
Bixie: Finding and Understanding Inconsistent Code
Tim McCarthy∗, and Philipp Rümmer†, and Martin Schäf∗

∗SRI International
†Uppsala University

Abstract—We present Bixie, a tool to detect inconsistencies in
Java code. Bixie detects inconsistent code at a higher precision
than previous tools and provides novel fault localization tech-
niques to explain why code is inconsistent. We demonstrate the
usefulness of Bixie on over one million lines of code, show that
it can detect inconsistencies at a low false alarm rate, and fix a
number of inconsistencies in popular open-source projects.
Watch our Demo at http://youtu.be/QpsoUBJMxhk.

I. INTRODUCTION

We present Bixie, a static analysis tool that automatically
detects inconsistent code in Java programs. Inconsistent code,
as defined for example in [1], or [2], occurs when two or
more statements in a program make inconsistent assumptions.
In other words, inconsistent code is either unreachable, or any
execution through it must lead to an error. Common examples
of inconsistent code are nullness-checks of pointers that have
already been dereferenced, or nullness-checks followed by a
dereference of the same pointer. Such inconsistencies are not
necessarily bugs, but they are a code smell because they can
never be executed safely.

Inconsistent code is an interesting target for static analysis
because it can be detected locally and without knowing the
intended purpose of the code. That is, such an analysis can
be implemented in a fully automated fashion and, in theory,
without false positives: if we can prove that a piece of code in
isolation has no normal terminating execution (either because
it is unreachable or because any execution must crash), this
proof will also hold in any larger context. Hence, inconsistent
code can be detected in code snippets or even while typing.
No user-provided specification is required.

In our prior work, we have demonstrated efficient algorithms
and prototype tools to detect inconsistent code [3], [4] and
given the theoretical underpinning on how to explain incon-
sistent code [1]. With Bixie, we present the first complete
tool to detect and report inconsistent code in Java programs.
Bixie is based on our previous prototype Joogie [4] and
extends this in numerous ways: Bixie uses Boogie [5] as
an intermediate language and provides a reusable translation
from Java bytecode into Boogie. Bixie implements several
filters to suppress false alarms that are rooted in inconsistent
code introduced by the compiler when translating Java source
code into bytecode (see Section III). Bixie implements the
interpolation-based inconsistent code explanation algorithm
presented in [1]. This makes Bixie the only tool that reports
the pair of statements that are inconsistent, compared to other
tools that only report one statement that has no execution [2],
[4].

To demonstrate the usefulness of Bixie, we conducted a
series of experiments on several open source Java programs.
The goal of our experiments was to demonstrate that inconsis-
tent code exists even in well maintained code, that inconsistent
code can be detected efficiently and with relatively few false
alarms by Bixie, and that developers care about the reported
inconsistencies.

Contributions. We make the following key contributions:
1) we present a robust tool to detect inconsistent code on

real-world Java programs,
2) we present the first implementation of an interpolation-

based algorithm to explain inconsistent code that works
on real-world code,

3) we find and report inconsistent code in several open-
source projects.

The Bixie tool, an on-line version of the tool, a demonstra-
tion video, and the experimental data from this paper are avail-
able on the Bixie website: http://csl.sri.com/projects/bixie/.
Links to GitHub repositories including all source code scripts
to reproduce the experiments from this paper are also given
there.

II. EXAMPLE

We illustrate how Bixie finds and reports inconsistent code
along the example in Figure 1. The figure shows a piece of
code in the Apache Tomcat web server. The conditional choice
in line 5 assumes that the variable size is greater than the
length of the array resolvers. Then, in line 6 the array is
accessed at that position. This is inconsistent with the implicit
runtime assertion that arrays can only be accessed within their
legal bounds. That is, every time line 6 is reached, a runtime
exception is thrown.

1 @Override
2 public synchronized void add(
3 ELResolver elResolver) {
4 super.add(elResolver);
5 if (resolvers.length < size) {
6 resolvers[size] = elResolver;
7 } else {
8 ...

Fig. 1. Inconsistent Code found by Bixie in Tomcat. The conditional in
line 5 assumes that the variable size is larger than the size of the array
which is inconsistent with the array access in line 6.

To detect this inconsistency, Bixie takes the Tomcat source
code as input, either as Java source files or as class files,



and uses the Soot bytecode analysis framework [6] to pre-
process it into the simpler Jimple format. The Jimple format
is then translated into the Boogie intermediate verification
language. In this step, all implicit runtime assertions, such as
array bounds checks, are turned into assertion statements. On
the Boogie program, Bixie performs several abstractions to
make the set of control-flow paths finite [7]. The abstraction
over-approximates loops, eliminates procedure calls, and elim-
inates other language features that are hard to analyze, such
as reflection and multithreading. The details and limitations of
this abstraction are discussed in more detail in Section III.

The resulting abstract Boogie program is now analyzed one
procedure at a time. Bixie does not perform inter-procedural
analysis. Each procedure is turned into a logic formula of
first order [8]. This formula has the property that each model
satisfying this formula can be mapped to a feasible complete
control-flow path in the original program (we discuss the
soundness of this step in the next section).

This formula is sent to the Princess theorem prover [9].
If the formula is satisfiable, we retrieve the corresponding
path from the model and add a clause to the formula that
disallows all models that refer to the same path. We repeat
this process until the formula becomes unsatisfiable. Once this
process terminates, we have collected a set of paths that cover
all statements that can occur on feasible complete paths. All
statements that are not covered in that process are inconsistent
with other parts of the code.

For our example in Figure 1, Bixie can cover all state-
ments but the assignment in line 6. However, reporting only
line 6 might not be enough – an inconsistency requires at least
two statements. Therefore, Bixie implements the approach to
explain inconsistent code from [1]. For each inconsistent line,
Bixie extracts the sub-program that consists of all control-
flow paths through this line. The first-order logic formula for
this sub-program looks similar to the following:

super.add(elResolver)

∧ resolver 6= null

∧ resolvers.length < size

∧ resolver 6= null

∧ 0 ≤ size < resolvers.length

∧ resolver[size] = elResolver

∧ . . .

We know, that this formula must be unsatisfiable (because the
line provably does not occur on a feasible complete path). We
use Princess to generate one Craig interpolant after each con-
junct from the proof of unsatisfiability. Given an unsatisfiable
logic formula A0 ∧ . . . ∧ An, the i-th Craig interpolant Ii in
this sequence is a formula such that A0 ∧ . . . ∧ Ai1 =⇒ Ii,
and Ii∧Ai∧ . . .∧An |= false. That is, Ii is an abstraction of
all conjunctions before Ai that is sufficient to prove that the
formula is unsatisfiable. The first interpolant in that sequence
is by definition true and the last interpolant is false. Bixie
now checks, for each statement, if the same formula can be

used as interpolant before and after a conjunct in the original
formula (or, for that matter before and after a statement in the
program). If so, we know that this conjunct did not change
the reason why the formula is unsatisfiable and we do not
need to report the corresponding statement in the original
program. This approach is similar to, but a bit more flexible
than unsatisfiable-core-based approaches such as [10]. For a
detailed description of our algorithm we refer to [1].

Propagating the interpolants for our example reveals that
only for the two conjuncts, resolvers.length < size and
0 ≤ size < resolvers.length, there is no interpolant that
holds before and after them. The interpolant before the first
conjunct is true which means that none of the conjuncts
before are relevant for the proof, and the conjunct after the
second is false which means that none of the conjuncts
after are necessary for the proof. In between, the interpolant
resolvers.length < size which means that none of the
conjuncts between these two are relevant. Hence, we can
report the lines 5 and 6, from which the two conjuncts were
generated, to the user and further add the information that
it is line 6 that does not occur on any feasible complete
path. Bixie currently does not report the actual interpolants,
even though they may contain valuable information about the
relevant variables and the relationship between them. This is
because the interpolants generated from Boogie (or Jimple)
programs contain information and variables that do not exist in
the source code which makes them hard to read and sometimes
confusing.

We reported the inconsistency between line 5 and 6 in
our example to the Tomcat developers together with a pull
request which was merged within two days. In the following,
we discuss the implementation of Bixie, the engineering
challenges we faced on the way, and the compromises we
had to make to build a usable tool.

III. IMPLEMENTATION NOTES

Figure 2 gives a high-level overview of the architecture of
Bixie. In the following we discuss the engineering chal-
lenges and limitations of the different components in Bixie.
Bixie uses Soot as a front-end to parse and pre-process

the input Java programs. Soot has the advantage that it already
provides a mature infrastructure to parse and analyze both
source and bytecode programs. Bixie currently uses only
the translation into Jimple format. We discuss the challenges
that arise from using Soot later in this section.

The first component of Bixie is called Jar2Bpl which
translates Jimple code into Boogie. During the translation, we
have to trade precision for scalability on several occasions.
The biggest challenge is the proper translation of exception
handling. Loosely speaking, in Java bytecode, any statement
can throw any exception, so building a conservative (and there-
fore sound) control-flow graph is impractical. We take a mod-
erate approach and model common runtime exceptions such
as NullPointerException or IndexOutOfBounds-
Exception, while ignoring others such as Concurrent-
ModificationException. Further, we use the strong



Fig. 2. Architecture diagram of Bixie. Bixie uses Soot as a front-end
to parse and pre-process Java (byte)code and Princess as a theorem prover.
Bixie is composed of three components: Jar2Bpl, which translates the
Jimple code generated by Soot into Boogie, GraVy, which detects and reports
inconsistent code, and a spam filter to suppress false alarms.

assumption that no exception should leave a procedure unless
stated in the throws clause. We further do not model
language features related to reflection. For multithreading we
take a middle course. We do not model interleaving, but at the
border of synchronized blocks and in blocks that catch
InterruptedException or similar exceptions, we add
non-deterministic assignments to all variables that may be
modified by another thread. All these choices are unsound and
may lead to false alarms. However, a sound modeling of Java
is not practical. One might argue that there are better choices
than ours, but for our experiments this middle course turned
out to be very practical.

For the detection of inconsistent code (IC Detection),
Bixie uses a component called GraVy. GraVy is a general
purpose tool to compute feasible paths in Boogie programs
which we also use for gradual verification [11]. It detects
inconsistent code as described in Section II for one Boo-
gie procedure at a time. That is, Bixie does not perform
any inter-procedural analysis. GraVy uses a sound over-
approximation of loops and procedure calls shown in [7].

One of the main novelties in Bixie is the algorithm to
explain inconsistent code (IC Explanation). This algorithm
implements the approach from [1] for real-world code. There-
fore, we implemented an interpolation procedure that is robust
on logic formulae over complex theories including arrays and
quantifiers.

A key component to the usability of Bixie is the Spam
filter that suppresses false alarms. These false alarms are, in
most cases, not rooted in the unsound decisions we made
when translating Java into Boogie, but in our decision to use
bytecode instead of source code. We illustrate this problem
using two examples. The first example is the representation of
finally-blocks in bytecode. The Java compiler duplicates

finally blocks and adds them to each location where they can
be reached. That is, if the finally contains code that is only
reachable if a particular object is null, this might be reach-
able in one duplicate of this block but not in another, which is
then falsely reported as inconsistent. Unfortunately, these are
not exact clones, they use slightly different instructions and
variables, so detecting these duplications is not always simple.
The Spam filter implements several mechanisms to suppress
such false alarms. Another source of false alarm is inconsistent
code that is introduced by the compiler. The Java 7 compiler,
for example, is known to introduce unreachable code when
translating try-blocks that use resources.1 The Spam filter
implements several checks to suppress such false alarms.

Many sources of false alarms are rooted in our decision
to use bytecode and Soot instead of working directly on the
source code. In retrospective, using bytecode was not the best
decision. In the future, we plan to refactor Bixie to directly
use Java source code. This will reduce the number of false
alarms and make Bixie more practical.

IV. EVALUATION

We applied Bixie to over one million lines of Java code.
The scripts we used to run the experiments are available
online.2 The benchmarks are picked arbitrarily from GitHub
and represent the subset of the analyzed code that could be
evaluated before publication of this article. More benchmarks
can be found on our website. Note that Bixie does not perform
inter-procedural analysis, so scaling to millions of lines of Java
code only reduces the selection bias but does not demonstrate
scalability. Bixie uses at most 40 seconds per procedure and
then times out. The fault localization is allowed to use another
30 seconds if inconsistent code is found.

Table I lists our benchmark programs and the reported
inconsistencies. Columns 4 and 5 count the occurrences of
inconsistent code that are worth reporting. That is, code that
either must lead to an exception, or that is unreachable.
Column 6 counts reports where implicit else-branches were
unreachable. We found that developers often prefer to use an
explicit else-if instead of a simple else to make code more
readable, which renders the implicit else-branch unreachable.
While this code is inconsistent according to the definition, we
still treat it as a false alarm and try to suppress it with our
Spam filter.

The remaining columns count false alarms rooted in our
abstraction that could not be suppressed. Overall, we only got
one false alarm from ignoring reflection. The next column
counts false alarms that are rooted in the duplication of finally
blocks in bytecode. The second to last column counts false
alarms caused by our abstraction of threads. In most cases,
these are loops that can only be left if a flag is set by
another thread. The last column counts all other sources of
unsoundness. About half of these cases refer to our unsound
handling of integers: we use mathematical integers, but in rare

1http://stackoverflow.com/questions/25615417/
try-with-resources-introduce-unreachable-bytecode

2https://github.com/martinschaef/bixie/releases/tag/0.9.



Benchmark kLoC Time (minutes) possible bug unreachable missing else reflections finally threads other
Ant 271 385 0 5 2 1 3 1 0
Bouncy Castle 461 133 3 13 1 0 1 1 3
Hadoop 507 100 2 23 2 0 4 1 4
Hive 692 35 17 23 33 0 3 3 1
jMeter 114 121 2 2 2 0 0 2 1
Joda Time 84 2 0 0 0 0 0 0 4
Log4j 65 49 0 3 0 0 3 2 1
Maven 43 46 1 1 11 0 1 0 0

TABLE I
RESULTS OF APPLYING BIXIE ON SEVERAL OPEN-SOURCE PROGRAMS. COLUMNS REPRESENT THE CATEGORIES OF INCONSISTENT CODE THAT WE

FOUND. THE COLUMNS FOUR AND FIVE REPRESENT ACTUAL PROBLEMS WHERE CODE MUST THROW AN EXCEPTION OR IS UNREACHABLE. THE
REMAINING COLUMNS COUNT LESS INTERESTING OCCURRENCES OF INCONSISTENT CODE AND FALSE ALARMS

cases where programmers check round-trip arithmetics, this
leads to false alarms. The remaining cases can be attributed
to bugs in Bixie that we could not fix before the deadline.

Fig. 3. Computation time per procedure for all benchmark programs. The
lines of code on the horizontal axis refers to bytecode instructions.

Figure 3 shows the computation time per procedure in our
experiments. In the vast majority of cases Bixie analyzes pro-
cedures in seconds. Timeouts typically occur for constructors
that initialize a large amount of objects (e.g. for GUIs), and
other complex procedures like parsers.

We reported our findings from Table I to developers on
GitHub to evaluate if inconsistent code actually does matter.
Before we reported inconsistent code, we made sure that the
code is not inconsistent because of debug constants (e.g.,
code being disabled with an if-false), and we made sure that
we can provide a patch. For the curious reader, we keep
a list of all pull requests on our website. So far, we have
successfully merged pull requests with fixes of inconsistent
code for Bouncy Castle, jMeter, Maven, Tomcat, and Soot.

V. RELATED WORK

Approaches to detect inconsistent code have been presented
by [2] and [4]. The former two use deductive verification-based
techniques similar to the one in Bixie. Unfortunately, this tool
is not available for comparison.

One of the main novelties in Bixie is its ability to explain
inconsistent code using the approach from [1]. This approach

uses a proof-based fault abstraction to eliminate statements
that are not needed to understand the inconsistency. Similar
proof-based approaches have been presented in [10] and [12].
Our implementation is the first interpolation-based approach
that can be applied to arbitrary Java programs.

VI. CONCLUSION

With Bixie, we have created a useful and usable tool to
detect inconsistent code. We have demonstrated that Bixie
finds interesting issues in real-world code and that developers
do accept inconsistent code as bugs that they are willing
to fix. In the future, we will further improve the precision
of Bixie by performing the analysis directly on source code
instead of bytecode which will eliminate a large percentage of
false alarms. Eventually, we will integrate Bixie into an IDE
and perform inconsistent code detection on-the-fly while the
programmer is typing.

REFERENCES

[1] M. Schäf, D. Schwartz-Narbonne, and T. Wies, “Explaining inconsistent
code,” in FSE. New York, NY, USA: ACM, 2013, pp. 521–531.
[Online]. Available: http://doi.acm.org/10.1145/2491411.2491448

[2] A. Tomb and C. Flanagan, “Detecting inconsistencies via universal
reachability analysis,” in ISSTA, 2012, pp. 287–297.

[3] S. Arlt, P. Rümmer, and M. Schäf, “A theory for control-flow graph
exploration,” in ATVA, 2013, pp. 506–515.

[4] S. Arlt and M. Schäf, “Joogie: Infeasible code detection for java,” in
CAV, 2012.

[5] K. R. M. Leino and P. Rümmer, “A polymorphic intermediate verifica-
tion language: design and logical encoding,” in TACAS, 2010.

[6] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and
P. Co, “Soot - a Java Optimization Framework,” in CASCON 1999, 1999,
pp. 125–135. [Online]. Available: www.sable.mcgill.ca/publications

[7] J. Hoenicke, K. R. Leino, A. Podelski, M. Schäf, and T. Wies, “Doomed
program points,” Formal Methods in System Design, 2010.

[8] S. Arlt, P. Rümmer, and M. Schäf, “Joogie: From java through jimple
to boogie,” in SOAP. ACM, 2013.

[9] P. Rümmer, “A constraint sequent calculus for first-order logic with
linear integer arithmetic,” in LPAR, 2008.

[10] M. Jose and R. Majumdar, “Bug-Assist: Assisting fault localization in
ANSI-C programs,” in CAV, ser. LNCS, vol. 6806. Springer, 2011, pp.
504–509.

[11] S. Arlt, C. Rubio-González, P. Rümmer, M. Schäf, and N. Shankar,
“The gradual verifier,” in NASA Formal Methods. Springer, 2014, pp.
313–327.

[12] V. Murali, N. Sinha, E. Torlak, and S. Chandra, “What gives? a hybrid
algorithm for error trace explanation,” in VSTTE. Springer, 2014, pp.
270–286.


