
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

An Interpolating Sequent Calculus
for Quantifier-Free Presburger Arithmetic

Angelo Brillout · Daniel Kroening ·
Philipp Rümmer · Thomas Wahl

the date of receipt and acceptance should be inserted later

Abstract Craig interpolation has become a versatile tool in formal verification,
used for instance to generate program assertions that serve as candidates for loop
invariants. In this paper, we consider Craig interpolation for quantifier-free Pres-

burger arithmetic (QFPA). Until recently, quantifier elimination was the only avail-
able interpolation method for this theory, which is, however, known to be poten-
tially costly and inflexible. We introduce an interpolation approach based on a
sequent calculus for QFPA that determines interpolants by annotating the steps
of an unsatisfiability proof with partial interpolants. We prove our calculus to be
sound and complete. We have extended the Princess theorem prover to gener-
ate interpolating proofs, and applied it to a large number of publicly available
Presburger arithmetic benchmarks. The results document the robustness and effi-
ciency of our interpolation procedure. Finally, we compare the procedure against
alternative interpolation methods, both for QFPA and linear rational arithmetic.

This paper is an extended version of a publication that appeared at IJCAR [3].

1 Introduction

Craig interpolation, a technique known to logicians since the 1950s [6], has recently
emerged in formal verification as a practical approximation method. Its applica-
tions range from accelerating convergence of fixpoint calculations for finite-state
or infinite-state systems, to generating assertions at intermediate program points

Supported by the Engineering and Physical Sciences Research Council (EPSRC) under
grant no. EP/G026254/1, by the EU FP7 STREP MOGENTES, by the EU FP7 STREP
PINCETTE, and by the EU ARTEMIS project CESAR.

Angelo Brillout
ETH Zurich, Switzerland

Daniel Kroening, Thomas Wahl
Computer Science Department, Oxford University, United Kingdom

Philipp Rümmer
Department of Information Technology, Uppsala University, Sweden

2 Angelo Brillout et al.

that serve as candidates for loop invariants and thus assist the safety analysis of
programs. Given two formulae A and C such that A implies C, written A⇒ C, an
interpolant is a formula I such that A⇒ I, I ⇒ C, and all of I’s symbolic constants
occur in both A and C. Interpolants exist for any two first-order formulae A and
C such that A⇒ C.

In program verification, we typically consider the special case C = ¬B of the
above formulation, so that the validity of A⇒ C is tantamount to the unsatisfia-
bility of A ∧ B. This latter formula is used to encode the reachability of an error
condition along a length-bounded path of the program; its unsatisfiability thus
proves the program correct along paths up to that length. In order to support
expressive programming languages, much effort has been invested in algorithms
that compute interpolants for various theories. As a result, efficient interpolation
methods are known for propositional logic, linear arithmetic over the reals with
uninterpreted functions [15,1,21], datastructures like arrays and sets [12], and frag-
ments of integer arithmetic such as difference-bound logic and logics with linear
equalities and constant-divisibility predicates. For these fragments, an interpolant
can be derived in time polynomial in the size of the input formulae.

Given these encouraging results and the significance of integer arithmetic in
software analysis, there have been several attempts recently to interpolate the full
range of quantifier-free linear integer arithmetic, also known as Presburger arith-

metic and denoted QFPA in this paper. This theory has been used, for example,
to model the behavior of infinite-state programs and of hardware designs. While
interpolation for QFPA can in principle be achieved by quantifying out variables
local to one of the input formulae, followed by quantifier elimination, this method
suffers from various serious practical impediments, including the high complexity of
the elimination procedure (see Section 3 for a detailed illustration). An incomplete
interpolation procedure based on linear programming techniques was introduced
in [14]. The first complete proof-based interpolation procedure for QFPA was in-
troduced in our IJCAR 2010 paper [3], which we extend in the present article by
a refined discussion, and by a significantly expanded experimental analysis.

The interpolation method in this article extracts interpolants directly from an
unsatisfiability proof for A ∧B, as suggested e.g. in [15,1,14,10]. We first present
a sound and complete proof system for QFPA based on a sequent calculus. We
then augment the proof rules with labeled formulae and partial interpolants —
proof annotations that, at the root of a closed proof, reduce to interpolants. In
practice, the resulting interpolating proof system can be used to extend an existing
unsatisfiability proof to one that interpolates. It can also serve as a replacement of
the non-interpolating proof system, allowing the calculation of an interpolant on
the fly. We prove our interpolating calculus to be sound and complete for QFPA. Our
completeness result states that, for any valid implication, there exists a proof of its
validity in our calculus, and the proof can be annotated with partial interpolants
satisfying the proof rules. This theorem can be generalized to a result stating the
existence of interpolant chains for conjunctions with arbitrarily many conjuncts.

In the case of QFPA, the primary difficulty when extracting interpolants from
a proof is the treatment of mixed cuts: applications of a cut rule (such as Go-
mory cuts [22] or the Omega rule [17]) to inequalities that have been derived as
linear combinations of inequalities from both A and B. Our work extends earlier
interpolation procedures for linear arithmetic, in particular [14,15], by defining an
interpolating cut rule called strengthen that can handle even mixed cuts. The

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 3

rule subsumes a variety of cut rules for integer linear programming, including the
above-mentioned Gomory cuts and the Omega rule, so that interpolants can be
extracted from proofs using either of those rules by reduction to strengthen.

To implement our interpolation method, we have extended the Princess the-
orem prover [20] to generate proofs, using the proof rules presented in this paper.
We have applied the interpolating prover to a large number of publicly avail-
able linear integer arithmetic benchmarks, taken from the QF-LIA category of
the SMT library. We compare the efficiency of the prover to alternative QFPA
interpolation procedures, including those based on quantifier elimination (QE)
and on linear programming [13]. We also compare the prover with CSIsat [1], a
constraint-based [21] interpolation procedure for linear rational arithmetic: since
interpolation methods for rational arithmetic have been known and developed for
several years, it is interesting to measure the overhead imposed by integer reason-
ing on problems that can also be interpolated using rational methods. Our results
demonstrate the strengths of our interpolation approach in terms of both time and
interpolant size.

2 Preliminaries

Presburger arithmetic. We assume familiarity with classical first-order logic (see,
e.g., [8]). Let x range over an infinite set X of variables, c over an infinite set C of
constant symbols, and α over the integers Z. The syntax of Presburger arithmetic

is defined by the following grammar:

φ ::= t
.
= 0 || t ≤ 0 || α | t || φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ

t ::= α || c || x || αt+ · · ·+ αt

The symbol t denotes terms of linear arithmetic. To enforce canonicity, we as-
sume that terms are implicitly simplified to 0 or to the form α1t1 + · · ·+ αntn,
in which 0 6∈ {α1, . . . , αn}, and t1, . . . , tn are pairwise distinct variables, constants,
or 1. Further, we only allow 0 as the right-hand side of equalities and inequalities.

This paper is concerned with interpolation for quantifier-free arithmetic and
therefore permits quantifiers only in restricted forms: (i) universal (resp., existen-
tial) quantifiers under an even (resp., odd) number of negations. Such quantifiers
effectively limit the theory to the existential fragment of Presburger arithmetic
and can thus be eliminated by Skolemization; and (ii) implicitly to express divisi-
bility by integer constants, namely in the form of the stride constraint α | t, which
is equivalent to ∃s. αs− t .= 0. We permit such expressions to enable quantifier-free
interpolants for formulae such as y−2x

.
= 0∧y−2z−1

.
= 0, with interpolant 2 | y.

QFPA denotes the logic generated by the above grammar, restricted to the afore-
mentioned quantification rules.

We use the abbreviations true and false for the equalities 0
.
= 0 and 1

.
= 0, and

φ→ ψ as abbreviation for ¬φ∨ψ. Simultaneous substitution of terms t1, . . . , tn for
variables x1, . . . , xn in φ is denoted by [x1/t1, . . . , xn/tn]φ; we assume that variable
capture is avoided by renaming bound variables as necessary. As a short-hand
notation, we sometimes quantify over constants (as in ∀c.φ) and assume that the
constants are implicitly replaced by fresh variables. The semantics of Presburger
arithmetic is defined over the universe Z of integers in the standard way [8].

4 Angelo Brillout et al.

∗
. . . , false ` close-left′

. . . , 1 ≤ 0 ` simp′

. . . ,−x ≤ 0, x+ 1 ≤ 0 ` fm-elim′

. . . ,−x ≤ 0,−b+ x ≤ 0, 3b− 2x+ 1 ≤ 0 ` fm-elim′

. . . ,−2x ≤ 0,−2b+ 2x− 1 ≤ 0, 3b− 2x+ 1 ≤ 0 ` simp′+

. . . ,−2x ≤ 0,−2b+ 2x− 1 ≤ 0, c− 3b− 1
.
= 0, c− 2x ≤ 0 `

red′

a− 2x
.
= 0,−a ≤ 0, 2b− a ≤ 0,−2b+ a− 1 ≤ 0, c− 3b− 1

.
= 0, c− a ≤ 0 `

red′+

a− 2x
.
= 0 ∧ −a ≤ 0 ∧ 2b− a ≤ 0 ∧ −2b+ a− 1 ≤ 0 ∧ c− 3b− 1

.
= 0 ∧ c− a ≤ 0 `

and-left′+

Fig. 1 Unsatisfiability proof for the examples of Sect. 3

Gentzen-style sequent calculi. If Γ , ∆ are finite sets of formulae without free vari-
ables, then Γ ` ∆ is a sequent. The sequent is valid if the formula

∧
Γ →

∨
∆ is

valid. A calculus rule is a binary relation between a finite set of sequents called
the premises, and a sequent called the conclusion. A sequent calculus rule is sound

if, for all instances
Γ1 ` ∆1 · · · Γn ` ∆n

Γ ` ∆

whose premises Γ1 ` ∆1, . . . , Γn ` ∆n are valid, the conclusion Γ ` ∆ is valid,
too. Proofs are trees growing upwards, in which each node is labeled with a sequent,
and each non-leaf node is related to the node(s) directly above it through an
instance of a calculus rule. A proof is closed if it is finite and all leaves are justified
by an instance of a rule without premises. The interpolating sequent calculus
presented in this paper extends the ground fragment of the sound and complete
sequent calculus for QFPA in [20]. As an example, Fig. 2 shows most of the rules
used in the proof in Fig. 1 (the proof is discussed below in Sect. 3).

3 A Motivating Example

Consider the following program with variables ranging over unbounded integers:

if (a == 2*x && a >= 0) {

b = a / 2; c = 3*b + 1;

assert (c > a);

}

We would like to verify the assertion in the program. To this end, the program is
translated into the QFPA formula below. Note that b = a / 2 is converted into a
conjunction of two inequalities, and that the assertion is negated:

a− 2x
.
= 0 ∧−a ≤ 0 ∧ 2b− a ≤ 0 ∧−2b+ a− 1 ≤ 0 ∧ c− 3b− 1

.
= 0 ∧ c− a ≤ 0 (1)

The unsatisfiability of (1) implies that no run of the program violates the assertion.
Fig. 1 shows a refutation of (1) in the Gentzen-style sequent calculus used in this
paper (the right-hand side ∆ happens to be empty in all sequents, which is not
true in general). We add the prime symbol ′ to the rule names to distinguish them
from the interpolating rules introduced later. The proof starts with the conjunc-
tion (1) in the bottom sequent of the tree. Repeatedly applying the rule and-left′

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 5

Γ, φ, ψ ` ∆

Γ, φ ∧ ψ ` ∆
and-left′

Γ ` φ, ψ,∆

Γ ` φ ∨ ψ,∆ or-right′

∗
Γ, false ` ∆

close-left′
∗

Γ ` true,∆
close-right′

Γ, t
.
= 0 ` φ[s+ α · t],∆
Γ, t

.
= 0 ` φ[s],∆

red′
Γ, s ≤ 0, t ≤ 0, αs+ βt ≤ 0 ` ∆

Γ, s ≤ 0, t ≤ 0 ` ∆
fm-elim′

Fig. 2 Some rules of the (non-interpolating) calculus for QFPA from [20]

(denoted and-left′+) splits the conjunction into a list of arithmetic literals. The
equality a− 2x

.
= 0 is used to reduce the inequalities −a ≤ 0, −2b+ a− 1 ≤ 0, and

c− a ≤ 0 by means of substitution (rule red′). Similarly, c− 3b− 1
.
= 0 is used to

reduce c− 2x ≤ 0. The inequalities −2x ≤ 0 and −2b+ 2x− 1 ≤ 0 are simplified
(rule simp′) by eliminating the coefficient 2; in the latter inequality, this requires
rounding. Unsatisfiability of the remaining inequalities follows from two applica-
tions of the Fourier-Motzkin rule fm-elim′, and the proof can be closed.

Interpolants for unsatisfiable formulae like (1) can reveal additional informa-
tion about the program being investigated, for instance intermediate assertions.
Suppose we want to compute an invariant for the program point immediately after
b = a / 2. Let A denote the part of formula (1) encoding the program up to this
point; B the rest. We can obtain an interpolant for the unsatisfiable formula A∧B
by quantifying out the A-local variables, i.e., variable x, from A:

∃x. (a− 2x
.
= 0 ∧ −a ≤ 0 ∧ 2b− a ≤ 0 ∧ −2b+ a− 1 ≤ 0) ,

which simplifies via quantifier elimination (QE) to −a ≤ 0∧2b−a .
= 0. Existentially

quantifying out the local variables from A (or, universally, the local variables
from B) always returns the strongest (respectively, weakest) interpolant for an
unsatisfiable formula. These “extremal” interpolants may be very large, however.
Suppose we modify the conditional in the program by adding further conjuncts
that are unnecessary for the safety of the program:

if (a == 2*x && a >= 0 && a >= n*y - n
2 && a <= n*y) { (2)

where n ∈ Z is a parameter such that 2 | n. The strongest (quantifier-free) inter-
polant, denoted Ins , grows linearly in n and thus exponentially in the program size:

Ins ≡ − a ≤ 0 ∧ 2b− a .
= 0 ∧ (n | a ∨ n | (a+ 1) ∨ · · · ∨ n | (a+ n

2)) .

A weaker but much more succinct interpolant is the inequality −3b+ a ≤ 0. We
demonstrate in this paper that proof-based interpolation provides a way of obtain-
ing such succinct interpolants. Proofs can compactly encode the unsatisfiability
of a formula and abstract away irrelevant facts, enabling the extraction of suc-
cinct interpolants. This is of particular importance for program verification, where
interpolants carrying unnecessary details can delay or prevent the discovery of in-
ductive invariants (e.g., [16]). We therefore propose to lift proofs of unsatisfiability
to interpolating proofs. This way, we avoid many disadvantages of QE-based inter-
polation, namely (i) its high complexity, (ii) its inflexibility in always returning
a strongest or weakest interpolant, and (iii) the need to restart from scratch in
order to consider a new partitioning of the unsatisfiable formula into A and B (in
contrast, a proof-based method can extract many interpolants from a single proof).

6 Angelo Brillout et al.

4 An Interpolating Sequent Calculus for QFPA

In order to extract interpolants from proofs of unsatisfiable conjunctions A ∧ B,
we introduce interpolating sequents as an extension of the Gentzen-style sequents
defined in Sect. 2. Formulae in interpolating sequents are labeled either with the
letter L to indicate that they are derived purely from A, the letter R for for-
mulae derived purely from B, or with partial interpolants (PIs) that record the
A-contribution to a formula obtained jointly from A and B. Similarly as in [8], the
labels L/R will be used to handle analytic rules that operate only on subformulae
of the input formulae, while rewriting rules for arithmetic may mix parts of A and
B and therefore require partial interpolants (as in [15]).

More formally, if φ is a formula and t, tA are terms, all without free variables,
then bφcL and bφcR are L/R-labeled formulae and t

.
= 0 [tA

.
= 0], t

.
= 0 [tA 6 .= 0], and

t ≤ 0 [tA ≤ 0] are formulae labeled with the partial interpolants tA
.
= 0, tA 6 .= 0, and

tA ≤ 0, respectively. We formally define interpolating sequents as follows:

Definition 1 If Γ , ∆ are finite sets of labeled formulae, and I is an unlabeled
formula without free variables, then Γ ` ∆ I I is an interpolating sequent if

(i) Γ only contains formulae bφcL, bφcR, t
.
= 0 [tA

.
= 0], or t ≤ 0 [tA ≤ 0], and

(ii) ∆ only contains formulae bφcL, bφcR, t
.
= 0 [tA

.
= 0], or t

.
= 0 [tA 6 .= 0].

Note that formulae in interpolating sequents may not contain free variables.
The semantics of interpolating sequents is defined with the help of projections

ΓL =def {φ | bφcL ∈ Γ} and ΓR =def {φ | bφcR ∈ Γ} that extract the L/R-parts of
a set Γ of labeled formulae.

Definition 2 An interpolating sequent Γ ` ∆ I I is valid if
(i) the sequent ΓL ` I,∆L is valid,
(ii) the sequent ΓR, I ` ∆R is valid, and
(iii) the constants in I occur in both ΓL ∪∆L and ΓR ∪∆R.

Note that formulae annotated with PIs are irrelevant for deciding whether an inter-
polating sequent is valid; this only depends on L/R-formulae. The semantics of PIs
is made precise in Sect. 5; intuitively, a labeled formula φ [φA] in an interpolation
problem A ∧ B expresses the implications A⇒ φA and B ∧ φA ⇒ φ. This implies
that φA is in fact an interpolant of the conjunction A ∧B if φ is unsatisfiable.

As special cases, bAcL ` bCcR I I reduces to I being an interpolant of the
implication A⇒ C, while bAcL, bBcR ` I I captures the concept of interpolants I
for conjunctions A ∧B common in formal verification.

Example. We illustrate the concept of interpolating sequents with the proof in
Fig. 3, which is the interpolating version of the proof in Fig. 1 and will serve as a
running example in the whole section. For sake of brevity, we omit the subproofs A
and B. Due to the soundness of the applied calculus (stated in Sect. 5), the root
sequent of the proof is valid, which implies that I2 ≡ (−3b+ a ≤ 0) is an interpolant
for the unsatisfiable conjunction (1). Note that I2 is the inequality discussed in
Sect. 3 as a succinct interpolant and intermediate program assertion.

In the remainder of Sect. 4, we explain the rules of our interpolating calculus
given in Fig. 4, 6. As usual in sequent calculi, the rules are applied in the upward
direction, starting from a sequent Γ ` ∆ I ? with unknown interpolant that
is to be proven (the proof root), and applying rules to successively decompose

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 7

A B

∗
. . . , 2 ≤ 0 [−6b+ 2a ≤ 0] ` I I1

close-ineq

. . . ,−2x ≤ 0 [−2x ≤ 0], 2x+ 2 ≤ 0 [−6b+ 2a+ 2x ≤ 0] ` I I1
fm-elim

. . . ,−2b+ 2x ≤ 0 [−2b+ 2x− 1 ≤ 0], 3b− 2x+ 1 ≤ 0 [a− 2x ≤ 0] ` I I1
fm-elim

. . . ,−2b+ 2x− 1 ≤ 0 [−2b+ 2x− 1 ≤ 0], 3b− 2x+ 1 ≤ 0 [a− 2x ≤ 0] ` I I2
strengthen

. . . ,−2x ≤ 0 [−2x ≤ 0],−2b+ 2x− 1 ≤ 0 [−2b+ 2x− 1 ≤ 0],
c− 3b− 1

.
= 0 [0

.
= 0], c− 2x ≤ 0 [a− 2x ≤ 0]

` I I2

red-left

. . . , a− 2x
.
= 0 [a− 2x

.
= 0],−2b+ a− 1 ≤ 0 [−2b+ a− 1 ≤ 0],

−a ≤ 0 [−a ≤ 0], c− 3b− 1
.
= 0 [0

.
= 0], c− a ≤ 0 [0 ≤ 0]

` I I2

red-left+

ba− 2x
.
= 0cL , b−a ≤ 0cL , . . . , b−2b+ a− 1 ≤ 0cL ,
bc− 3b− 1

.
= 0cR , bc− a ≤ 0cR

` I I2

ipi+

ba− 2x
.
= 0 ∧ −a ≤ 0 ∧ 2b− a ≤ 0 ∧ −2b+ a− 1 ≤ 0cL ,

bc− 3b− 1
.
= 0 ∧ c− a ≤ 0cR

` I I2

and-left+

Fig. 3 The interpolating version of Fig. 1. The initial interpolant generated by close-
ineq is I1 = (−6b + 2a ≤ 0) ≡ (−3b + a ≤ 0), which is by strengthen combined
with the interpolants false and φ from the subproofs A and B to form the final inter-
polant I2 = (I1 ∨ (false ∧ φ)) ≡ I1.

and simplify the sequent until a closure rule becomes applicable. The unknown
interpolants of sequents have to be left open while building a proof and can only
be filled in once all proof branches are closed.

4.1 Propositional, Initialization, and Closure Rules

To construct a proof for an interpolation problem A ∧B, we start with a se-
quent bAcL, bBcR ` I ? that only contains L/R-labeled formulae and then apply
propositional rules and Skolemization rules to decompose A and B (the applica-
tions of rule and-left in Fig. 3). Propositional rules are shown in the topmost
part of Fig. 4. Splitting over L-disjunctions in the antecedent (or-left-l) requires
forming the disjunction of the interpolants derived in the subproofs. Analogously,
R-disjunctions yield conjunctive interpolants. All propositional rules propagate
the L/R-label of formulae to their subformulae, unchanged. For brevity, we have
omitted rules to move inequalities from the succedent to the antecedent.

Once the decomposition of formulae results in arithmetic literals, the initializa-

tion rules in the middle part of Fig. 4 are used to turn L/R-formulae into formulae
with PIs, to prepare them for later rewriting (the applications ipi in Fig. 3). Gen-
erally, PIs for L-literals are chosen to be the literals themselves, while empty PIs
are introduced for R-literals: the intuition is that L-formulae are fully contributed
by A, while R-formulae do not contain any A-contribution at all.

We observe that the ipi rules do not remove the L/R-formula to which they
are applied (the formula occurs both in the conclusion and in the premise). The
reason is that L/R-formulae in sequents, besides their logical meaning, track the
vocabulary of symbols occurring in the input formulae A,B; the vocabulary is
used in condition (iii) of the definition of valid interpolating sequents, but also in
the closure rules discussed next. To achieve completeness, it is never necessary to
apply ipi rules twice on a proof branch to the same L/R-formula.

8 Angelo Brillout et al.

Γ, bφcL ` ∆ I I
Γ, bψcL ` ∆ I J

Γ, bφ ∨ ψcL ` ∆ I I ∨ J
or-left-l

Γ, bφcR ` ∆ I I
Γ, bψcR ` ∆ I J

Γ, bφ ∨ ψcR ` ∆ I I ∧ J
or-left-r

Γ ` bφcL,∆ I I
Γ ` bψcL,∆ I J

Γ ` bφ ∧ ψcL,∆ I I ∨ J
and-right-l

Γ ` bφcR,∆ I I
Γ ` bψcR,∆ I J

Γ ` bφ ∧ ψcR,∆ I I ∧ J
and-right-r

Γ, bφcD, bψcD ` ∆ I I

Γ, bφ ∧ ψcD ` ∆ I I
and-left

Γ ` bφcD, bψcD,∆ I I

Γ ` bφ ∨ ψcD,∆ I I
or-right

Γ ` bφcD,∆ I I

Γ, b¬φcD ` ∆ I I
not-left

Γ, bφcD ` ∆ I I

Γ ` b¬φcD,∆ I I
not-right

Γ, b[x/c]φcD ` ∆ I I

Γ, b∃x.φcD ` ∆ I I
ex-left

Γ ` b[x/c]φcD,∆ I I

Γ ` b∀x.φcD,∆ I I
all-right

Γ, t ◦ 0 [t ◦ 0], bt ◦ 0cL ` ∆ I I

Γ, bt ◦ 0cL ` ∆ I I
ipi-

left-l

Γ ` t
.
= 0 [t

.
= 0], bt .= 0cL,∆ I I

Γ ` bt .= 0cL,∆ I I
ipi-

right-l

Γ, t ◦ 0 [0 ◦ 0], bt ◦ 0cR ` ∆ I I

Γ, bt ◦ 0cR ` ∆ I I
ipi-

left-r

Γ ` t
.
= 0 [0 6 .= 0], bt .= 0cR,∆ I I

Γ ` bt .= 0cR,∆ I I
ipi-

right-r

∗
Γ, t

.
= 0 [tA

.
= 0] ` ∆ I ∃LA tA

.
= 0

close-eq-left
(t
.
= 0 unsat.)

∗
Γ, α ≤ 0 [tA ≤ 0] ` ∆ I tA ≤ 0

close-ineq
(α > 0)

∗
Γ ` 0

.
= 0 [tA

.
= 0],∆ I tA 6 .= 0

close-eq-right

∗
Γ ` 0

.
= 0 [tA 6 .= 0],∆ I tA

.
= 0

close-neq-right

Fig. 4 Propositional, Skolemization, initialization, and closure rules. In the propositional
rules, D ∈ {L,R}. In the rules ipi-left-l/r, ◦ ∈ { .=,≤} denotes a relation symbol. In the
rule close-eq-left, ∃LA denotes existential quantification ∃c1, . . . , cn., over constants ci that
occur in ΓL,∆L but not in ΓR,∆R. An equality tA

.
= 0 is unsatisfiable if and only if it is of the

form α1d1 + · · ·+ αndn + α0
.
= 0 and gcd(α1, . . . , αn) - α0 (with the convention gcd() = 0).

Partial interpolant annotation Sequent (i) Sequent (ii)

Γ, t
.
= 0[tA

.
= 0] ` ∆ ΓL ` tA

.
= 0,∆L ΓR ` t− tA .

= 0,∆R

Γ, t ≤ 0[tA ≤ 0] ` ∆ ΓL ` tA ≤ 0,∆L ΓR ` t− tA ≤ 0,∆R

Γ ` t .= 0[tA
.
= 0],∆ ΓL, t

A .
= 0 ` ∆L ΓR ` t− tA .

= 0,∆R

Γ ` t .= 0[tA 6 .= 0],∆ ΓL ` tA
.
= 0,∆L ΓR, t− tA

.
= 0 ` ∆R

Fig. 5 Sequents with partial interpolants and correctness conditions (i) and (ii)

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 9

Γ, t
.
= 0 [tA

.
= 0], s+ α · t ◦ 0 [sA + α · tA ◦ 0] ` ∆ I I

Γ, t
.
= 0 [tA

.
= 0], s ◦ 0 [sA ◦ 0] ` ∆ I I

red-left

Γ, t
.
= 0 [tA

.
= 0] ` s+ α · t .= 0 [sA + α · tA ◦ 0],∆ I I

Γ, t
.
= 0 [tA

.
= 0] ` s

.
= 0 [sA ◦ 0],∆ I I

red-right

Γ, bu− c .= 0cL ` ∆ I I

Γ ` ∆ I I
col-red-l

Γ, α · t ◦ 0 [α · tA ◦ 0] ` ∆ I I

Γ, t ◦ 0 [tA ◦ 0] ` ∆ I I
mul-left

Γ, bu− c .= 0cR ` ∆ I I

Γ ` ∆ I I
col-red-r

Γ ` α · t .= 0 [α · tA ◦ 0],∆ I I

Γ ` t
.
= 0 [tA ◦ 0],∆ I I

mul-right

Γ, b∃x. αx+ t
.
= 0cD ` ∆ I I

Γ, bα | tcD ` ∆ I I
div-left

Γ, b∃x. (1− x ≤ 0 ∧ x− α+ 1 ≤ 0 ∧ (α | t+ x))cD ` ∆ I I

Γ ` bα | tcD,∆ I I
div-right

Γ, s ≤ 0 [sA ≤ 0], t ≤ 0 [tA ≤ 0], αs+ βt ≤ 0 [αsA + βtA ≤ 0] ` ∆ I I

Γ, s ≤ 0 [sA ≤ 0], t ≤ 0 [tA ≤ 0] ` ∆ I I
fm-elim

Γ, t
.
= 0 [tA

.
= 0] ` ∆ I E

Γ, t+ 1 ≤ 0 [tA ≤ 0] ` ∆ I I0

Γ, t+ 1 ≤ 0 [tA + 1 ≤ 0] ` ∆ I I1

Γ, t ≤ 0 [tA ≤ 0] ` ∆ I I1 ∨ (E ∧ I0)
strengthen

Γ, t+ 1 ≤ 0 [tA + 1 ≤ 0] ` ∆ I I Γ,−t+ 1 ≤ 0 [−tA + 1 ≤ 0] ` ∆ I J

Γ ` t
.
= 0 [tA

.
= 0],∆ I I ∨ J

split-eq

Γ, t+ 1 ≤ 0 [tA ≤ 0] ` ∆ I I Γ,−t+ 1 ≤ 0 [−tA ≤ 0] ` ∆ I J

Γ ` t
.
= 0 [tA 6 .= 0],∆ I I ∧ J

split-neq

Fig. 6 Rules for equality/divisibility and inequality constraints. In red-left and mul-left,
◦ ∈ { .=,≤}, while in red-right and mul-right, ◦ ∈ { .=, 6 .=}. In col-red-l and col-red-r, c is
a constant not occurring in the conclusion nor in u. The term u in col-red-l must only contain
constants from ΓL ∪∆L, while u in col-red-r must only contain constants from ΓR ∪∆R. In
mul-left and mul-right, α > 0 is a positive literal. In div-left and div-right, D ∈ {L,R},
x is a fresh variable, and α > 0. In fm-elim, α > 0 and β > 0 are positive integers.

Γ, t
.
= 0 [tA

.
= 0], btA .

= 0c∗L, bt− t
A .

= 0c∗R ` ∆ I E
Γ, t+ 1 ≤ 0 [tA ≤ 0], bt− tA + 1 ≤ 0c∗R ` ∆ I I0

Γ, t+ 1 ≤ 0 [tA + 1 ≤ 0], btA + 1 ≤ 0c∗L ` ∆ I I1

Γ, t ≤ 0 [tA ≤ 0] ` ∆ I I1 ∨ (E ∧ I0)
strengthen∗

Γ, t+ 1 ≤ 0 [tA + 1 ≤ 0], btA ≤ 0c∗L ` ∆ I I
Γ,−t+ 1 ≤ 0 [−tA + 1 ≤ 0], b−tA ≤ 0c∗L ` ∆ I J

Γ ` t
.
= 0 [tA

.
= 0],∆ I I ∨ J

split-eq∗

Γ, t+ 1 ≤ 0 [tA ≤ 0], bt− tA ≤ 0c∗R ` ∆ I I
Γ,−t+ 1 ≤ 0 [−tA ≤ 0], b−t+ tA ≤ 0c∗R ` ∆ I J

Γ ` t
.
= 0 [tA 6 .= 0],∆ I I ∧ J

split-neq∗

Fig. 7 Rules modified for proving soundness (Theorem 1) by adding auxiliary formulae. Aux-
iliary formulae are written in the form bφc∗L and bφc∗R

10 Angelo Brillout et al.

Finally, once rewriting (discussed in Sect. 4.2) has produced an unsatisfiable lit-
eral in an antecedent (or a valid literal in a succedent), a closure rule can be used to
close the proof branch and to derive an interpolant from the PI of the unsatisfiable
literal (the application close-ineq in Fig. 3). Closure rules are given in the lower
part of Fig. 4. Because PIs can still contain local symbols that occur only in ΓL∪∆L
(and are not allowed in interpolants), it may be necessary to introduce existential
quantifiers at this point. We note, however, that quantifiers in quantified literals
can be eliminated in polynomial time; e.g., ∃c1, . . . , cn. α1c1 + · · ·+ αncn + t

.
= 0

is equivalent to the divisibility judgment gcd(α1, . . . , αn) | t.

4.2 Rewriting Rules for Equality, Inequality and Divisibility

Our arithmetic rewriting rules, shown in Fig. 6, form a calculus to solve systems
of equalities by means of Gaussian elimination and Euclid’s algorithm (the upper
part of Fig. 6), as well as a calculus for systems of inequalities that enables us
to introduce linear combinations of inequalities, and to strengthen inequalities by
means of cuts (the lower part of Fig. 6). Decision procedures for QFPA in terms
of the corresponding non-interpolating rules have been introduced in [18,20] and
directly carry over to the interpolating case. In particular, the rules can be used
to simulate various procedures for linear integer arithmetic, e.g.:

– The Omega test [17], which is a quantifier elimination procedure for Presburger
arithmetic that combines the Fourier-Motzkin method with a splitting rule
(the Omega rule) to achieve completeness over the integers. In the quantifier-
free case (corresponding to the existential fragment of PA), our calculus can
implement the Fourier-Motzkin method through the rule fm-elim, and can sim-
ulate the Omega rule straightforwardly with the help of the rule strengthen

(see [19] for a discussion).
– Linear programming (LP) with Gomory cuts: given a set of (in)equalities that is

unsatisfiable over rational numbers, LP methods are able to provide a witness

in terms of a (non-negative) linear combination of the inequalities that certi-
fies unsatisfiability (the existence of such witnesses is guaranteed by Farkas’
lemma [22]). Once such a witness has been derived, the rule fm-elim of our
calculus can be used to derive a contradictory inequality, so that LP meth-
ods can guide our calculus. The simulation of rules specific to integer linear
programming, including Gomory cuts, is discussed in Sect. 6.2.

The rules red-left/right rewrite (in)equalities with equalities in the an-
tecedent; in both cases, PIs are simply propagated along with the literals (red-
left is applied repeatedly in Fig. 3). The red rules alone are not sufficient for
transforming a system of integer equations into a solved form; they are therefore
complemented with col-red-l/r to introduce fresh constants defined in terms of
existing constants (the rules resemble column reductions when encoding systems of
equalities as matrices). In combination, red and col-red are able to simulate the
equality elimination procedure in [17], as well as standard procedures to transform
sets of equalities (or matrices) to Hermite and Smith normalform [11,10]. Because
col-red-l/r only introduce local L/R-constants, it is guaranteed that the new
constants do not occur in interpolants.

The calculi in [18,20] include a rule simp′ that is responsible for rounding in-
equalities αt+ β ≤ 0 to αt+ αdβαe ≤ 0, as well as for eliminating common factors

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 11

from coefficients of non-constant terms, simplifying equalities αt
.
= 0 to t

.
= 0 or in-

equalities αt ≤ 0 to t ≤ 0 (provided α > 0). The rule simp′ corresponds to a variety
of more elementary rules in our interpolating calculus. Rounding of inequalities
is handled by the strengthen rule discussed below and in Sect. 6. In contrast,
elimination of common factors in coefficients is not always possible in the pres-
ence of PIs: for instance, unlike in [18,20], the equality 2x

.
= 0 [a

.
= 0] cannot be

simplified to the form x
.
= 0 [tA

.
= 0], because the factor 2 does not occur in the

PI. This means that terms αx cannot be rewritten to 0 with the help of 2x
.
= 0

if α is odd. Following the principle of pseudo-division, we therefore introduce the
rules mul-left/right to multiply terms with positive integers prior to rewriting.

Similar to rewriting with equalities, inequalities can be added up with the
help of the rule fm-elim. The strengthen rule is introduced to achieve com-
pleteness over the integers and splits inequalities t ≤ 0 into the cases t

.
= 0 and

t+ 1 ≤ 0 (Fig. 3 shows applications of fm-elim and strengthen). Compared to
the calculi in [18,20], the use of strengthen in our interpolating calculus is three-
fold: (i) strengthen can simulate rules such as omega-elim [20] or Gomory cuts,
(ii) as shown in Fig. 3, repeated application of strengthen can be used to round
inequalities αt+ β ≤ 0 to αt+ αdβαe ≤ 0 (which is done by simp′ in [18,20]), and
(iii) strengthen can simulate the law of anti-symmetry that is implemented by
the rule anti-symm′ in [18,20]. As strengthen is the most central rule in our
calculus, we provide a detailed discussion in Sect. 6.

Finally, when reasoning about formulae that contain both equalities and in-
equalities, it can be necessary to split equalities t

.
= 0 into two inequalities t ≤ 0

and −t ≤ 0; this is done by the rules split-eq and split-neq.

5 Properties of the Calculus

In this section we discuss properties of our calculus that are essential for turning
it from a mere set of proof rules into a practical interpolation algorithm. We
establish that repartitioning the set of input formulae into new L and R parts
is largely orthogonal to the interpolating proof. That is, given an interpolating
proof for a particular partitioning, an interpolant for a new partitioning can be
obtained by suitably adjusting the occurrence of labels across the proof. This
property of the calculus has two important consequences. First, our calculus has
the chain interpolation property, which is essential in model checking based on lazy

abstraction with interpolants [16] (Sect. 5.2). Second, the relative insensitivity of
the proof procedure to repartitioning can be used to show the completeness of the
interpolating calculus. Together with the soundness result that we present below,
our calculus is therefore suitable to be implemented in an interpolating decision
procedure for quantifier-free Presburger arithmetic.

5.1 Soundness of the Calculus

The most important property of any calculus is soundness: the existence of a
proof for a formula or sequent should imply that the formula is indeed valid. Since
the correctness of interpolants is built into our definition of valid (interpolating)
sequents, soundness also means that a calculus only generates valid interpolants:

12 Angelo Brillout et al.

whenever a sequent bAcL ` bCcR I I is derived, the implications A⇒ I and
I ⇒ C are valid, and all constants in I occur in both A and C. More generally:

Theorem 1 (Soundness) If an interpolating sequent Γ ` ∆ I I without any PIs

is provable in the calculus, then it is valid. This implies, in particular, that the se-

quent ΓL, ΓR ` ∆L,∆R is valid.

To prove this theorem, we first need to define the semantics of PIs, since — al-
though the sequent Γ ` ∆ I I in the theorem does not contain any PIs — they
are normally introduced in the course of a proof. We say that a PI (as in Def. 1)
occurring in a sequent is correct if the sequents (i) and (ii) given in Figure 5 are
valid, tA only contains constants that occur in ΓL ∪∆L, and t− tA only contains
constants that occur in ΓR ∪∆R.

Theorem 1 is then proven in two steps:

(i) In Sect. 5.1.1, we show that all PIs in a closed proof are correct by induction
on the distance of a sequent from the root of the proof: assuming that all PIs
in the conclusion of a rule application are correct, we prove that the PIs in the
rule premises are correct.

(ii) In Sect. 5.1.2, we show the validity of all sequents in a closed proof by induction
on the size of sub-proofs: assuming that all premises of a rule are valid, we prove
that the conclusion is valid, too.

In order to show the two properties, we annotate some of the rules by introducing
further auxiliary formulae in the premises (Fig. 7). The calculus can also be proven
sound directly with the original rules, which requires, however, more intricate
inductive properties. Auxiliary formulae are not needed for completeness (it is
never necessary to apply any rules to the formulae), and are therefore not used
in an implementation. Similarly, soundness of the rules with auxiliary formulae
directly implies the soundness of the rules without auxiliary formulae, because
removing formulae from the premises could only make fewer sequents provable.

5.1.1 Correctness of Partial Interpolants in a Proof

We claim that each rule of the calculus preserves the correctness of PIs. We only
show two examples here:

– red-left, for ◦ being ≤: suppose all partial interpolants of the conclusion
are valid. This means that ΓL ` tA

.
= 0,∆L and ΓL ` sA ≤ 0,∆L are valid,

from which we can conclude that also ΓL ` sA + α · tA ≤ 0,∆L is valid. Fur-
thermore, ΓR ` t− tA .

= 0,∆R and ΓR ` s− sA ≤ 0,∆R are valid, which im-
plies that ΓR ` s− sA + α · (t− tA) ≤ 0,∆R and therefore also the sequent
ΓR ` s+ α · t− (sA + α · tA) ≤ 0,∆R are valid. Finally, all constants of the
term sA + α · tA also occur in sA or tA, and all constants of s+α·t−(sA+α·tA)
also in s− sA or t− tA, so that also the vocabulary conditions are satisfied.

– strengthen∗: by assumption, the annotations of the conclusion are correct,
which implies that the sequents ΓL ` tA ≤ 0,∆L and ΓR ` t− tA ≤ 0,∆R
are valid. The correctness of the new partial interpolants is then directly guar-
anteed by the starred formulae in the premises.

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 13

5.1.2 Correctness of Sequents in a Proof

We only show one example, the rule strengthen∗. Suppose each of the premises
of the rule is a valid interpolating sequent, which by definition means that the
following (ordinary) sequents are valid:

ΓL, t
A .

= 0 ` E,∆L (3)

ΓR, t− tA
.
= 0, E ` ∆R (4)

ΓL ` I0,∆L (5)

ΓR, t− tA + 1 ≤ 0, I0 ` ∆R (6)

ΓL, t
A + 1 ≤ 0 ` I1,∆L (7)

ΓR, I
1 ` ∆R (8)

Note that the arithmetic atoms in the sequents (like tA
.
= 0 in (3)) stem from the

L∗/R∗-formulae in the premises. Furthermore, because tA ≤ 0 is a correct partial
interpolant, we know that the following sequents are valid:

ΓL ` tA ≤ 0,∆L (9) ΓR ` t− tA ≤ 0,∆R (10)

The validity of (3)–(10) implies that also the sequents ΓL ` I1 ∨ (E ∧ I0),∆L and
ΓR, I

1 ∨ (E ∧ I0) ` ∆R are valid. For instance, the former sequent can be deduced
using a normal Gentzen-style calculus (as introduced in Sect. 2):

(3)

ΓL, t
A ≤ 0, tA

.
= 0 ` I1, E,∆L

(7)

ΓL, t
A ≤ 0 ` tA

.
= 0, I1, E,∆L

(∗)

A cut′

A
ΓL, t

A ≤ 0 ` I1, E,∆L

(9)

ΓL ` tA ≤ 0, I1, E,∆L

ΓL ` I1, E,∆L
cut′

(5)

ΓL ` I1, I0,∆L

ΓL ` I1, E ∧ I0 ,∆L
and-right′

ΓL ` I1 ∨ (E ∧ I0),∆L
or-right′

In (∗), we make use of the fact that (tA ≤ 0 ∧ tA 6 .= 0) ≡ tA + 1 ≤ 0 over integers.
For the vocabulary condition, note that a constant is an L/R-symbol of the con-

clusion iff it is an L/R-symbol of each of the premises. This is because t ≤ 0 [tA ≤ 0]
is annotated with a correct partial interpolant, which implies that all constants in
t are L-constants, and all constants in t−tA are R-constants. Therefore, the L∗/R∗

formulae introduced in the premises do not change vocabularies. Because each of
the formulae E, I0, I1 only contains common L/R-constants, so does I1 ∨ (E ∧ I0).

Concluding, this means that the sequent Γ ` ∆ I I1 ∨ (E ∧ I0) is valid, and
therefore also Γ, t ≤ 0 [tA ≤ 0] ` ∆ I I1 ∨ (E ∧ I0).

5.2 Chain Interpolation and Completeness

In software model checking, it is common to use a slightly generalized version
of the interpolation theorem, guaranteeing not only the existence of single inter-
polants, but of entire interpolant chains (see, e.g., [16]). Given an unsatisfiable
conjunction T1 ∧ · · · ∧ Tn (say corresponding to an infeasible path in a program),
an interpolant chain is a sequence I0, I1, . . . , In of formulae such that

(i) I0 = true, In = false,
(ii) for all i ∈ {1, . . . , n}, the implication Ii−1 ∧ Ti ⇒ Ii holds, and

14 Angelo Brillout et al.

(iii) for all i ∈ {0, . . . , n}, the non-logical symbols (constants, predicates, etc.) in
Ii occur in both T1 ∧ · · · ∧ Ti and Ti+1 ∧ · · · ∧ Tn.

Interpolant chains I0, I1, . . . , In can be derived by n − 1 applications of the
standard interpolation theorem. Since this would entail the construction of n − 1
proofs and would thus represent a significant overhead, however, a more attrac-
tive and more common approach is to extract multiple interpolants from a single
unsatisfiability proof for T1 ∧ · · · ∧ Tn, by considering different partitions of the
conjuncts, i.e., different ways to label the formulae in the proof.

In the context of our interpolating calculus for QFPA, we introduce chain inter-
polation in a constructive manner using a function S that transforms an interpolat-
ing proof of a sequent bT1cL, . . . , bTkcL, bTk+1cR, bTk+2cR, . . . , bTncR ` ∅ I I into
a proof of the sequent bT1cL, . . . , bTkcL, bTk+1cL, bTk+2cR, . . . , bTncR ` ∅ I I ′.
This requires recursively changing the labels of formulae in the proof. As an
inductive property of the relabeling function S, we then show that the impli-
cation I ∧ Tk+1 ⇒ I ′ holds. Chains of interpolants can be extracted from a proof
by n applications of S. Since S has complexity polynomial in the size of the pro-
cessed proof (updating labels does not change the topology of a proof), this yields
a practical method for generating interpolant chains.1

5.2.1 Definition of the Relabeling Function S

For sake of brevity, we give a formal definition of S only for the case of L/R-
relabeled formulae, primarily covering propositional and first-order rules. A com-
plete definition of relabeling, which also includes the treatment of arithmetic rules
and PIs, can be found in [2]. As a notational convention, given a set Γ of L/R-
labeled and a set Γm of unlabeled formulae, we will write Γ↙Γm for the unique
set of labeled formulae satisfying the following equations:

(Γ↙Γm)L = ΓL ∪ (ΓR ∩ Γm), (Γ↙Γm)R = ΓR \ Γm.

Intuitively, ↙ changes the label of the formulae Γm from R to L, for instance
{bφcL, bψcR}↙{ψ} = {bφcL, bψcL}.

Formally, the relabeling function S has three arguments:

– an interpolating proof P in the calculus presented in this paper. As a conven-
tion, we denote the root of P by Γ r ` ∆r I Ir;

– an ordinary sequent Γm ` ∆m such that Γm ⊆ Γ rR and ∆m ⊆ ∆rR, specifying
the formulae in P to be relabeled; and

– a pair Γa ` ∆a of labeled formulae, specifying formulae to be recursively
added to all sequents of P.

The result of an application S(P, Γm ` ∆m, Γa ` ∆a) is a proof P ′ with root
Γ r↙Γm, Γa ` ∆r↙∆m,∆a I I ′. The function S is defined by a complete case
analysis over the rules that can be applied at the root of P. Due to space con-
straints, we show this definition only for the or-left-r, the other rules are handled
similarly. For or-left-r, P has the shape:

Q1 Q2

Γ, bφ ∨ ψcR ` ∆ I I ∧ J
or-left-r

1 However, some of the optimizations discussed in Sect. 6 can have the side effect of increasing
the complexity of S to exponential.

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 15

with Γ r = Γ ∪ {bφ ∨ ψcR}, ∆r = ∆, and Ir = I ∧ J . The relabeled proof P ′ =
S(P, Γm ` ∆m, Γa ` ∆a) is defined by case analysis; we only show the case
φ ∨ ψ ∈ Γm, as φ ∨ ψ 6∈ Γm is handled similarly. The assumption φ ∨ ψ ∈ Γm im-
plies that the formula bφ ∨ ψcR of the root is relabeled to bφ ∨ ψcL. Due to the
equation (Γ ∪ {bφ ∨ ψcR})↙Γm = (Γ↙Γm) ∪ {bφ ∨ ψcL}, the proof P ′ has the
shape

Q′1 Q′2
Γ↙Γm, Γa, bφ ∨ ψcL ` ∆↙∆m,∆a I I ′ ∨ J ′

or-left-l

The direct sub-proofs Q′1,Q′2 of P ′ are derived from Q1,Q2 by recursive application
of S. Concentrating on Q1 (the case Q2 is similar), we choose

Γm1 = (Γm∩ΓR)∪{φ}, ∆m1 = ∆m, Γa1 = Γa∪
(
{bφcR}∩(Γ↙Γm)

)
, ∆a1 = ∆a,

and thus obtainQ′1 = S(Q1, Γ
m
1 ` ∆m1 , Γ

a
1 ` ∆a1). The root ofQ′1 constructed like

this is (Γ ∪ {bφcR})↙Γm1 , Γa1 ` ∆↙∆m1 ,∆
a
1 I I ′. By proving that this sequent

coincides with the left premise of or-left-l in P ′, we can then show that P ′ is
indeed a well-formed proof.

5.2.2 The Chain Interpolation Theorem

It can be observed that the relabeling function S modifies the interpolants in a
way satisfying the chain interpolation property, as introduced in the beginning of
Sect. 5.2. To derive an interpolant chain I0, I1, . . . , In for a conjunction T1 ∧ · · · ∧ Tn,
we start by constructing an interpolating proof P0 for the sequent

bT1cR, bT2cR, . . . , bTncR ` ∅ I I0

This proof can then be transformed to a proof P1 = S(P1, {T1} ` ∅, ∅ ` ∅) to
obtain the next interpolant I1 with I0 ∧ T1 ⇒ I1, etc. The relationship between
the interpolants I0, I1, . . . , In is more generally stated in the following theorem:

Theorem 2 (Chain interpolation) Suppose that proof P has root Γ r ` ∆r I Ir,

and proof S(P, Γm ` ∆m, Γa ` ∆a) has root Γ r↙Γm, Γa ` ∆r↙∆m,∆a I I ′.
Then the (ordinary) sequent Γm, Ir ` I ′,∆m is valid.

The theorem is proven by induction on the size of the proof P, following the
same case analysis as in the definition of S. Again, we show the rule or-left-r as an
example and concentrate on the case φ ∨ ψ ∈ Γm. From the recursive application
of S we know that the sequents Γm1 , I ` I ′,∆m1 and Γm2 , J ` J ′,∆m2 are valid,
where Γm1 = (Γm ∩ ΓR) ∪ {φ} and Γm2 = (Γm ∩ ΓR) ∪ {ψ}. Due to φ ∨ ψ ∈ Γm, we
can conclude the validity of Γm, I ∧ J ` I ′ ∨ J ′,∆m:

∗
Γm1 , I ` I ′,∆m1

(Γm ∩ ΓR) ∪ {φ}, I ` I ′,∆m

Γm, φ, I ` I ′,∆m

∗
Γm2 , J ` J ′,∆m2

(Γm ∩ ΓR) ∪ {ψ}, J ` J ′,∆m

Γm, ψ, J ` J ′,∆m

Γm, φ ∨ ψ, I, J ` I ′, J ′,∆m

Γm, I, J ` I ′, J ′,∆m

Γm, I ∧ J ` I ′ ∨ J ′,∆m

A recent dissertation contains a detailed proof of the chain interpolation theo-
rem [2].

16 Angelo Brillout et al.

5.2.3 Completeness of the Calculus

As a corollary of chain interpolation, we can also conclude the completeness of our
calculus: whenever an implication A⇒ C holds, our calculus is able to derive an
interpolant. We have to ban quantifiers that cannot be handled by Skolemization:

Theorem 3 (Completeness) Suppose Γ,∆ are sets of labeled formulae bφcL and

bφcR such that all occurrences of existential quantifiers in Γ/∆ are under an even/odd

number of negations, and all occurrences of universal quantifiers in Γ/∆ are under an

odd/even number of negations. If ΓL, ΓR ` ∆L,∆R is valid, then there is a formula I

such that Γ ` ∆ I I is provable.

To justify this theorem, we first observe that the validity of ΓL, ΓR ` ∆L,∆R
implies the existence of a proof Pni in the (complete) non-interpolating calcu-
lus from [20]. The non-interpolating proof can be lifted to a trivial interpolat-
ing proof P of the sequent {bφcR | φ ∈ ΓL ∪ ΓR} ` {bφcR | φ ∈ ∆L ∪∆R} I I ′ for
some valid formula I ′ by simply labeling all formulae with R, uniformly replacing
the rules from [20] with the corresponding interpolating rules presented in this
paper (during this process, translating the simp′ rule may require applications
of mul-left/right). Finally, P can be transformed to the final proof Q of the
sequent Γ ` ∆ I I by applying the relabeling function S.

6 Strengthening and Rounding of Inequalities

Reasoning in linear integer arithmetic generally requires some kind of cut rule to
deal with the phenomenon of formulae that are satisfiable over the rationals, but
unsatisfiable over integers. The non-interpolating calculus in [18] provides two rules
for this: the simp′ rule to round inequalities αt+ β ≤ 0 to αt+ αdβαe ≤ 0 (which
resembles Gomory cuts [22]), and the general strengthen′ rule:

Γ, t
.
= 0 ` ∆ Γ, t+ 1 ≤ 0 ` ∆

Γ, t ≤ 0 ` ∆ strengthen′

Because strengthen′ subsumes rounding via the rule simp′, we can ignore the
latter rule for the time being and concentrate on strengthen′.

In order to lift strengthen′ to the interpolating calculus, we first observe two
special cases that are easy to handle:

Γ, t
.
= 0 [t

.
= 0] ` ∆ I I Γ, t+ 1 ≤ 0 [t+ 1 ≤ 0] ` ∆ I J

Γ, t ≤ 0 [t ≤ 0] ` ∆ I I ∨ J
strengthen-l

Γ, t
.
= 0 [0

.
= 0] ` ∆ I I Γ, t+ 1 ≤ 0 [0 ≤ 0] ` ∆ I J

Γ, t ≤ 0 [0 ≤ 0] ` ∆ I I ∧ J
strengthen-r

These cases are called pure cuts in [14], because the PIs tell that the inequality t ≤ 0
has been derived only from L- or only from R-formulae, respectively. Strengthening
inequalities of this kind corresponds to splitting a disjunction labeled with L or R.

The general case is known as mixed cut [14] and encompasses an application of
strengthen to a formula t ≤ 0 [tA ≤ 0] with tA 6∈ {0, t}. The rule for this general
case is given in Fig. 6 and features three premises, rather than two as for the

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 17

non-interpolating rule strengthen′. To understand the shape of strengthen,
note that we can represent t ≤ 0 as the sum of tA ≤ 0 and t− tA ≤ 0, the first of
which is derived from L-formulae, and the second from R-formulae. The effect of
strengthen can now be simulated by applying strengthen-l to tA ≤ 0 [tA ≤ 0],
and then strengthen-r to t− tA ≤ 0 [0 ≤ 0]; the combined application of the two
rules explains the interpolant I1 ∨ (E ∧ I0) resulting from strengthen.

Complexity. Non-interpolating refutations of unsatisfiable conjunctions of literals
have exponential size in the worst case [22]. Similarly, it can be shown that any
valid sequent (without quantifiers or propositional connectives) has interpolants
of worst-case exponential size that can be derived using a proof of worst-case
exponential size (using the rules strengthen-l/r from above).

In general, however, lifting a non-interpolating to an interpolating proof can
increase the size of the proof exponentially, for two reasons: (i) strengthen in
Fig. 6 has three premises, while the non-interpolating rule strengthen′ has only
two, which can make it necessary to repeatedly duplicate subproofs during lifting
(this is partly addressed in Sect. 6.1), and (ii) the rule simp′ (which is simulated
by strengthen in the interpolating calculus) often allows very succinct proofs. As
a result, there are unsatisfiable conjunctions A ∧B with non-interpolating proofs
of linear size, although all interpolants have exponential size.

6.1 Successive Strengthening

It is quite common that strengthen is applied repeatedly to a sequence t ≤ 0,
t+ 1 ≤ 0, t+ 2 ≤ 0, . . . of inequalities, for instance to simulate rounding of an
inequality, or the Omega rule [17]. Because each application of strengthen gen-
erates two new inequalities, 2k−1 applications are necessary in order to strengthen
an inequality t ≤ 0 to t+ k ≤ 0, and the resulting interpolant will be of exponential
size as well. To curb this explosion, we present an optimized rule that captures
k-fold strengthening and requires only a quadratic number of premises. The op-
timized rule k-strengthen exploits the fact that many of the goals created by
repeated application of strengthen are redundant:{

Γ, t+ i
.
= 0 [tA + j

.
= 0] ` ∆ I Eji

}
0≤j≤i<k{

Γ, t+ k ≤ 0 [tA + j ≤ 0] ` ∆ I Ij
}
0≤j≤k

Γ, t ≤ 0 [tA ≤ 0] ` ∆ I K
k-strengthen

where the resulting interpolant K is defined by:

K =
∨

0≤j≤k

(
Ij ∧

∧
j≤i<k

Eji

)
(11)

The size of K grows quadratically, rather than exponentially, in k. Thus, whenever
the strengthen rule is to be applied k times in succession, it is possible and more
efficient to use the k-strengthen rule instead.

The number of premises of k-strengthen (but not the size of the resulting
interpolant) can be reduced further to a linear number: any two premises gener-
ating Eji and Eli differ only in the partial interpolant of t+ i ≤ 0. We can exploit

18 Angelo Brillout et al.

this by treating the family (Eji)0≤j≤i as a single premise, parameterized in the
free variable j. This way, a single subproof can generate a parameterized inter-
polant Ei(j). Parameter j can be instantiated to the values 0 ≤ j ≤ i when con-
structing K. Parametrized interpolants I(j) are derived similarly.

Interpolation of rounding operations. An additional optimization is possible when
the rule k-strengthen is used to round an inequality αt+ β ≤ 0 to αt+ αdβαe ≤ 0.
Rounding corresponds to k-strengthen with k = αdβαe − β:{

Γ, αt+ β + i
.
= 0 [tA + j

.
= 0] ` ∆ I Eji

}
0≤j≤i<k{

Γ, αt+ αdβαe ≤ 0 [tA + j ≤ 0] ` ∆ I Ij
}
0≤j≤k

Γ, αt+ β ≤ 0 [tA ≤ 0] ` ∆ I K
k-strengthen

We can observe that αt+ β + i
.
= 0 is unsatisfiable for 0 ≤ i < αdβαe − β, so that

the equality-premises can be closed immediately via close-eq-left. Consequently,
the interpolants Eji = Ej = (∃LA tA + j

.
= 0) do not depend on i, and the overall

interpolant can be simplified to K = Ik ∨
∨

0≤j<k(Ij ∧ Ej).
If (bounded) quantifiers in interpolants are acceptable, the last formula K can

also be encoded compactly without any duplication of sub-formulae:

K ≡ ∃x.
(
− x ≤ 0 ∧ x− k ≤ 0 ∧ I(x) ∧ (E(x) ∨ x− k .

= 0)
)

A similar observation was made in [9], where it was shown that interpolants can be
extracted from cutting-planes proofs in polynomial time if the interpolant language
is augmented by an operation for scaling with rational coefficients and the ceiling
function d·e.

Example. We use k-strengthen to compute an interpolant for the formula A ∧B
with A = −y + 5x− 1 ≤ 0 ∧ y − 5x ≤ 0 and B = 5z − y + 1 ≤ 0 ∧ −5z + y − 2 ≤ 0.
Note that A ∧ B is satisfiable over rationals, but unsatisfiable over the integers.
An interpolating proof of unsatisfiability is as follows:

∗.
.
.
.

{· · · I Ej
i }

∗
. . . , 1 ≤ 0 [j − 1 ≤ 0] ` I j − 1 ≤ 0

close-ineq

. . . ,−5z + 5x ≤ 0 [−y + 5x− 1 + j ≤ 0],
5z − 5x+ 1 ≤ 0 [y − 5x ≤ 0]

` I j − 1 ≤ 0

fm-elim

. . . ,−5z + 5x− 3 ≤ 0 [−y + 5x− 1 ≤ 0], 5z − 5x+ 1 ≤ 0 [y − 5x ≤ 0] ` I K
3-strengthen

. . . , y − 5x ≤ 0 [y − 5x ≤ 0], 5z − y + 1 ≤ 0 [0 ≤ 0],
−5z + 5x− 3 ≤ 0 [−y + 5x− 1 ≤ 0]

` I K

fm-elim

−y + 5x− 1 ≤ 0 [−y + 5x− 1 ≤ 0], y − 5x ≤ 0 [y − 5x ≤ 0],
5z − y + 1 ≤ 0 [0 ≤ 0],−5z + y − 2 ≤ 0 [0 ≤ 0]

` I K

fm-elim

b−y + 5x− 1 ≤ 0cL , by − 5x ≤ 0cL , b5z − y + 1 ≤ 0cR , b−5z + y − 2 ≤ 0cR ` I K
ipi+

b−y + 5x− 1 ≤ 0 ∧ y − 5x ≤ 0cL , b5z − y + 1 ≤ 0 ∧ −5z + y − 2 ≤ 0cR ` I K
and-left+

Most importantly, the rule 3-strengthen is used to round −5z + 5x− 3 ≤ 0 to
−5z + 5x ≤ 0, from which a contradiction can be derived via fm-elim. The in-
equality interpolants Ij = (j − 1 ≤ 0), as well as the equality interpolants Ej =
(∃x. − y + 5x− 1 + j

.
= 0) ≡ (5 | (y + 1− j)) in the premises of 3-strengthen are

derived as discussed above. The overall interpolant is:

K = 3− 1 ≤ 0︸ ︷︷ ︸
Ik

∨
∨

0≤j<3

(j − 1 ≤ 0︸ ︷︷ ︸
Ij

∧ 5 | (y + 1− j)︸ ︷︷ ︸
Ej

) ≡ 5 | (y + 1) ∨ 5 | y

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 19

6.2 A Comparison with Branch-and-Bound and Gomory Cuts

In order to illustrate the generality of our calculus, we discuss how it can be
used to naturally simulate two of the most common cut/splitting rules used in
SMT solvers: the branch-and-bound rule and Gomory cuts. Both rules follow the
concept of rational relaxation: in order to solve an integer linear program, it is
checked whether the program is satisfiable over rational numbers. If this check
derives a rational solution β : C → Q that is not integral, nothing can directly be
concluded about the program; however, the solution β can be used to refine the
integer program by generating additional constraints that exclude β.

6.2.1 Branch-and-Bound

Branch-and-bound generates new constraints by selecting an arbitrary constant
c ∈ C such that β(c) 6∈ Z, considering the two cases c ≤ bβ(c)c and c ≥ dβ(c)e.
Because a single constant c is necessarily a pure term (which does not mix local
symbols from L- and R-formulae), it is easy to interpolate the case analysis intro-
duced by branch-and-bound; in fact, this does not even require the strengthen

rule. For instance, if c is a constant occurring in L-formulae, branch-and-bound
corresponds to an application of the rule or-left-l:

...
Γ, c− bβ(c)c ≤ 0 ` ∆ I I

...
Γ, dβ(c)e − c ≤ 0 ` ∆ I J

Γ ` ∆ I I ∨ J

R-constants can be handled in a similar manner.

6.2.2 Gomory Cuts

It is well-known that the application of the branch-and-bound rule does not nec-
essarily terminate for unsatisfiable integer programs [22], and does not give rise
to a decision procedure for QFPA. In solvers, branch-and-bound is therefore often
combined with Gomory cuts, which derive additional constraints from non-integral
solutions in a more sophisticated manner and indeed achieve completeness. We fol-
low the version of Gomory cuts introduced in [7, Sect. 4.2.1], which has become
the standard solution used in SMT solvers. As we do not consider mixed-integer
cuts, the rule described here is somewhat simpler than the one in [7].

Carrying over the approach from [7] to our calculus, and in particular only
considering integral coefficients in constraints, a Gomory cut can be applied if
reasoning has resulted in a sequent2

Γ,
{lj − xj ≤ 0}j∈J , {xj − uj ≤ 0}j∈K ,
aii xi −

∑
j∈J aij xj −

∑
j∈K aij xj

.
= 0

` ∆ (12)

in which J,K are disjoint sets of indexes, i 6∈ J∪K, the variables xj are bounded by
the integers {lj | j ∈ J} ⊂ Z and {uj | j ∈ K} ⊂ Z, the coefficient aii ∈ Z is positive,

2 The procedure in [7] normalizes all inequalities to the form lj − xj ≤ 0 or xj − uj ≤ 0
prior to the actual solving process.

20 Angelo Brillout et al.

and all of the coefficients {aij | j ∈ J ∪K} ⊂ Z are non-zero. The equation of the
sequent corresponds to a line of a Simplex tableau. Furthermore, we require that
the bounds lj , uj correspond to a non-integral extremal solution:(∑

j∈J
aij lj −

∑
j∈K

aijuj

)
= b0 + aii b1, b0 ∈ {1, . . . , aii − 1}, b1 ∈ Z.

As [7] shows, in this situation it is sound to introduce the additional constraint

b0
∑
j∈J+

aij (lj − xj) − (aii − b0)
∑
j∈J−

aij (lj − xj) (13)

+ (aii − b0)
∑
j∈K+

aij (xj − uj) − b0
∑
j∈K−

aij (xj − uj) ≤ − b0 (aii − b0)

where the index sets J+, J−,K+,K− are defined as follows:

J+ = {j ∈ J | aij ≥ 0}, J− = {j ∈ J | aij < 0},

K+ = {j ∈ K | aij ≥ 0}, K− = {j ∈ K | aij < 0}.

We can observe that the Gomory cut (13) can also be generated using the rules
presented in this paper, which directly implies that interpolants can be extracted.
This is done by the following sequence of rule applications:

(i) Since the left-hand side of (13) is a positive linear combination of inequalities
in (12), the inequality (13) can be introduced using the rule fm-elim followed
by an application of k-strengthen with k = b0 (aii − b0).

(ii) In those premises of k-strengthen that introduce an equality, we can first
distinguish the two cases aii xj ≥ b0 + aii b1 and aii xj < b0 + aii b1 as discussed
in Sect. 6.2.1; the cases can subsequently be rounded to aii xj ≥ aii (b1 + 1) and
aii xj ≤ aii b1. The resulting goals can be closed by a sequence of fm-elim and
red-left applications, essentially formalizing the justification for (13) that is
given in [7] in our sequent calculus.

7 Experimental Evaluation

We implemented the presented interpolating calculus on top of the Princess the-
orem prover [20],3 including all optimizations described in Sect. 6. Interpolation
is performed in Princess in two steps: the prover first (internally) generates a
non-interpolating proof, which is then processed using the rules presented in this
article to extract interpolants. To keep the size of proofs manageable, we also im-
plemented a number of proof reduction heuristics, e.g., eliminating simplification
steps that were later found to be unnecessary.

The benchmarks for our experiments are derived from different families of the
SMT-LIB category QF-LIA. Because SMT-LIB benchmarks are usually conjunc-
tions at the outermost level, we can partition them to the form T1 ∧ T2 ∧ · · · ∧ T10
by choosing the first 10% of the benchmark conjuncts as T1, the second 10% as
T2, etc. We then compute chains I0, I1, . . . , I10 of interpolants from a single proof

3 http://www.philipp.ruemmer.org/princess.shtml

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 21

Multiplier Bitadder Mathsat Rings Convert
16 unsat
1 sat

17 unsat 100 unsat 294 unsat 38 unsat
109 sat
172 unkn.

Princess 8/1/41 7/0/63 44/13/396 133/0/183 39/82/334
154/1623 298/76953 106/7007 249/5984 87.8/1

OpenSMT 5/1/45 7/0/63 74/15/666 9/0/81 37/0/333
48.9/2357 103/23362 53.0/2020 59.9/4611 0.08/1

SMTInterpol 5/1/45 5/0/45 65/13/585 0/0/– 37/0/333
24.4/48827 8.58/41077 45.7/126705 –/– 13.6/2

CSIsat 4/1/36 1/0/9 25/12/225
(1) (2)

106/2640 0.56/188 70.8/12683
Omega QE –/–/125 –/–/129 –/–/612 –/–/1474 –/–/297

109/15392 97.8/93181 169/101088 227/55307 15.0/2659

#unsat / #sat / #interpolants / average time (s) / average int. size

Table 1 Results of applying the compared tools to SMT-LIB benchmarks (times in seconds).
Experiments were done on an Intel Xeon X5667 4-core machine with 3.07GHz, heap-space
limited to 12GB, running Linux, with a timeout of 900s. In (1), no interpolants could be
computed, since the benchmarks were found to be rationally satisfiable by CSIsat. In (2),
CSIsat could not handle large literal constants occurring in the benchmarks.

of unsatisfiability of T1 ∧ T2 ∧ · · · ∧ T10. Since I0 and I10 are trivial, this yields 9
interpolation problems for each SMT-LIB benchmark. We choose this setup since
model checkers often require the computation of similar chains of interpolants.

We compare our procedure with the following tools:

– SMTInterpol,4 which is an interpolation engine for quantifier-free linear inte-
ger arithmetic (among others) and thus targets a similar theory as Princess.
We are not aware of a publication that describes the algorithms behind SMT-

Interpol.
– the interpolating version of the OpenSMT [4] solver that was developed in our

previous work [13, together with Jérôme Leroux].
– CSIsat [1] (also see [21]), an interpolation procedure for rational arithmetic and

uninterpreted functions that reduces interpolation problems to a set of linear
constraints, which are solved using LP techniques. A comparison with CSIsat

is interesting as it is not based on proof construction; the fact that proofs can
get large is often perceived to be a handicap of proof-based methods.

– the Omega quantifier elimination procedure [17], which is used to generate
interpolants by eliminating all symbols local to the left conjunct A in an inter-
polation problem. We use the implementation of Omega available in Princess.

Our experimental results are shown in Table 1 and Fig. 8:

– the number of unsatisfiable/satisfiable problems tested, and the number of
SAT/UNSAT results that the tools were able to derive; in the remaining cases,
either a timeout or a memory-out occurred. These data are not provided for
QE, as it does not decide satisfiability of interpolation problems.

– the total number of quantifier-free interpolants that could be computed. For
OpenSMT, SMTInterpol, and CSIsat, which compute interpolants on the
fly while solving a problem, this is always 9× the number of UNSAT results.

4 http://swt.informatik.uni-freiburg.de/research/tools/smtinterpol

22 Angelo Brillout et al.
P
ri
n
ce
ss

P
ri
n
ce
ss

P
ri
n
ce
ss

P
ri
n
ce
ss

Fig. 8 Comparison of the size of interpolants generated by Princess, OpenSMT, SMTIn-
terpol, CSIsat, and quantifier elimination using the Omega procedure.

Princess first constructs a proof for a problem, and afterwards extracts inter-
polants, which means that sometimes not all 9 interpolants can be computed
for a benchmark, due to the potentially high complexity of rewriting a non-
interpolating to an interpolating proof.

– the average time (in seconds) required to solve each benchmark, including the
time to compute the 9 interpolants. For QE, this is simply the average time to
compute 9 interpolants.

– the average size of generated interpolants, in terms of the number of equations,
inequalities, and occurrences of propositional variables in the interpolant. The
sizes of generated interpolants are also compared in the scatter plots in Fig. 8.

Comparison with OpenSMT and SMTInterpol. The experiments show that Princess

is overall competitive with OpenSMT and SMTInterpol. On benchmarks with
a focus on arithmetic (Multiplier, Bitadder, Rings), Princess can uniformly solve
the largest number of problems, although usually with a somewhat longer solving

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 23

time, and not always being able to extract interpolants from proofs. Comparing
the method from [13] with the procedure introduced in this paper, our calculus
allows us to work with virtually arbitrary cut rules (in the implementation in Prin-

cess, this is the Omega rule), at the cost of worst-case exponential complexity of
interpolant extraction (see Sect. 6), while [13] uses a branch-and-cut rule that can
be interpolated with polynomial complexity, but might lead to exponentially larger
proofs. Rings represents an example where our method is often able to construct
a proof but times out when extracting interpolants, while the method from [13]
already times out when constructing a proof.

In the Mathsat family of benchmarks, which test propositional reasoning capa-
bility more than arithmetic performance, Princess can solve fewer problems than
the other tools, but can easily generate interpolants once a proof is found. An ex-
planation for the performance on Mathsat is that Princess does not learn lemmas
during proof search, in contrast to SMT solvers like OpenSMT and SMTInterpol.
On Convert, which contains bitvector problems encoded in integer arithmetic, all
tools show a very similar performance; Princess is able to prove 82 of the bench-
marks to be SAT but usually needs a long time to construct a model, which
explains the larger average solving time compared to the other tools. Looking only
at UNSAT problems, the average solving time needed by Princess is around 1s.

Considering the size of generated interpolants (Fig. 8), Princess shows roughly
the same performance as SMTInterpol, and tends to generate somewhat larger
interpolants than OpenSMT. However, OpenSMT computes and outputs inter-
polants in DAG representation, while the interpolants produced by the other tools
are already fully expanded to trees, so that the figures are not fully comparable.

Comparison with CSIsat. The rational interpolation tool CSIsat could be ap-
plied to the benchmarks in Multiplier, Bitadder, Mathsat. Since CSIsat produced a
“wrong” answer (SAT instead of UNSAT) only for a single benchmark in Multiplier,
it can be concluded that most of the reasoning in those benchmark groups is not
integer specific. In contrast, CSIsat reported SAT (over rationals) for almost all
benchmarks in Rings, which are specifically designed to test integer reasoning. We
also observed that CSIsat has difficulties handling large literals such as 264, which
may arise, e.g., in overflow checks, and which occur in the Convert benchmarks.

The experiments show that CSIsat could solve fewer problems than Princess,
OpenSMT, and SMTInterpol, while requiring a similar amount of time and pro-
ducing larger interpolants. We suspect that constraint-based interpolation tends to
generate larger interpolants than proof-based methods on our benchmarks. Since
it was shown that the performance of CSIsat is comparable or better than that
of other standard interpolation procedures for rational arithmetic [1], it seems
that the overhead of reasoning in integer arithmetic (for problems that can be
interpolated even in rational arithmetic) is negligible.

Comparison with quantifier elimination. QE is able to generate a large number of
interpolants in the families Multiplier, Bitadder, Mathsat, and Rings, albeit the gen-
eration is slow and the interpolants are large, on average. We observed that QE
typically performs well (and produces small interpolants) when the left conjunct A
only contains few local symbols, i.e., when few quantifiers need to be eliminated.
With an increasing number of local symbols, the performance of QE quickly de-
grades. In contrast, with proof-based approaches the number of A-local symbols is

24 Angelo Brillout et al.

less relevant for performance or the size of interpolants. A more detailed discussion
of quantifier elimination-based interpolation can be found in [3].

8 Related Work and Concluding Discussions

Interpolation for propositional logic, linear rational arithmetic, and uninterpreted
functions is a well-explored field. In particular, McMillan presents an interpolat-
ing theorem prover for rational arithmetic and uninterpreted functions [15]; an
interpolating SMT solver for the same logic has been developed by Beyer et al. [1]
(see Sect. 7 for a comparison). Rybalchenko et al. [21] introduce an interpolation
procedure for this logic that works without constructing proofs.

Interpolation has also been investigated in several fragments of integer arith-
metic. McMillan considers the logic of difference-bound constraints [16], which is
decidable by reduction to rational arithmetic. As an extension, Cimatti et al. [5]
present an interpolation procedure for the UT VPI fragment of linear integer arith-
metic. Both fragments allow efficient reasoning and interpolation, but are not suffi-
cient to express many typical program constructs, such as integer division. In [10],
separate interpolation procedures for two theories are presented, namely (i) QFPA
restricted to conjunctions of integer linear (dis)equalities and (ii) QFPA restricted
to conjunctions of stride constraints. The combination of both fragments with
integer linear inequalities is, however, not supported.

The first complete interpolation methods (other than by quantifier elimination)
for quantifier-free Presburger arithmetic are [3], of which the present paper is an
extended version, and [13]. The latter proposes an approach based on the Simplex
method to solve a decision problem over the rationals, combined with a branch-
and-cut rule that can be interpolated efficiently. Recently, a new method to extract
interpolants in the presence of ordinary Gomory cuts was presented [9]. Avoiding
the otherwise high complexity of interpolating mixed cuts, this method relies on
an extended language for interpolants; also see Sect. 6.1 for a discussion. The
SMT solver SMTInterpol decides and interpolates problems in linear integer
arithmetic, apparently using an architecture similar to the one in [15]. To the best
of our knowledge, the precise design and calculus of SMTInterpol has not been
documented in publications yet.

Kapur et al. [12] prove that full QFPA is closed under interpolation (as an
instance of a more general result about recursively enumerable theories), but their
proof does not directly give rise to an efficient interpolation procedure. Lynch et
al. [14] define an interpolation procedure for linear rational arithmetic, and extend
it to integer arithmetic by means of Gomory cuts. No interpolating rule is provided
for mixed cuts, however, which means that sometimes formulae are generated
that are not true interpolants because they violate the vocabulary condition (i.e.,
contain symbols that are not common to A and B).

In conclusion, we have presented a sound and complete interpolating sequent cal-
culus for quantifier-free Presburger arithmetic. We have shown that the resulting
interpolation approach is flexible and can be combined with a variety of deci-
sion procedures for full quantifier-free Presburger arithmetic, including the ones
common in modern SMT solvers. The interpolation procedure also guarantees the
chain interpolation property that is important for model checking applications.

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 25

We have implemented the interpolation procedure on top of the Princess theo-
rem prover and demonstrated experimentally that the procedure is competitive
with available interpolation tools.

We are integrating our interpolation procedure into a software model checker
based on lazy abstraction [16]. The model checker uses interpolation to refine the
abstraction and avoids the expensive image computation required by predicate
abstraction. When using our QFPA interpolation procedure, we expect to be able
to verify software with more complex numerical features than other model checkers.

Acknowledgments.We thank Jérôme Leroux, Vijay D’Silva, Georg Weissenbacher,
and the anonymous referees for their comments.

References

1. Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: Interpolation for LA+EUF. In: CAV,
LNCS, vol. 5123, pp. 304–308. Springer (2008)

2. Brillout, A.: Approximating and interpolating theories of arithmetic for software verifica-
tion. Ph.D. thesis, ETH Zürich (2011)

3. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An interpolating sequent calculus for
quantifier-free Presburger arithmetic. In: Proceedings, International Joint Conference on
Automated Reasoning (IJCAR), LNCS, vol. 6173, pp. 384–399. Springer (2010)

4. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT solver. In: TACAS,
LNCS, pp. 150–153 (2010)

5. Cimatti, A., Griggio, A., Sebastiani, R.: Interpolant generation for UTVPI. In: R.A.
Schmidt (ed.) CADE, vol. 5663, pp. 167–182. Springer (2009)

6. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. The Journal
of Symbolic Logic 22(3), 250–268 (1957)

7. Dutertre, B., de Moura, L.: Integrating Simplex with DPLL(T). Tech. Rep. SRI-CSL-06-
01, SRI International (2006)

8. Fitting, M.C.: First-Order Logic and Automated Theorem Proving, 2nd edn. Springer
(1996)

9. Griggio, A., Le, T.T.H., Sebastiani, R.: Efficient interpolant generation in satisfiability
modulo linear integer arithmetic. In: TACAS, vol. 6605, pp. 143–157. Springer (2011)

10. Jain, H., Clarke, E., Grumberg, O.: Efficient interpolation for linear diophantine
(dis)equations and linear modular equations. In: CAV, pp. 254–267. Springer (2008)

11. Kannan, R., Bachem, A.: Polynomial algorithms for computing the Smith and Hermite
normal forms of an integer matrix. SIAM J. Comput. 8(4), 499–507 (1979)

12. Kapur, D., Majumdar, R., Zarba, C.G.: Interpolation for data structures. In: SIGSOFT
’06/FSE-14, pp. 105–116. ACM (2006)

13. Kroening, D., Leroux, J., Rümmer, P.: Interpolating quantifier-free Presburger arithmetic.
In: Proceedings, LPAR, LNCS, vol. 6397, pp. 489–503. Springer (2010)

14. Lynch, C., Tang, Y.: Interpolants for linear arithmetic in SMT. In: ATVA, LNCS, pp.
156–170. Springer (2008)

15. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1) (2005)
16. McMillan, K.L.: Lazy abstraction with interpolants. In: T. Ball, R.B. Jones (eds.) Com-

puter Aided Verification (CAV), LNCS, vol. 4144, pp. 123–136. Springer (2006)
17. Pugh, W.: The Omega test: a fast and practical integer programming algorithm for de-

pendence analysis. Communications of the ACM 8, 102–114 (1992)
18. Rümmer, P.: A sequent calculus for integer arithmetic with counterexample generation.

In: Verification Workshop (VERIFY), CEUR Workshop Proceedings, vol. 259 (2007)
19. Rümmer, P.: Calculi for program incorrectness and arithmetic. Ph.D. thesis, University

of Gothenburg (2008)
20. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arith-

metic. In: Proceedings, LPAR, LNCS, vol. 5330, pp. 274–289. Springer (2008)
21. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation. In: Pro-

ceedings, VMCAI, LNCS, vol. 4349, pp. 346–362. Springer (2007)
22. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)

