possible to construct a solution
for T2 by solving a tree interpolation problem. The two solutions can be combined to
construct a solution of T1 ∪ T2:

T1 T2 T1 ∪ T2

r1(x, r) true true true
r2(x, r) x ≥ 0 true x ≥ 0
r3(x, r) r = x + 1 r = x + 1 r = x + 1
r5(n, c, t) true true true
r6(n, c, t) − n ≥ 1 n ≥ 1
r7(n, c, t) − t = n t = n
r8(n, c, t) n ≤ 0 − n ≤ 0
r9(n, c, t) n ≤ −1 ∨ (c = 1 ∧ n = 0) c = n + 1 n ≤ −1 ∨ c = n + 1
r f (n, c) n ≤ −1 ∨ (c = 1 ∧ n = 0) c = n + 1 n ≤ −1 ∨ c = n + 1
r′5(n, c, t) − true true
r′′5 (n, c, t) − true true
r′8(n, c, t) − n ≤ 0 n ≤ 0
r′9(n, c, t) − n ≤ −1 ∨ (c = 1 ∧ n = 0) n ≤ −1 ∨ (c = 1 ∧ n = 0)
r′f (n, c, t) − n ≤ −1 ∨ (c = 1 ∧ n = 0) n ≤ −1 ∨ (c = 1 ∧ n = 0)

In particular, the disjunction of the two interpretations of r9(n, c, t) has to be used,
in order to satisfy both (10) and (11) (similarly for r f (n, c)). In contrast, the conjunction
of the interpretations of r2(x, r) is needed to satisfy (3).

6 The Complexity of Recursion-free Horn Clauses
over Quantifier-free Presburger Arithmetic

We give an overview of the considered fragments of recursion-free Horn clauses, and
the corresponding interpolation problem, in Fig. 6. The diagram also shows the com-

Classifying and Solving Horn Clauses for Verification 15

co
-N

P
co

-N
E

X
PT

IM
E

Recursion-free Horn clausesCraig interpolation

Linear tree-like

Body-disjoint

General recursion-free

Tree-like

Head-disjoint

Linear

Inductive interpolant sequences

Binary interpolation

Tree interpolation

Disjunctive interpolation

(Restricted) DAG interpolation

Fig. 6. Relationship between different forms of Craig interpolation, and different fragments of
recursion-free Horn clauses. An arrow from A to B expresses that problem A is (strictly) sub-
sumed by B. The complexity classes “co-NP” and “co-NEXPTIME” refer to the problem of
checking solvability of Horn clauses over quantifier-free Presburger arithmetic.

plexity of deciding (semantic or syntactic) solvability of a set of Horn clauses, for Horn
clauses over the constraint language of quantifier-free Presburger arithmetic. Most of
the complexity results occur in [30], but in addition we use the following two observa-
tions:

Lemma 3. Semantic solvability of recursion-free linear Horn clauses over the con-
straint language of quantifier-free Presburger arithmetic is in co-NP.

Proof. A set HC of recursion-free linear Horn clauses is solvable if and only if the
expansion exp(HC) is unsatisfiable [30]. For linear clauses, exp(HC) is a disjunction of
(possibly) exponentially many formulae, each of which is linear in the size of exp(HC).
Consequently, satisfiability of exp(HC) is in NP, and unsatisfiability in co-NP. ut

Lemma 4. Semantic solvability of recursion-free head-disjoint Horn clauses over the
constraint language of quantifier-free Presburger arithmetic is co-NEXPTIME-hard.

Proof. The proof given in [30] for co-NEXPTIME-hardness of recursion-free Horn
clauses over quantifier-free Presburger arithmetic can be adapted to only require head-
disjoint clauses. This is because a single execution step of a non-deterministic Turing
machine can be expressed as quantifier-free Presburger formula. ut

16 Rümmer, Hojjat, Kuncak

7 Towards a Library of Interpolation Benchmarks

In order to support the development of interpolation engines, Horn solvers, and verifi-
cation systems, we have started to collect relevant benchmarks of recursion-free Horn
clauses, categorised according to the classes determined in the previous sections.5 The
benchmarks have been extracted from runs of the model checker Eldarica [30], which
processes systems of (usually recursive) Horn clauses by iteratively solving recursion-
free unwindings, as outlined in Sect. 3. For each recursive verification problem, in this
way a set of recursion-free systems of Horn clauses (of varying size) can be synthesised.
The benchmarks can be used to evaluate both Horn solvers and interpolation engines,
according to the correspondence in Fig. 6.

At the moment, our benchmarks are extracted from the verification problems in [30],
and formulated over the constraint language of linear integer arithmetic; in the future, it
is planned to also include other constraint languages, including rational arithmetic and
the theory of arrays. The benchmarks are stored in SMT-LIB 2 format [5]. All of the
benchmarks can be solved by Eldarica, and by the Horn solving engine in Z3 [21].

8 From Recursion-free Horn Clauses to Well-founded Clauses

It is natural to ask whether the considerations of the last sections also apply to clauses
that are not Horn clauses (i.e., clauses that can contain multiple positive literals), pro-
vided the clauses are “recursion-free.” Is it possible, like for Horn clauses, to derive
solutions of recursion-free clauses by computing Craig interpolants?

To investigate the situation for clauses that are not Horn, we first have to generalise
the concept of clauses being recursion-free: the definition provided in Sect. 4, formu-
lated with the help of the dependence relation→HC, only applies to Horn clauses. For
non-Horn clauses, we instead choose to reason about the absence of infinite proposi-
tional resolution derivations. Because the proposed algorithms [30] for solving recursion-
free sets of Horn clauses all make use of exhaustive expansion or inlining, i.e., the con-
struction of all derivations for a given set of clauses, the requirement that no infinite
derivations exist is fundamental.6

Somewhat surprisingly, we observe that all sets of clauses without infinite deriva-
tions have the shape of Horn clauses, up to renaming of relation symbols. This means
that procedures handling Horn clauses cover all situations in which we can hope to
compute solutions with the help of Craig interpolation.

Since constraints and relation symbol arguments are irrelevant for this observation,
the following results are entirely formulated on the level of propositional logic:

5 http://lara.epfl.ch/w/horn-nonrec-benchmarks
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/Eldarica/

6 We do not take subsumption between clauses, or loops in derivations into account. This means
that a set of clauses might give rise to infinite derivations even if the set of derived clauses is
finite. It is conceivable that notions of subsumption, or more generally the application of ter-
minating saturation strategies [13], can be used to identify more general fragments of clauses
for which syntactic solutions can effectively be computed. This line of research is future work.

Classifying and Solving Horn Clauses for Verification 17

– a propositional literal is either a Boolean variable p, q, r (positive literals), or the
negation ¬p,¬q,¬r of a Boolean variable (negative literals).

– a propositional clause is a disjunction p ∨ ¬q ∨ p of literals. The multiplicity of a
literal is important, i.e., clauses could alternatively be represented as multi-sets of
literals.

– a Horn clause is a clause that contains at most one positive literal.
– given a setHC of Horn clauses, we define the dependence relation→HC on Boolean

variables by setting p→HC q if and only if there is a clause in HC in which p
occurs positively, and q negatively (like in Sect. 4). The setHC is called recursion-
free if→HC is acyclic.

We can now generalise the notion of a set of clauses being “recursion-free” to non-
Horn clauses:

Definition 4. A set C of propositional clauses is well-founded if there is no infinite
sequence c0, c1, c2, c3, . . . of clauses with the property that

– c0 ∈ C is an input clause, and
– for each i ≥ 1, the clause ci is derived by means of binary resolution from ci−1 and

an input clause, using the rule

C ∨ p D ∨ ¬p
C ∨ D

.

Lemma 5. A finite setHC of Horn clauses is well-founded if and only if it is recursion-
free.

Proof. “⇐” The acyclic dependence relation →HC induces a strict well-founded or-
der < on Boolean variables: q →HC p implies p < q. The order < induces a well-
founded order� on Horn clauses:

(p ∨C) � (q ∨ D) ⇔ p > q or (p = q and C <ms D)
C � (q ∨ D) ⇔ true

C � D ⇔ C <ms D

where C,D only contain negative literals, and <ms is the (well-founded) multi-set ex-
tension of < [12].

It is easy to see that a clause C∨D derived from two Horn clauses C∨ p and D∨¬p
using the resolution rule is again Horn, and (C∨D) � (C∨ p) and (C∨D) � (D∨¬p).
The well-foundedness of� implies that any sequence of clauses as in Def. 4 is finite.

“⇒” If the dependence relation→HC has a cycle, we can directly construct a non-
terminating sequence c0, c1, c2, . . . of clauses. ut

Definition 5 (Renamable-Horn [23]). If A is a set of Boolean variables, and C is a
set of clauses, then rA(C) is the result of replacing in C every literal whose Boolean
variable is in A with its complement. C is called renamable-Horn if there is some set A
of Boolean variables such that rA(C) is Horn.

Theorem 2. If a finite set C of clauses is well-founded, then it is renamable-Horn.

18 Rümmer, Hojjat, Kuncak

Proof. Suppose C is formulated over the (finite) set p1, p2, . . . , pn of Boolean variables.
We construct a graph (V, E), with V = {p1, p2, . . . , pn,¬p1,¬p2, . . . ,¬pn} being the set
of all possible literals, and (l, l′) ∈ E if and only if there is a clause ¬l∨ l′ ∨C ∈ C (that
means, a clause containing the literal l′, and the literal l with reversed sign).7

The graph (V, E) is acyclic. To see this, suppose there is a cycle l1, l2, . . . , lm, lm+1 =

l1 in (V, E). Then there are clauses c1, c2, . . . , cm ∈ C such that each ci contains the liter-
als ¬li and li+1. We can then construct an infinite sequence c1 = d0, d1, d2, . . . of clauses,
where each di (for i > 1) is obtained by resolving di−1 with c(i mod m)+1, contradicting the
assumption that C is well-founded.

Since (V, E) is acyclic, there is a strict total order < on V that is consistent with E,
i.e., (l, l′) ∈ E implies l < l′.

Claim: if p < ¬p for every Boolean variable p ∈ {p1, p2, . . . , pn}, then C is Horn.
Proof of the claim: suppose a non-Horn clause pi ∨ p j ∨ C ∈ C exists (with i , j).

Then (¬pi, p j) ∈ E and (¬p j, pi) ∈ E, and therefore ¬pi < p j and ¬p j < pi. Then also
¬pi < pi or ¬p j < p j, contradicting the assumption that p < ¬p for every Boolean
variable p.

In general, choose A = {pi | i ∈ {1, . . . , n},¬pi < pi}, and consider the set rA(C) of
clauses. The set rA(C) is Horn, since changing the sign of a Boolean variable p ∈ A
has the effect of swapping the nodes p,¬p in the graph (V, E). Therefore, the new
graph (V, E′) has to be compatible with a strict total order < such that p < ¬p for
every Boolean variable p, satisfying the assumption of the claim above. ut

Example 3. We consider the following set of clauses:

C = {¬a ∨ s, a ∨ ¬p, p ∨ ¬b, b ∨ p ∨ r, ¬p ∨ q}

By constructing all possible derivations, it can be shown that the set is well-founded.
The graph (V, E), as constructed in the proof, is:

¬p

¬a

¬s

¬q

b ¬b

p

aq

s

r

¬r

A strict total order that is compatible with the graph is:

¬s < ¬q < ¬r < ¬a < ¬p < b < ¬b < r < p < q < a < s

7 This graph could equivalently be defined as the implication graph of the 2-sat problem intro-
duced in [23], as a way of characterising whether a set of clauses is Horn.

Classifying and Solving Horn Clauses for Verification 19

From the order we can read off that we need to rename the variables A = {s, q, r, a, p}
in order to obtain a set of Horn clauses:

rA(C) = {a ∨ ¬s, ¬a ∨ p, ¬p ∨ ¬b, b ∨ ¬p ∨ ¬r, p ∨ ¬q}

9 Conclusion

In recent years there has been a growing interest in more general forms of interpola-
tion, organising formulae in non-linear structures such as trees, hyper-trees or directed
acyclic graphs. In this paper we showed that many forms of interpolation can be de-
fined as subclasses of recursion-free Horn clauses, provided a taxonomy of the various
fragments, and investigated computational complexity. We believe that the results are
valuable for application domains of Horn constraints, in particular in program verifica-
tion and model checking.

References

1. A. Albarghouthi, A. Gurfinkel, and M. Chechik. Craig interpretation. In SAS, 2012.
2. A. Albarghouthi, A. Gurfinkel, and M. Chechik. Whale: An interpolation-based algorithm

for inter-procedural verification. In VMCAI, pages 39–55, 2012.
3. A. Albarghouthi, Y. Li, A. Gurfinkel, and M. Chechik. Ufo: A framework for abstraction-

and interpolation-based software verification. In CAV, pages 672–678, 2012.
4. T. Ball, A. Podelski, and S. K. Rajamani. Relative completeness of abstraction refinement

for software model checking. In TACAS’02, volume 2280 of LNCS, page 158, 2002.
5. C. Barrett, A. Stump, and C. Tinelli. C.: The smt-lib standard: Version 2.0. Technical

report, 2010.
6. N. Bjørner, K. McMillan, and A. Rybalchenko. Program verification as satisfiability

modulo theories. In SMT Workshop at IJCAR, 2012.
7. M. P. Bonacina and M. Johansson. On interpolation in automated theorem proving.

(submitted), 2012.
8. A. Brillout, D. Kroening, P. Rümmer, and T. Wahl. An interpolating sequent calculus for

quantifier-free Presburger arithmetic. Journal of Automated Reasoning, 47:341–367, 2011.
9. A. Cimatti, A. Griggio, and R. Sebastiani. Efficient generation of Craig interpolants in

satisfiability modulo theories. ACM Trans. Comput. Log., 12(1):7, 2010.
10. W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. The Journal of

Symbolic Logic, 22(3):250–268, September 1957.
11. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages 337–340.

Springer-Verlag, 2008.
12. N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Commun. ACM,

22(8):465–476, 1979.
13. C. Fermüller, A. Leitsch, U. Hustadt, and T. Tammet. Resolution decision procedures. In

A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, chapter 25,
pages 1791–1850. Elsevier, 2001.

14. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV, pages 72–83,
1997.

15. S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing software
verifiers from proof rules. In PLDI, 2012.

16. A. Gupta, C. Popeea, and A. Rybalchenko. Predicate abstraction and refinement for
verifying multi-threaded programs. In POPL, 2011.

20 Rümmer, Hojjat, Kuncak

17. A. Gupta, C. Popeea, and A. Rybalchenko. Solving recursion-free Horn clauses over
LI+UIF. In APLAS, pages 188–203, 2011.

18. A. Gupta, C. Popeea, and A. Rybalchenko. Generalised interpolation by solving
recursion-free horn clauses. CoRR, abs/1303.7378, 2013.

19. M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In POPL, 2010.
20. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from proofs. In

POPL, pages 232–244. ACM, 2004.
21. K. Hoder and N. Bjørner. Generalized property directed reachability. In SAT, pages

157–171, 2012.
22. A. Lal, S. Qadeer, and S. K. Lahiri. Corral: A solver for reachability modulo theories. In

CAV, 2012.
23. H. R. Lewis. Renaming a set of clauses as a Horn set. J. ACM, 25(1):134–135, Jan. 1978.
24. K. L. McMillan. iZ3 documentation.

http://research.microsoft.com/en-us/um/redmond/projects/z3/iz3documentation.html.
25. K. L. McMillan. Interpolation and SAT-based model checking. In CAV, 2003.
26. K. L. McMillan. Applications of craig interpolants in model checking. In N. Halbwachs

and L. D. Zuck, editors, TACAS, volume 3440 of Lecture Notes in Computer Science, pages
1–12. Springer, 2005.

27. K. L. McMillan. Lazy abstraction with interpolants. In CAV, 2006.
28. K. L. McMillan and A. Rybalchenko. Solving constrained Horn clauses using interpolation.

Technical Report MSR-TR-2013-6, Jan. 2013.
http://research.microsoft.com/apps/pubs/default.aspx?id=180055.

29. M. Méndez-Lojo, J. A. Navas, and M. V. Hermenegildo. A flexible, (c)lp-based approach to
the analysis of object-oriented programs. In LOPSTR, pages 154–168, 2007.

30. P. Rümmer, H. Hojjat, and V. Kuncak. Disjunctive Interpolants for Horn-Clause Verification
(Extended Technical Report). ArXiv e-prints, Jan. 2013. http://arxiv.org/abs/1301.4973.

31. O. Sery, G. Fedyukovich, and N. Sharygina. Interpolation-based function summaries in
bounded model checking. In Haifa Verification Conference (HVC), Haifa, 2011. Springer.

32. P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo recursive programs. In Static
Analysis Symposium (SAS), 2011.

33. M. Taghdiri and D. Jackson. Inferring specifications to detect errors in code. Autom. Softw.
Eng., 14(1):87–121, 2007.

