
TriCo — Triple Co-Piloting of
Implementation, Specification and Tests

Wolfgang Ahrendt1[0000−0002−5671−2555]

Dilian Gurov2[0000−0002−0074−8786]

Moa Johansson1[0000−0002−1097−8278]

Philipp Rümmer3[0000−0002−2733−7098]

1 Chalmers University of Technology,
{ahrendt, moa.johansson}@chalmers.se

2 KTH Royal Institute of Technology, dilian@kth.se
3 University of Regensburg and Uppsala University, philipp.ruemmer@ur.de

Abstract. This white paper presents the vision of a novel methodology
for developing safety-critical software, which is inspired by late devel-
opments in learning based co-piloting of implementations. The method-
ology, called TriCo, integrates formal methods with learning based ap-
proaches to co-pilot the agile, simultaneous development of three arte-
facts: implementation, specification, and tests. Whenever the user changes
any of these, a TriCo empowered IDE would suggest changes to the other
two artefacts in such a way that the three are kept consistent. The user
has the final word on whether the changes are accepted, rejected, or
modified. In the latter case, consistency will be checked again and re-
established. We discuss the emerging trends which put the community
in a good position to realise this vision, describe the methodology and
workflow, as well as challenges and possible solutions for the realisation
of TriCo.

1 Introduction

In this white paper, we present the vision of a software methodology, called
TriCo (Triple Co-Piloting), which targets in particular, but not exclusively, the
development of safety-critical software, where defects can incur high financial or
reputational costs, or can compromise human safety.

The latest safety standards in the avionics (DO-178C) and automotive (ISO
26262) areas now require or recommend the use of formal methods for ensur-
ing the robustness of safety-critical embedded software, as conventional methods
such as testing alone do not provide the required safety guarantees. However, tra-
ditional formal methods are not a good match for the current state-of-practice.
The threshold to apply formal methods is high, as their application requires sig-
nificant expertise, and formal methods are not well integrated into development
processes. Tackling this challenge, TriCo aims to formulate a new approach to de-
velop robust software cost-efficiently. TriCo builds on the enormous progress that
has recently been made in a number of relevant fields: in automated reasoning



2 W. Ahrendt, D. Gurov, M. Johansson, P. Rümmer

and constraint solving, which have in the last years produced tools that are sig-
nificantly more scalable than the techniques available before; in verification and
model checking, where new algorithms have been found to fully automatically
analyse software programs of substantial complexity; and in machine learning,
which is today able to automatically solve problems that were long thought to
be beyond the reach of computers. Leveraging those advances, TriCo represents
a new co-development paradigm that treats specifications as first-class objects,
to be developed simultaneously with implementations and tests, and proposes
the use of co-piloting to intelligently assist software developers in this process.

In this paper, we outline our vision of how efficient development of robust
software will be conducted in the near future, with the help of novel tools,
acting as the developer’s co-pilot, which integrate recent advances in automated
reasoning, machine learning, and synthesis.

1.1 Triple Co-piloting at a Glance

There are two main reasons why the adoption of traditional formal methods in
industrial practice has been slow. Firstly, formal specifications are in general
difficult to create and maintain, and require a considerable level of expertise
and training. Secondly, formal techniques do not always scale well with the size
of software, and their application often lacks the necessary efficiency. Both of
these issues are particularly problematic when formal methods are applied a
posteriori, i.e., after the software code has been produced. On the other hand,
developing good specifications first, to only then start coding, has not either
been a workable approach in software development practice.

The TriCo methodology aims to address these problems, using a novel method
for co-development of code, tests and specifications, by means of a software de-
velopment co-pilot integrated seamlessly into development environments. The
purpose of the co-pilot is to enable the developer to create code, tests and spec-
ifications simultaneously, from the very beginning, and to guide the developer
in this process by suggesting human-understandable modifications in the respec-
tive other artefacts whenever the developer changed one of them, such that the
three are kept consistent. Figure 1 illustrates our approach, which is based on
exact, logic-based techniques, boosted by machine learning. It can be seen as a
generalisation of the well-known correctness-by-construction paradigm, in that
all three types of artefacts are treated as citizens with equal rights when it comes
to them being correct.

Recent advances in AI, and in particular in machine learning (ML), have
made the latter a powerful tool to efficiently solve problems in many areas,
such as computer vision, pattern recognition, and natural language processing,
which have hitherto been solved only inefficiently with algorithmic approaches.
The TriCo methodology aims to use ML to enhance exact techniques in a num-
ber of ways, for example, to enable the co-pilot to learn suggesting human-
understandable specifications based on test-cases and implementations. ML will
be used to train the co-pilot, before and during its use, learning when and what
suggestions to give to the developer in different situations.



TriCo — Triple Co-Piloting of Implementation, Specification and Tests 3

Implementation Specification

Tests

Conformance

Co
nf

or
m

an
ce Conform

ance

Adaptation

Ad
ap

ta
tio

n Adaptation

Fig. 1. Co-development and co-piloting of implementations, tests, and specifications.

The method should be supported by IDEs, providing automated co-piloting
to the developer, facilitating the agile development and maintenance of the
implementation-tests-specification triangle. The system would constantly anal-
yse formal consistency of the three artefacts when one of them has changed, and
provide suggestions for adaptation of the other two, to be accepted or rejected by
the developer. The system should feed the user decisions into a common training
set, thereby achieving a federated learning of appropriate artefact adaptions. By
combining the complementary strengths of machine learning on the one hand
and logic based automated reasoning on the other, the TriCo methodology forms
a novel, seamlessly integrated method for developing robust software efficiently.

2 Emerging Trends in Software Technology

Our approach of co-development of code, tests and specifications in the spirit of
co-piloting is well suited for encompassing many emerging technologies, and thus
support human developers in different ways. We note that our methodology does
not aim at automated decisions about any of the artefacts. Rather, it aims at
automated suggestions for adapting the artefacts to each other. The suggestions
are triggered by the user, who changed one of the artefacts, and they have to
be accepted (and possibly modified) by the user, to bring all three artefacts in
sync again in a way which matches the intentions. In the following, we review
emerging trends which this endeavour can build on.

2.1 Code synthesis through large language models

With the current development of large language models with billions of param-
eters, trained on open source code from, e.g., GitHub, code synthesis co-pilots



4 W. Ahrendt, D. Gurov, M. Johansson, P. Rümmer

seem set to soon becoming an everyday tool for programmer’s integrated in
common IDEs [10,6,11]. The user may type in some code or a description in
natural language, and the system automatically provides a suggestion. Other
tasks include translating between different programming languages, or suggest-
ing fixes for broken code, given a compiler error message. In many cases the
code is perfectly sensible, but it should be noted that no guarantees whatsoever
can be given about actual correctness, and sometimes nothing useful will be
generated at all. Furthermore, the large language models make no claims about
understanding how the generated programs function, but they are very good at
picking up common patterns seen in the vast training data, making them suitable
for generation of boiler-plate code for frequently used programming languages
and applications, such as web programming. The authors of Google’s recent
PaLM system summarise some of the limitations and risks [11], p.26:

“When deploying LM-based systems within software development, a key
risk is that the generated code could be incorrect, or introduce subtle
bugs.[...] Developers should review suggested code before adding it to a
program, but they may not always find subtle bugs in suggested code.[...]
Functional correctness is only one aspect of source code quality; LM-
produced suggestions must also be readable, robust, fast, and secure”

The authors further point out that there is little work on software testing and
verification methods for systems including code synthesis from large language
models.

Our proposed methodology can cover also software development including
this kind of “untrusted” synthesis components. Suggestions from, e.g., a large
language model are harnessed in a larger environment which complements it
with test-cases and specifications. The latter may be written by a human, but
an alternative is to allow automated generation of (suggested) test cases and
specifications, which we survey next.

2.2 Automated Test Case Generation

For TriCo, a particularly relevant automated test generation technique is property-
based random test-case generation, which manifests itself in the QuickCheck
family of tools [16]. It features strong requirements coverage and very effective
test-case minimisation. Here, the programmer writes down specific properties
that are desired by the system, commonly as quite compact statements. One
can envision a user typing in such properties for testing, which perhaps may also
be used by the kind of code synthesis system we describe above as cues. The
synthesised code can then be tested automatically. Symbolic execution-based
techniques [24,3], on the other hand, feature instead high code coverage (e.g.,
MC/DC, full feasible branch coverage). Further, there are advances in enhanc-
ing coverage-directed test generation by machine-learning techniques [17]. Our
proposed co-piloting methodology is meant to exploit automated test generation
of a variety of styles, to exploit the complementary strengths of the techniques.



TriCo — Triple Co-Piloting of Implementation, Specification and Tests 5

However, as far as the test oracle is concerned, the user shall have the final word
on whether or not an oracle matches the intended behaviour.

2.3 Specification Synthesis

Formal specifications serve several purposes. They provide a compact and precise
description of the functions and properties of software, and can be used as input
to formal verification systems for proving correctness, or to test-case generation
systems. Our co-pilot will need to perform specification synthesis to produce
suggestions of specification updates when code has been changed, or to provide
a compact description of code that has been synthesised. Even without passing
it to a verification system, it can be helpful for the user to spot an error in
generated code if complemented by a suggested specification of its functionality.
Does the code do what the specification says? If not, which of them matches the
intention?

Due to the effort required to write specifications by hand, specification syn-
thesis has been recognised as a problem of increasing importance, and received
attention in several communities. Specifications in the form of contracts can,
for instance, be computed using the classical weakest-precondition calculus,
symbolic execution [15], counterexample-guided abstraction refinement [23], or
through model checking [5]. The concept of Maximal Specification Inference [4]
generalises the inference of weakest pre-conditions and considers the specifica-
tions of multiple functions simultaneously. Specifications can also be derived
using dynamic analysis, as for instance in the Daikon tool [12].

Theory exploration [27] is another emerging method. Given a (functional)
program, it invents a concise formal description of the program behaviour as a
set of equational statements. Generation is interleaved with automated testing
or symbolic evaluation [26]. These properties may then be inspected by the
programmer, and passed to a theorem prover to verify that the code satisfies the
statements. Naturally, if given a buggy program, a specification generation tool
will generate a corresponding “buggy” specification. In our co-piloting setting,
the human user will still have the task of checking that the generated specification
is in accordance with the users intentions, but we argue that this task can be
easier than spotting a bug in the source code itself.

2.4 Formal Software Verification

Reasoning about conformance is one of the principal tasks underlying the TriCo
methodology. Any change in the three considered artefacts—implementation,
tests, specification—implies that the three conformance relations have to be
reevaluated, so that possible mismatches are identified and can be corrected.
The conformance Implementation ↔ Specification is known as the formal soft-
ware verification problem, and has been studied for a long time and in a variety
of fields. For us, in particular two styles of verification are relevant, namely de-
ductive verification (e.g., [19,2,7]) in which automated tools are applied to check
fully-annotated programs; and software model checking [18], which attempts to



6 W. Ahrendt, D. Gurov, M. Johansson, P. Rümmer

handle also programs that are only partially annotated in an automated way.
A recent direction of research that combines concepts from deductive verifica-
tion with model checking algorithms are approaches based on Constraint Horn
Clauses [9,13], which form an intermediate verification language in software
model checking, but more generally can provide automation for a wide range
of program logics.

Machine Learning for Verification ML for automatic verification can largely be
split into three different areas: (i) methods that see each verification instance as
a separate learning task, e.g., the task of learning a loop invariant from observed
program behaviour; (ii) methods that see each verification instance as one data
point, which are then used to train a verification system; and (iii) methods for
parameter learning. An overview of (i) is given in the recent tutorial [21]; the ap-
proach has seen increasing adoption over the last years, and uses algorithms like
decision-tree learning, syntax-guided synthesis, or reinforcement learning [25] to
solve verification problems. Approach (ii) has turned out much less successful,
up to this point, given the big gap between the approximate reasoning of sta-
tistical inference and the exact nature of program verification. Approach (iii) is
significantly easier to implement, and is today used, for example, to choose the
right verification back-end for each verification task (e.g., [22]).

3 The TriCo Methodology
The ambition of the TriCo methodology is to take test-driven agile develop-
ment [20] to a higher robustness level. In addition to the developer eagerly writ-
ing unit tests which describe the behaviour for a set of selected input cases,
the methodology advocates that formal specifications covering all inputs and
prestates are co-developed along with tests and implementation. The workflow
is an extension of test-driven development, but gives much stronger robustness
guarantees. The methodology aims in the first place at sequential correctness of
programs, i.e., the absence of errors which already manifest in sequential execu-
tion.

Consider the productive use of redundancy in existing development processes.
Typically, the latter make extensive use of testing to validate software behaviour:
two artefacts, implementations and tests, are written that both describe intended
program behaviour. Unit/regression tests are written early during the process,
and are re-executed and augmented whenever new functionality is introduced, or
defects are corrected. Development maintains the invariant that, at any commit
point, implementations and test cases are consistent, i.e., the implementation
will pass all tests. Inconsistencies between the implementation and the tests
constitute a bug (in the implementation, in the tests, or in both), and today’s
development infrastructure will enforce the immediate correction of such bugs.
It is the process of keeping implementations and tests consistent that leads to
higher quality of both artefacts.

Test cases, however, only describe the behaviour of the implementation on
selected inputs and prestates. Assurance of code behaviour beyond specific test



TriCo — Triple Co-Piloting of Implementation, Specification and Tests 7

cases can only be provided by formal, mathematical methods. Formal specifi-
cations describe the intended behaviour of a program (unit) for all inputs and
prestates in a precise, unambiguous, and machine-readable format. Specifica-
tions can, for instance, include data-consistency invariants of classes and data
structures, loop invariants, procedure contracts, or assumptions and guaran-
tees between caller and callee units. Most formal verification methods require
formal specifications. Unfortunately, formal specifications are hard to produce.
Furthermore, in the way formal methods are used today, their benefits during
the software lifetime are long-term and hard to quantify [14]. As a consequence,
most software projects do not work with formal specifications.

3.1 Envisaged Workflow

The TriCo methodology provides a software development method and the nec-
essary tool support for efficient, agile software development, while achieving a
high level of robustness. Our approach is based on three main principles, as illus-
trated on Figure 1: (a) co-development of three artefacts: implementation, test
cases, and specification, (b) co-piloting of adaptions made necessary by changes
in any of the artefacts, and (c) combining learning- and logic-based methods
to achieve (b). To achieve scalability, the method is compositional w.r.t. code
units, in the sense that each unit gives rise to a separate triple of artefacts, to
be co-developed by the user with help of the co-pilot.

With the three artefacts come three conformance relations:

1. Conformance of an implementation unit and the associated unit test cases
means foremost that the implementation makes the oracle of each test case
pass successfully. But other aspects can also be included into this confor-
mance relation, such as code coverage criteria.

2. Conformance of an implementation unit and its specification, on the other
hand, means that the behaviour of every possible run of the unit’s code satis-
fies the specification. This can be determined by numerous formal verification
methods. In TriCo, the analysis of this conformance shall be provided in an
integrated manner, in the background, without the user having to choose,
install, or learn about the various methods and backend-tools which collab-
oratively solve this task under the hood.

3. Finally, conformance of a unit’s test cases and the corresponding specification
means that the specification is strictly a generalisation of all the unit’s test
cases (each consisting of a concrete input/prestate plus an oracle on the
output/poststate). In turn, this means that each of the test cases can be
understood as a very concrete ‘lemma’ implied by the specification. Also
here, the according analysis methods execute in the background.

A basic principle of the TriCo methodology is that mutual conformance of
implementation, tests, and specification is an invariant that is intact in between
different work passes of code development and maintenance. When the user
changes any one of the three artefacts (blue solid arrow in Fig. 1), this will



8 W. Ahrendt, D. Gurov, M. Johansson, P. Rümmer

typically break the conformance invariant. For instance, a new test case may
not be satisfied by the implementation, and/or require a generalisation of the
specification. Or a change in the implementation may invalidate a property from
the specification, and/or make some test cases fail. To address these arising
inconsistencies, a TriCo empowered IDE shall analyse in the background whether
conformance to any of the other two artefacts is broken. If that is indeed the case,
the system computes an adaption of the affected artefact(s) that re-establishes
mutual conformance. Computing such adaptions is based on a combination of
machine learning with exact, formal methods. The adaption is presented as a
suggestion to the user, who has to accept or reject it (blue dotted arrow in
Fig. 1). Only after the user has accepted a suggested adaption, it will take effect.
It is this very point which makes the method very user-centered. We argue that
this will lead to higher-quality software than automated adaption decisions, in
particular because a mismatch between two artefacts can indicate an error on
either of them, and the user should decide which side meets the intention of the
software unit. Finally, the user’s decisions to accept or reject suggested adaptions
are used to train the learning facilities, which will generate ever better adaption
suggestions over time.

3.2 Use Cases

To be more concrete, let us consider the use case where, starting from mutu-
ally conforming implementation, test cases, and specification, the user changes
the implementation. This may lead to a violation of the specification (among
others), to be detected by formal methods operating in the background. Once a
violation is diagnosed, the co-pilot will suggest an adaption of the specification.
The adaption is produced by the trained machine learning facility, but validated
with exact methods, to be finally accepted or rejected by the user, thereby
training the co-pilot in turn. In case the user decides to reject an adaption of
the specification, numerous proceedings can come into play, such as reverting
the latest change of implementation, or hand-editing the rejected suggestion (to
be re-checked), or letting the co-pilot suggest a finer modification on the latest
implementation.

As a second use case, let us consider a code unit which was developed with
(pure) test driven development, so far without any formal specifications. The
user can then ask the co-pilot to incrementally suggest specifications, obtained
by generalisation from the test cases, against which (if accepted by the user) the
implementation will be verified. As a variation of this use case, a code unit may
be developed from the start with the co-pilot, but by developers initially unfa-
miliar with formal specifications. Continuous generalisation of the incrementally
developed test cases, and the corresponding verification, will make the develop-
ment of formally verified software a side-product of agile test driven development,
thereby offering a smooth learning curve into using the TriCo methodology.

As a third use case, let us consider the integration of legacy code into the
TriCo process. When connecting actively developed code with legacy code, what
is needed most for further analysis are interface specifications of the legacy units.



TriCo — Triple Co-Piloting of Implementation, Specification and Tests 9

TriCo shall support intelligent editing of such interface specifications, empowered
by machine learning. Moreover, the caller-side use of legacy functionality can
be employed to infer contract specifications, and corresponding test cases to
validate the contract specifications. Another approach to the same problem is
to provide data generators, run the legacy code on the generated data, and
generalise the observed output to synthesise specifications, following a theory
exploration approach.

3.3 Envisaged Technology

Achieving the goal of integrated co-piloting of implementation, test cases, and
specification requires a hybrid, highly integrated set of functionalities. For that,
the TriCo methodology envisages to employ, expand on, and combine numerous
techniques, such as machine learning (neural networks, reinforcement learning),
formal software verification, symbolic execution, symbolic debugging, specifica-
tion/contract inference, specification mining, theory exploration, test automa-
tion, automated test case generation, runtime verification, code refactoring, and
combinations thereof.

We envisage a tool chain which provides to users an environment where
they can co-develop, in an agile way, the three aforementioned artefacts with
continuous co-piloting support. The architecture of the tool chain would be such
that the core functionalities are provided in a web-service, paired with a user
side web-interface. The server architecture also enables federated training of the
learning facilities.

4 Research Efforts Required for TriCo

While much of what is presented in this paper is a vision still waiting to be turned
into reality, we believe that the time is right to start a research programme that
will provide the required components for TriCo. This research can build on the
enormous progress that has recently been made in a number of relevant fields:
in automated reasoning and constraint solving, which have in the last years
produced tools that are significantly more scalable than the techniques available
before; in verification and model checking, where new algorithms have been found
to fully automatically analyse software programs of substantial complexity; and
in machine learning, which is today able to automatically solve problems that
were long thought to be beyond the reach of computers. This section discusses
some of the remaining research challenges in the different fields.

Challenge 1: Representation and Transformation of Artefacts

The challenge: Formal methods have to handle the complexity of real-world pro-
gramming and specification languages, e.g., of languages like C, Java, ACSL, or
JML. In TriCo, this complexity is amplified by the multitude of modifications
and transformations taking place between the three different artefacts (Fig. 1):



10 W. Ahrendt, D. Gurov, M. Johansson, P. Rümmer

all three artefacts can be edited by the developer, at any point; all three artefacts
can also be synthesised or adapted by the co-pilot to (re-)establish the confor-
mance relations. Changes computed by the co-pilot must not destroy the cues
the developer depends on (e.g., formatting, naming, or comments), and editing
by the developer must not compromise meta-data maintained by the co-pilot.

A possible solution: This challenge could be addressed by defining a uniform
intermediate language to represent all three artefacts, implementations, speci-
fications, and test cases. This intermediate language is not intended for direct
human editing, but is connected through meta-data to multiple real-world pre-
sentation languages (e.g., C and ACSL). The developer works with the presen-
tation languages, and any changes made are automatically and incrementally
mapped to the intermediate representation. The co-pilot primarily operates on
the intermediate language, and changes on this layer are reflected by carefully
updating the presentation layer.

As one suitable intermediate language, we consider the use of extended ver-
sions of Constraint Horn Clauses (CHC) [9,13]. CHCs have been adopted in
software model checking as a common interface between programming language
front-ends and verification back-ends, since CHCs are general enough to capture
many programming language features (including control structure, procedure
calls, various concurrency models, heap models), provide simple and unambigu-
ous semantics in terms of the SMT-LIB theories [8], and can easily be connected
to various automatic verification approaches.

Challenge 2: Efficient Automatic Conformance Analysis

The challenge: In TriCo, any change in the three artefacts (implementation,
tests, specification, Fig. 1) requires a co-pilot to reevaluate the three conformance
relations, so that possible mismatches are identified and can be corrected. The ex-
isting methods for conformance checking, which are formal software verification,
software testing, and checking specification refinement, are all algorithmically
hard, and often limited in terms of scalability.

A possible solution: Given the existing huge body of research on the differ-
ent kind of conformance checking, no step-changes are to be expected in the
near future, but we believe that the right application and combination of ex-
isting methods can carry TriCo a long way. A co-pilot can be based on (i) a
bespoke combination of static and dynamic methods, utilising their complemen-
tary strengths, so that rapid feedback can be provided to the developer after each
change; (ii) incrementality in checking, which is achieved, e.g., by the caching
of conformance certificates in the form of rich program annotations (e.g., com-
puted loop invariants); and (iii) the use of machine learning to boost checking,
for instance to predict likely cases of conformance violations, or along the lines
described in Section 2.4.



TriCo — Triple Co-Piloting of Implementation, Specification and Tests 11

Challenge 3: Defect Diagnosis and Suggestion of Adaptations

The challenge: At the core of TriCo is the ability to identify and suggest adapta-
tions of any of the artefacts—implementations, specifications, tests—when any
of the other artefacts change. This is largely a new direction of research, since not
all of the six possible combinations of artefacts have been considered in prior
research. Closely related areas include program repair, which can be used to
compute updates of an implementation when the specification is modified, and
model-based diagnosis to explore the space of possible explanations for observed
inconsistencies.

A possible solution: Diagnosis is triggered by conformance violations detected
by the methods from Challenge 2, and aims at inferring plausible explanations
for which part or feature of an artefact is responsible for the non-conformance.
For this, as well as for computing adaptations, a combination of techniques from
different fields is needed: formal methods, to exactly model the relationship be-
tween the artefacts, based on results of conformance checking; constraint solving
and optimisation, which ensure minimality of the provided explanation or adap-
tation, and can be provided through modern techniques from the Satisfiability
Modulo Theories (SMT) field; and machine learning, which is able to rank ex-
planations and adaptations in a way that is consistent with the expectations of
the user.

An important aspect is that techniques should reflect existing software de-
velopment practices: a co-pilot has the purpose of supporting the developer,
not to enforce a coding style the developer is unfamiliar or uncomfortable with.
One line of thought towards this goal is the concept of transformation models,
which are abstract characterisations of typical artefact modifications; covering,
for instance, notions of refactoring, but also other typical steps in code editing.
By learning how transformations of one artefact induce corresponding trans-
formations of the other artefacts, a co-pilot will be able to compute and rank
adaptations in a way that is consistent with developer expectations and habits.
This ambitious goal of the methodology requires research in several directions:
(i) an effective, domain-specific language to express transformation models has
to be defined; (ii) algorithms to mine transformation models from recorded edit-
ing sequences of developers; and (iii) methods for pairing, on-the-fly matching,
and instantiation of transformation models.

5 Turning Vision into Reality

What are the concrete steps to turn the TriCo vision into reality? As a first step
towards implementing a full-fledged co-pilot, we envisage the development of a
TriCo demonstrator in the form of an advanced integrated development envi-
ronment (IDE) that includes the co-piloting functionality proposed in Section 3.
The IDE could for instance be designed as a web application, to be gradually
extended over time. The implementation could proceed as follows:



12 W. Ahrendt, D. Gurov, M. Johansson, P. Rümmer

1. Initially, the IDE would mainly be an editor for implementations, specifi-
cations, and tests. This editor can be built on top of existing JavaScript
frameworks, for instance the CodeMirror system [1]. It can already offer
opt-in functionality to record the editing steps done by a developer, and
automatically collect this data, which can later serve as training data for
machine learning.

2. A second version of the IDE could include conformance checking, and thus
initial support for co-editing all three artefacts.

3. Next, support for diagnosis and adaptation could be added to the co-pilot.
Again, the IDE shall be able to record and collect developer interaction
sequences, so that data becomes available to further improve the co-pilot.

4. Further extensions could include support for collaborative development, the
integration with version control (GitHub), and support for standard contin-
uous integration systems.

All this would lay the ground for plugging in, and closely integrate, a glowing
variety of techniques, reasoning based and learning based, analytic and synthetic,
to keep the three artefacts mutually in sync, in a co-piloting fashion, when the
user evolves any of them.

Co-development and co-piloting have to be constantly evaluated in the light
of the original objectives: to enable efficient production of robust software. Fur-
ther, data has to be produced as input for training the verification and adaptation
methods, using the data collection functionality, and guidelines to be developed
for the integration of the TriCo approach into industrial development practices,
including Agile development [20] in general and, for instance, Scrum [28]. For
evaluation purposes, case studies can be formulated and carried out in different
contexts: with industrial collaborators, covering development tasks that are close
to the industrial practice; and within course projects at universities, providing
a setup in which comparative studies between different development practices
carrying out the same development task are possible. To evaluate efficiency and
robustness, one could monitor the development effort in the projects and assess
the quality of developed implementations and specifications through code review
and independent testing, and by interviews with the developers.

We strongly believe that co-development of implementations, specifications,
and tests is the future of software development. Triple co-piloting is our vision
of how this future can materialise. We now invite the community to join us in
discussing and further developing this vision, and to participate in its realisation.

References
1. Codemirror. https://codemirror.net.
2. W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and M. Ulbrich,

editors. Deductive Software Verification—The KeY Book, volume 10001 of LNCS.
Springer, 2016.

3. W. Ahrendt, C. Gladisch, and M. Herda. Proof-based test case generation. In
Deductive Software Verification—The KeY Book, volume 10001 of LNCS. Springer,
2016.

https://codemirror.net


TriCo — Triple Co-Piloting of Implementation, Specification and Tests 13

4. A. Albarghouthi, I. Dillig, and A. Gurfinkel. Maximal specification synthesis. In
Proceedings of POPL, volume 51. ACM, 2016.

5. A. Alshnakat, D. Gurov, C. Lidström, and P. Rümmer. Constraint-based contract
inference for deductive verification. In Deductive Software Verification: Future
Perspectives - Reflections on the Occasion of 20 Years of KeY, volume 12345 of
LNCS. Springer, 2020.

6. J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang,
C. Cai, M. Terry, Q. Le, and C. Sutton. Program synthesis with large language
models, 2021. arXiv:2108.07732.

7. M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte, and H. Venter.
Specification and verification: the Spec# experience. Commun. ACM, 54(6), 2011.

8. C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.6.
Technical report, Department of Computer Science, The University of Iowa, 2017.
Available at www.SMT-LIB.org.

9. N. Bjørner, A. Gurfinkel, K. L. McMillan, and A. Rybalchenko. Horn clause solvers
for program verification. In Fields of Logic and Computation II - Essays Dedicated
to Yuri Gurevich on the Occasion of His 75th Birthday, volume 9300 of LNCS.
Springer, 2015.

10. M. Chen et al. Evaluating large language models trained on code, arxiv:2107.03374,
2021. arXiv:2107.03374.

11. A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,
H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko,
J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif,
N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari,
P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia,
V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph,
A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S.
Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou,
X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern,
D. Eck, J. Dean, S. Petrov, and N. Fiedel. PaLM: Scaling language modeling with
pathways. 2022. arXiv:2204.02311.

12. M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao. The Daikon system for dynamic detection of likely invariants. Sci.
Comput. Program., 69(1-3):35–45, 2007.

13. G. Fedyukovich and P. Rümmer. Competition report: CHC-COMP-21. In H. Hojjat
and B. Kafle, editors, Proceedings 8th Workshop on Horn Clauses for Verification
and Synthesis, HCVS@ETAPS 2021, Virtual, 28th March 2021, volume 344 of
EPTCS, pages 91–108, 2021.

14. M. Gleirscher, S. Foster, and J. Woodcock. New opportunities for integrated formal
methods. ACM Computing Surveys (CSUR), 52(6), 2019.

15. M. Gordon and H. Collavizza. Forward with Hoare. In Reflections on the Work of
C. A. R. Hoare., pages 101–121. Springer, 2010.

16. J. Hughes. Software testing with QuickCheck. In Central European Functional
Programming School: Third Summer School, CEFP 2009, Revised Selected Lectures.
Springer, 2010.

17. C. Ioannides and K. I. Eder. Coverage-directed test generation automated by
machine learning – a review. ACM Trans. Des. Autom. Electron. Syst., 17(1), jan
2012.

18. R. Jhala and R. Majumdar. Software model checking. ACM Comput. Surv., 41(4),
oct 2009.



14 W. Ahrendt, D. Gurov, M. Johansson, P. Rümmer

19. N. Kosmatov, V. Prevosto, and J. Signoles. A lesson on proof of programs with
Frama-C. Invited tutorial paper. In M. Veanes and L. Viganò, editors, Tests and
Proofs. Springer, 2013.

20. R. C. Martin. Agile software development: principles, patterns, and practices.
Prentice Hall PTR, 2003.

21. M. Parthasarathy and P. Garg. Machine-learning based methods for synthesizing
invariants. Tutorial at CAV 2015.

22. C. Richter, E. Hüllermeier, M. Jakobs, and H. Wehrheim. Algorithm selection for
software validation based on graph kernels. Autom. Softw. Eng., 27(1):153–186,
2020.

23. M. N. Seghir and D. Kroening. Counterexample-guided precondition inference. In
Programming Languages and Systems - 22nd European Symposium on Program-
ming, ESOP 2013, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings,
pages 451–471, 2013.

24. K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit testing engine for c. In
Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ESEC/FSE-13, page 263–272, New York, NY, USA, 2005. Association
for Computing Machinery.

25. X. Si, H. Dai, M. Raghothaman, M. Naik, and L. Song. Learning loop invariants
for program verification. In Advances in Neural Information Processing Systems
31, NeurIPS 2018, Montréal, Canada, 2018. https://proceedings.neurips.cc/
paper/2018.

26. E. Singher and S. Itzhaky. Theory exploration powered by deductive synthesis. In
Computer Aided Verification. Springer, 2021.

27. N. Smallbone, M. Johannson, K. Claessen, and M. Algehed. Quick specifications
for the busy programmer. Journal of Functional Programming, 27, 2017.

28. H. Takeuchi and I. Nonaka. The new new product development game. Harvard
Business Review, 1986.

https://proceedings.neurips.cc/paper/2018
https://proceedings.neurips.cc/paper/2018

	TriCo — Triple Co-Piloting of Implementation, Specification and Tests

