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Abstract We consider the problem of automatically and efficiently computing
models of constraints, in the presence of complex background theories such as
floating-point arithmetic. Constructing models, or proving that a constraint is un-
satisfiable, has various applications, for instance for automatic generation of test
inputs. It is well-known that a näıve encoding of constraints into simpler theories
(for instance, bit-vectors or propositional logic) often leads to a drastic increase
in size, or that it is unsatisfactory in terms of the resulting space and runtime de-
mands. We define a framework for systematic application of approximations in or-
der to improve performance. Our method is more general than previous techniques
in the sense that approximations that are neither under- nor over-approximations
can be used, and it shows promising performance on practically relevant bench-
mark problems.

1 Introduction

The construction of satisfying assignments (or, more generally, models) for a set
of given constraints, or showing that no such assignments exist, is one of the most
central problems in automated reasoning. Although the problem has been ad-
dressed extensively in research fields including constraint programming and more
recently in satisfiability modulo theories (SMT), there are still constraint lan-
guages and background theories where effective model construction is challenging.
Such theories are, in particular, arithmetic domains such as bit-vectors, nonlin-
ear real arithmetic (or real-closed fields), and floating-point arithmetic (FPA);
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even when decidable, the high computational complexity of such languages turns
model construction into a bottleneck in applications such as bounded model check-
ing, white-box test case generation, analysis of hybrid systems, and mathematical
reasoning in general.

We follow a recent line of research that applies the concept of abstraction
to model construction (e.g., [3,5,10,19]). In this setting, constraints are usually
simplified prior to solving to obtain over- or under-approximations, or some com-
bination thereof (mixed abstractions); experiments have shown that this concept
can speed up model construction significantly. However, previous work in this area
suffers from the fact that the definition of good over- and under-approximations
is difficult and limiting, for instance in the context of floating-point arithmetic.
We argue that the focus on over- and under-approximations is neither necessary
nor optimal: as a more flexible alternative, we present a general algorithm that is
able to incorporate any form of approximation in the solving process, including
approximations that cannot naturally be represented as a combination of over- and
under-approximations. Our method preserves essential properties like soundness,
completeness, and termination.

For the purpose of empirical evaluation, we instantiate our procedure for the
domain of floating-point arithmetic, and present an evaluation based on an imple-
mentation thereof within the Z3 theorem prover [22]. Experiments on practically
relevant and satisfiable floating-point benchmark problems (SMT-LIB QF FP)
show an average speed-up of roughly one order of magnitude when compared to
the näıve bit-blasting-based default decision procedure that comes with Z3. Fur-
ther experiments show that the performance of our prototype implementation is
also competitive with other state-of-the-art solvers for floating-point arithmetic.

While mainly intended for model generation, our method can also show un-
satisfiability of constraints, and thanks to a new technique for refinement of un-
satisfiable (sub-)problems, only a small performance penalty is incurred on them.
However, we believe that further research is necessary to improve reasoning for un-
satisfiable problems, even though our current prototype implementation exhibits
satisfactory performance on unsatisfiable benchmark problems.

The contributions of this article are as follows:

1. a general method for model construction that can make use of arbitrary ap-
proximations of constraints,

2. an instantiation of our method for the theory of floating-point arithmetic,
3. refinement techniques for approximate models and unsatisfiable problems, as

well as
4. an experimental evaluation of a prototype implementation of all proposed

methods.

1.1 Motivating Example

To illustrate our motivation and the resulting techniques, consider a heavily sim-
plified software proportional-integral (PI) controller operating on floating-point
data, as shown in Alg. 1.

All variables in this example range over double precision (64-bit) IEEE-754
floating-point numbers. The controller is initialized with the set point value and



Algorithm 1: Software PI controller

1 const double Kp=1.0;
2 const double Ki =0.25;
3 const double s e t p o i n t =20.0 ;
4 double i n t e g r a l = 0 . 0 ;
5 double e r r o r ;
6
7 f o r ( i n t i = 0 ; i < N; ++i ) {
8 i n = r e a d i n p u t ( ) ;
9 e r r o r = s e t p o i n t − i n ;

10 i n t e g r a l = i n t e g r a l + e r r o r ;
11 out = Kp∗ e r r o r + Ki∗ i n t e g r a l ;
12 s e t o u t p u t ( out ) ;
13 }

the constants Kp and Ki, it reads input values (in; e.g., from a sensor) via func-
tion read input, and it computes output values (out) which control the system
through the function set output. The controller computes the control values in
such a way, that the input values are as close to set point as possible. For simplic-
ity, we assume that there is a bounded number N of control iterations.

Suppose we want to prove that if the input values stay within the range 18.0 ≤
in ≤ 22.0, then the control values will stay within a range that we consider safe,
for instance −3.0 ≤ out ≤ +3.0. This property is true of our controller only for
two control iterations, but it can be violated within three.

A bounded model checking approach to this problem produces a series of formu-
las, one for each N and it then checks the satisfiability of those formulas (usually in
sequence). Today, most (precise) solvers for floating-point formulas implement this
satisfiability check by means of bit-blasting, i.e., using a bit-precise encoding of FPA
semantics as a propositional formula. Due to the complexity of FPA, the resulting
formulas grow very quickly, and tend to overwhelm even the fastest SAT/SMT
solvers. For example, an unrolling of the PI controller example to N=100 steps
cannot be solved by Z3 within an hour of runtime (see Tbl. 1).

Bound N 1 2 5 10 20 30 40 50 100

Clauses (×103) 96 230 630 1298 2633 3969 5304 6639 13316

Variables (×103) 12 28 78 161 326 492 657 822 1649

Z3 time (s) 1 5 19 27 288 1190 1962 3297 >1h

Table 1: Behavior of Z3 on the PI controller example.

However, this example has the property that the full range of floating-point
numbers is not required to find suitable program inputs; essentially a prover just
needs to find a sequence of inputs such that the errors add up to a sum that
is greater than 3.0. There is no need to consider numbers with large magnitude,
or a large number of significand digits/bits. We postulate that this situation is
typical for many practical applications. Since bit-precise treatment of floating-



point numbers is clearly wasteful in this setting, we might consider some of the
following alternatives:

– all operations in the program can be evaluated in real instead of floating-point
arithmetic. For problems with only linear operations, such as the program at
hand, this enables the use of highly efficient solvers based on linear program-
ming (LP). However, the straight-forward encoding into LP would ignore the
possibility of overflows or rounding errors. A bounded model checking approach
based thereupon will therefore be neither sound nor complete. Further, little
is gained in terms of computational complexity for nonlinear constraints.

– operations can be evaluated in fixed-point arithmetic. Again, this encoding
does not preserve the overflow- and rounding-semantics of FPA, but it enables
solving using more efficient bit-vector encodings and solvers.

– operations can be evaluated in FPA with reduced precision: we can use
single precision numbers, or other formats even smaller than that.

Strictly speaking, soundness and completeness are lost in all three cases, since the
precise nature of overflows and rounding in FPA is ignored. All three methods
enable, however, the efficient computation of approximate models, which are likely
to be “close” to genuine double-precision FPA models, for some notion of close-
ness. In this paper, we define a general framework for model construction with
approximations. In order to establish soundness and completeness of our model
construction algorithm, the framework contains a model reconstruction phase, in
which approximate models are translated into precise models. This reconstruction
may fail, in which case approximation refinement is used to iteratively increase
the precision of approximate models.

2 Related Work

Related work to our contribution falls into two categories: general abstraction
and approximation frameworks, and specific decision procedures for floating-point
arithmetic.

The concept of abstraction (and approximation) is central to software engi-
neering and program verification, and it is increasingly employed in general math-
ematical reasoning and in decision procedures. Usually, and in contrast to our
work, only under- and over-approximations are considered, i.e., the formula that
is solved either implies or is implied by an approximate formula (or abstraction).
Counter-example guided abstraction refinement [7] is a general concept that is ap-
plied in many verification tools and decision procedures (e.g., even on a relatively
low level like in QBF [18] or in model based quantifier instantiation for SMT [13]).

A general framework for abstracting decision procedures is Abstract CDCL,
recently introduced by D’Silva et al. [10], which was also instantiated with great
success for FPA [11,2]. This approach relies on the definition of suitable abstract
domains for constraint propagation and learning. In our experimental evaluation,
we compare to the FPA decision procedure in MathSAT, which is an instance of
ACDCL. ACDCL can also be integrated with our framework, e.g., to solve approx-
imations. A further framework for abstraction in theorem proving was proposed by
Giunchiglia et al. [14]. Again, this work focuses on under- and over-approximations,
not on other forms of approximation.



Specific instantiations of abstraction schemes in related areas include the bit-
vector abstractions by Bryant et al. [5] and Brummayer and Biere [4], as well
as the (mixed) floating-point abstractions by Brillout et al. [3]. Van Khanh and
Ogawa present over- and under-approximations for solving polynomials over re-
als [19]. Gao et al. [12] present a δ-complete decision procedure for nonlinear reals,
considering over-approximations of constraints by means of δ-weakening.

There is a long history of formalization and analysis of FPA concerns using
proof assistants, among others in Coq by Melquiond [21] and in HOL Light by
Harrison [15]. Coq has also been integrated with a dedicated floating-point prover
called Gappa by Boldo et al. [1], which is based on interval reasoning and forward
error propagation to determine bounds on arithmetic expressions in programs [9].
The ASTRÉE static analyzer [8] features abstract interpretation-based analyses
for FPA overflow and division-by-zero problems in ANSI-C programs. The SMT
solvers MathSAT [6], Z3 [22], and Sonolar [20], all feature (bit-precise) conversions
from FPA to bit-vector constraints.

3 Preliminaries

We establish a formal basis in the context of multi-sorted first-order logic (e.g., [16]).
A signature Σ = (S, P, F, α) consists of a set of sort symbols S, a set of sorted
predicate symbols P , a set of sorted function symbols F , and a sort mapping α.
Each predicate and function symbol g ∈ P ∪ F is assigned a (k + 1)-tuple α(g) of
argument sorts (with k ≥ 0), where k is the arity of the symbol. Constants are con-
sidered to be nullary function symbols. Also, the Boolean sort symbol is included
in the set of sorts, i.e. sb ∈ S. We assume a countably infinite set X of variables,
and (by abuse of notation) overload α to assign sorts also to variables. Given a
multi-sorted signature Σ and variables X, the notions of well-sorted terms, atoms,
literals, clauses, and formulas are defined as usual. The function fv(φ) denotes the
set of free variables in a formula φ. In what follows, we assume that all formulas
are quantifier-free.

A Σ-structure m = (U, I) with underlying universe U and interpretation
function I maps each sort s ∈ S to a non-empty set I(s) ⊆ U , each predicate
p ∈ P of sorts (s1, s2, . . . , sk) to a relation I(p) ⊆ I(s1) × I(s2) × . . . × I(sk),
and each function f ∈ F of sort (s1, s2, . . . , sk, sk+1) to a set-theoretic function
I(f) : I(s1) × I(s2) × . . . × I(sk) → I(sk+1). A variable assignment β under a
Σ-structure m maps each variable x ∈ X to an element β(x) ∈ I(α(x)). The val-
uation function valm,β(·) is defined for terms and formulas in the usual way. A
theory T is a pair (Σ,M) of a multi-sorted signature Σ and a class of Σ-structures
M . A formula φ is T -satisfiable if there is a structure m ∈ M and a variable as-
signment β such that φ evaluates to true; we denote this by m,β |=T φ, and call
β a T -solution of φ.

4 The Approximation Framework

We describe a model construction procedure for formulas φ over a set of variablesX
in a theory T . The goal is to obtain a T -solution of φ. The main idea underlying
our method is to replace the theory T with an approximation theory T̂ , which



enables explicit control over the precision used to evaluate theory operations. In
our method, the T -problem φ is first lifted to a T̂ -problem φ̂, then solved in the
theory T̂ , and finally, if a solution is found, it is translated back to a T -solution.
The benefit of using the theory T̂ is that different levels of approximation may be
used during computation. We will use the theory of floating-point arithmetic as a
running example for instantiation of this framework.

φ|=Tm,β

φ̂

lifting

m̂, β̂ |=T̂

model reconstruction

Fig. 1: Commutativity graph showing how the model m,β can be obtained via
approximation theory T̂ .

4.1 Approximation Theories

In order to formalize the approach of finding models by means of approximation,
we construct the approximation theory T̂ = (Σ̂, M̂) from T , by extending all
function and predicate symbols with a new argument representing the precision
to which the function or predicate should be computed.

Syntax. We introduce a new sort for the precision sp, and a new predicate symbol
� which orders precision values. The signature Σ̂ = (Ŝ, P̂ , F̂ , α̂) is obtained from
Σ in the following manner: Ŝ = S ∪{sp}; the set of predicate symbols is extended
with the new predicate symbol �, P̂ = P ∪ {�}; the set of function symbols is
extended with the new constant ω, representing the maximum precision value,
F̂ = F ∪ {ω}; the sort function α̂ is defined as

α̂(g) =


(sp, s1, s2, . . . , sn) if g ∈ P ∪ F and α(g) = (s1, s2, . . . , sn)

(sp, sp, sb) if g = �
(sp) if g = ω

α(g) otherwise

Note that constant symbols become unary function symbols instead.

Semantics. Σ̂-structures (Û , Î) enrich the original Σ-structures by providing ap-
proximate versions of function and predicate symbols. The resulting operations
may be under- or over-approximations, but they may also be approximations that
are close to the original operations’ semantics by some other metric. The degree of
approximation is controlled with the help of the precision argument. We assume
that the set M̂ of Σ̂-structures satisfies the following properties:



– for every structure (Û , Î) ∈ M̂ , the relation Î(�) is a partial order on Î(sp)
that satisfies the ascending chain condition (every ascending chain is finite),
and that has the unique greatest element Î(ω) ∈ Î(sp);

– for every structure (U, I) ∈M , an approximation structure (Û , Î) ∈ M̂ extend-
ing (U, I) exists, together with an embedding h : U 7→ Û such that, for every
sort s ∈ S, function f ∈ F , and predicate p ∈ P :

h(I(s)) ⊆ Î(s)

(a1, . . . , an) ∈ I(p) ⇐⇒ (Î(ω), h(a1), . . . , h(an)) ∈ Î(p) (ai ∈ I(α(p)i))

h(I(f)(a1, . . . , an)) = Î(f)(Î(ω), h(a1), . . . , h(an)) (ai ∈ I(α(f)i))

– vice versa; for every approximation structure (Û , Î) ∈ M̂ there is a struc-
ture (U, I) ∈M that is similarly embedded in (Û , Î).

These properties ensure that every T -model has a corresponding T̂ -model, i.e.
that no models are lost. Interpretations of function and predicate symbols under Î
with maximal precision are isomorphic to their original interpretation under I. The
interpretation Î should interpret the function and predicate symbols in such a way
that their interpretations for a given value of the precision argument approximate
the interpretations of the corresponding function and predicate symbols under I.
And finally, that it is possible to translate every T̂ -model into some T -model, using
a mapping h−1 that reverses the embedding h (not necessarily its mathematical
inverse, since h is rarely going to be bijective, but an inverse in spirit).

4.2 Application to Floating-Point Arithmetic

The IEEE-754 standard for floating-point numbers [17] defines floating-point num-
bers, their representation in bit-vectors, and the corresponding operations. Most
crucially, bit-vectors of various sizes are used to represent the significand and the
exponent of numbers; e.g., double-precision floating-point numbers are represented
by using 11 bits for the exponent and 53 bits for the significand. denote the subset
of reals that can be represented as floating-point numbers s significand bits and
e exponent bits by FPs,e:

FPs,e =

(−1)sgn · sig · 2exp−s |
sgn ∈ {0, 1},
sig ∈ {0, . . . , 2s − 1},
exp ∈ {−2e−1 + 3, . . . , 2e−1}

 ∪
{

NaN , +∞,
−∞, −0

}

The set consists of: 1. normalized numbers (in practice encoded with an implicit
leading bit set to 1), 2. subnormal numbers, and 3. special values. The definition
does not discriminate between normal and subnormal numbers and any value with
multiple representations loses the multiplicity in the set. Since the reals do not
contain a signed zero value it is included explicitly with the other special values.

Proposition 1 (Inclusion property) FP domains grow monotonically when
increasing e or s, i.e., FPs′,e′ ⊆ FPs,e provided that s′ ≤ s and e′ ≤ e; we call
this the inclusion property.



For fixed values e of exponent bits and s of significand bits, FPA can be mod-
eled as a theory in our sense. We denote this theory by TF s,e, and write sf
for the sort of FP numbers, and sr for the sort of rounding modes. The various
FP operations are represented as functions and predicates of the theory; for in-
stance, floating-point addition turns into the function symbol ⊕ with signature
α(⊕) = (sr, sf , sf , sf ). Additional constants of sort sr are provided for the five
rounding modes in the IEEE-754 standard, namely

– RoundTowardZero,
– RoundNearestTiesToEven,
– RoundNearestTiesToAway ,
– RoundTowardPositive, and
– RoundTowardNegative.

The semantics of TF s,e is defined by a single structure (Us,e, Is,e) with Is,e(sf ) =
FPs,e. The semantics of floating-point operations is derived from the correspond-
ing operations over reals, except in cases where the resulting values are not repre-
sentable as floating-point numbers; then rounding takes place in accordance with
the chosen rounding mode.

FPA approximation theories. We construct the approximation theory T̂F s,e, by
introducing the precision sort sp, predicate symbol �, and a constant symbol
ω. The function and predicate symbols have their signature changed to include
the precision argument. For example, the signature of the floating-point addition
symbol ⊕ is α̂(⊕) = (sp, sr, sf , sf , sf ) in the approximation theory.

The semantics of the approximation theory T̂F s,e is again defined through a
singleton set M̂s,e = {(Ûs,e, Îs,e)} of structures. The universe of the approximation
theory extends the original universe with a set of integers which are the domain
of the precision sort, i.e., Ûs,e = Us,e ∪ {0, 1, . . . , n}, Îs,e(sp) = {0, 1, . . . , n}, and
Îs,e(ω) = n. The embedding h is the identity mapping. In order to use precision
to regulate the semantics of FP operations, we introduce the notation (s, e) ↓ p to
denote the number of bits in reduced precision p ∈ {0, 1, . . . , n}; more specifically
we define

(s, e) ↓ p =
(

3 +
⌈
(s− 3) · p

n

⌉
, 3 +

⌈
(e− 3) · p

n

⌉)
,

which scales the floating-point sort, however the smallest sort it scales to is FP3,3

since smaller well-defined domains contain mostly special values. The approximate
semantics of functions is derived from the FP semantics for the reduced bit-widths.
For example, ⊕ in approximation theory T̂F s,e is defined as

Îs,e(⊕)(p, r, a, b) = casts,e(I(s,e)↓p(⊕)(r, cast(s,e)↓p(a), cast(s,e)↓p(b)))

This definition uses the function casts,e to map any FP number to a number with
s significand bits and e exponent bits, i.e., casts,e(a) ∈ FPs,e for any a ∈ FPs′,e′ .
If s ≥ s′ and e ≥ e′ then the casting function does not change the value of the
argument, only its sort, i.e., casts,e(a) = a. Otherwise, the cast function performs
rounding (if necessary) using a fixed rounding mode. Note that many occurrences
of casts,e can be eliminated in practice, if they only concern intermediate results.
For example, consider ⊕(c1,⊗(c2, a1, a2), a3). The result of ⊗(c2, a1, a2) can be
directly cast to precision c1 without the need of casting up to full precision when
calculating the value of the expression.



4.3 Lifting Constraints to Approximate Constraints

In order to solve a constraint φ using an approximation theory T̂ , it is first neces-
sary to lift φ to an extended constraint φ̂ that includes explicit variables cl for the
precision of each operation. This is done by means of a simple traversal of φ, using
a recursive function L that receives a formula (or term) φ and a position l ∈ N∗
as argument. For every position l, the symbol cl denotes a fresh variable of the
precision sort α(cl) = sp and we define

L(l,¬φ) = ¬L(l.1, φ)

L(l, φ ◦ ψ) = L(l.1, φ) ◦ L(l.2, ψ) (◦ ∈ {∨,∧})
L(l, x) = x (x ∈ X)

L(l, g(t1, . . . , tn)) = g(cl, L(l.1, t1), . . . , L(l.n, tn)) (g ∈ F ∪ P )

Then we obtain the lifted formula φ̂ = L(ε, φ), where ε denotes an empty word.
Since T -structures can be embedded into T̂ -structures, it is clear that no models
are lost as a result of lifting:

Lemma 1 (Completeness) If a T -constraint φ is T -satisfiable, then the lifted
constraint φ̂ = L(ε, φ) is T̂ -satisfiable as well.

In practice, the lifting can make use of expression sharing and cache lifted terms
to avoid introduction of unnecessary precision variables or redundant sub-terms.

An approximate model that chooses full precision for all operations induces a
model for the original constraint:

Lemma 2 (Fully precise operations) Let m̂ = (Û , Î) be a T̂ -structure, and β̂
a variable assignment. If m̂, β̂ |=T̂ φ̂ for an approximate constraint φ̂ = L(ε, φ),
then m,β |=T φ, provided that: 1. there is a T -structure m embedded in m̂ via h,
and a variable assignment β such that h(β(x)) = β̂(x) for all variables x ∈ fv(φ),
and 2. β̂(cl) = Î(ω) for all precision variables cl introduced by L.

The fully precise case however, is not the only case in which an approximate model
is easily translated to a precise model. For instance, approximate operations might
still yield a precise result for some arguments. Examples of this are constraints in
floating-point arithmetic with small integer or fixed-point arithmetic solutions.

A variation of Lemma 2 is obtained by not requiring that all operations are
at maximum precision, but that each operation is at a sufficiently high precision,
such that it evaluates to the same value as the maximally precise operation in all
relevant cases:

Lemma 3 (Locally precise operations) Suppose m̂, β̂ |=T̂ φ̂ for an approx-

imate constraint φ̂ = L(ε, φ), such that: 1. there is a T -structure m embedded
in m̂ via h and a variable assignment β such that h(β(x)) = β̂(x) for all vari-
ables x ∈ fv(φ), and 2. for every sub-expression g(cl, t̄) with g ∈ F ∪ P , it holds
that valm̂,β̂(g(cl, t̄)) = valm̂,β̂(g(ω, t̄)). Then m,β |=T φ.

Applied to FPA. Because floating-point numbers of varying bit-widths enjoy the
inclusion property, it is easy to see that an approximate model m̂, β̂ for an approx-
imate φ̂ which, during model evaluation (validation) does not trigger any rounding
decisions, must equally entail the original, precise constraint φ.



Theorem 1 (Exact evaluation) Let m̂ be the unique element of the singleton
set of structures M̂s,e of theory ˆTF s,e. Suppose m̂, β̂ |=T̂F s,e

φ̂ for an approximate
constraint φ̂ = L(ε, φ), such that: 1. m is the T -structure of theory TFs,e embedded
in m̂ via h (which is the identity function) and β a variable assignment such that
h(β(x)) = β̂(x) for all variables x ∈ fv(φ), and 2. it is possible to evaluate all
operations φ̂ exactly, i.e. without rounding. Then m,β |=TFs,e

φ.

Proof By Lemma 3 and the inclusion property. ut

Example 1 Lifting the constraints. Consider again the PI controller example given
in Section 1.1. Suppose that the program loop is unrolled N times and translated
into single static assignment form, resulting in a set of equations that can be
checked for satisfiability. Variables corresponding to the values of program vari-
ables at the end of each loop iteration are used as inputs for the next iteration.
For the first loop iteration, this leads to the following constraint:

...

∧ integral0 = 0.0 (initialization)

∧ 18.0 ≤ in0 ≤ 22.0 (assumption)

∧ error1 = set point 	rm in0 (line 5)

∧ integral1 = integral0 ⊕rm error1 (line 6)

∧ out1 = (Kp �rm error1)⊕rm (Ki �rm integral1) (line 7)

...

∧ (out1 < −3.0 ∨ out1 > 3.0 ∨ · · · ∨ outN > 3.0) (violation)

where Kp, Ki , and set point are constant (set to the values given in the PI pro-
gram, in equations not shown here), and the constant rm stores the rounding mode.
The negated output condition encodes the fact that we search for a violation of
the property in any loop iteration.

After lifting those constraints, we obtain the following formula:

...

∧ integral0 = 0.0 (initialization)

∧ 18.0 ≤p0 in0 ≤p1 22.0 (assumption)

∧ error1 = set point 	p2rm in0 (line 5)

∧ integral1 = integral0 ⊕p3rm error1 (line 6)

∧ out1 = (Kp �p4rm error1)⊕p6rm (Ki �p5rm integral1) (line 7)

...

∧ (out1 <
p7 −3.0 ∨ out1 >

p8 3.0 ∨ · · · ) (violation)

The variables p0, p1, . . . , p8, . . . are freshly introduced precision variables of the
sort sp. We use the notation ⊕prm to express that ⊕ is an operator with four
arguments: the precision p2, the rounding mode rm, and the two numbers to be
added; and similarly for the other operators.



Approximate
Model Construction

Model-guided
Approximation

Refinement

Proof -guided
Approximation

Refinement

Precise Model
Reconstruction

Model Proof

Sat Unsat

failed

Reconstruction No
refinement
possible

Fig. 2: The model construction process.

5 Model Refinement Scheme

In the following sections, we will use the approximation framework to successively
construct more and more precise solutions of given constraints, until eventually
either a genuine solution is found, or the constraints are determined to be unsatis-
fiable. We fix a partially ordered precision domain (Dp,�p) (where, as before, �p
satisfies the ascending chain condition, and has a greatest element), and consider
approximation structures (Û , Î) such that Î(sp) = Dp and Î(�) = �p.

Given a lifted constraint φ̂ = L(ε, φ), let Xp ⊆ X be the set of precision
variables introduced by the function L. A precision assignment γ : Xp → Dp maps
the precision variables to precision values. The We write γ �p γ′ if for all variables
cl ∈ Xp we have γ(cl) �p γ′(cl). Precision assignments are partially ordered by �p.
There is a greatest precision assignment γω, which maps each precision variable
to ω. The precision assignment can be obtained from the variable assignment β̂
after the solving, but due to its role in controlling the search through the space of
approximations (by fixing its values before solving) we separate it from β.

The proposed procedure is outlined in Fig. 2. First, an initial precision assign-
ment γ is chosen, depending on the theory T . In Approximate Model Construction,
the procedure tries to find (m̂, β̂), a model of the approximated constraint φ̂. If
(m̂, β̂) is found, Precise Model Reconstruction tries to translate it to (m,β), a
model of the original constraint φ. If this succeeds, the procedure stops and re-
turns the model. Otherwise, Model-guided Approximation Refinement uses (m,β)
and (m̂, β̂) to increase the precision assignment γ. If Approximate Model Construc-
tion cannot find any model (m̂, β̂), then Proof-guided Approximation Refinement
decides how to modify the precision assignment γ. If the precision assignment is
maximal and cannot be further increased, the procedure has determined unsat-
isfiability. In the following sections we provide additional details for each of the
components of our procedure.

General properties. Since �p has the ascending chain property, our procedure is
guaranteed to terminate and either produce a genuine precise model, or detect
unsatisfiability of the constraints. The potential benefits of this approach are that
it often takes less time to solve multiple smaller (approximate) problems than to
solve the full problem straight away. The candidate models provide useful hints



for the following iterations. The downside is that it might be necessary to solve
the whole problem eventually anyway, which can be the case for unsatisfiable
problems. Whether that is the case depends on the strategy used in the proof-
guided approximation refinement, e.g., maximizing the precision of terms involved
in an unsatisfiable core can cut down the overhead significantly compared to even
increase in precision of all terms. Therefore, our approach is definitely useful when
the goal is to obtain a model, e.g., when searching for counter-examples, but it
can also perform well on unsatisfiable formulas, e.g., when a small unsatisfiable
core can be discovered quickly.

5.1 Approximate Model Construction

Once a precision assignment γ has been fixed, existing solvers for the operations
in the approximation theory can be used to construct a model m̂ and a variable
assignment β̂ s.t. m̂, β̂ |=T̂ φ̂. It is necessary that β̂ and γ agree on Xp. As an op-
timization, the model search can be formulated in various theory-dependent ways
that provide a heuristic benefit to Precise Model Reconstruction. For example, the
search can prefer models with small values of some error criterion, or to attempt
to find models that are similar to models found in earlier iterations. This can be
done by encoding the problem as an optimization query, assuming one can encode
the desired criteria as part of the formula.

Applied to FPA. Since our FP approximations are again formulated using FP
semantics, any solver for FPA can be used for Approximate Model Construction.
In our implementation, the lifted constraints φ̂ of ˆTF s,e are encoded in bit-vector
arithmetic, and then bit-blasted and solved using a SAT solver. The encoding of a
particular function or predicate symbol uses the precision argument to determine
the floating-point domain of the interpretation. This kind of approximation reduces
the size of the encoding of each operation, and results in smaller problems handed
over to the SAT solver. An example of theory-specific optimization of the model
search is to prefer models where no rounding occurs during evaluation.

5.2 Reconstructing Precise Models

Alg. 2 provides a high-level sketch for the model reconstruction phase. This al-
gorithm attempts to produce a model (m,β) for the original formula φ from an
approximate model (m̂, β̂) obtained by solving φ̂. Since we consider arbitrary ap-
proximations (which might be neither over- nor under-), this translation is non-
trivial; for instance, approximate and precise operations might exhibit different
rounding behavior. In practice, it might still be possible to ‘patch’ approximate
models that are close to real models, avoiding further refinement iterations.

Note that by definition it is possible to embed a T -structure m in m̂. It is
retrieved, together with the embedding h, by extract Tstructure in Alg. 2. The
structure m and h will be used to evaluate φ using values from β̂. The function
extract asserted literals determines a set lits of literals in φ̂ that are true
under (m̂, β̂), such that the conjunction

∧
lits implies φ̂. For instance, if φ̂ is



Algorithm 2: Model reconstruction

1 β := ∅;
2 (m,h) := extract Tstructure(m̂);

3 lits := extract asserted literals(m̂, β̂, φ̂);
4 for l ∈ lits do

5 (m,β) := extend model(l, β, h, β̂, m̂) ;
6 end

7 complete(β, β̂);
8 return (m,β);

in CNF, one literal per clause can be selected that is true under (m̂, β̂). Any
pair (m,β) that satisfies the literals in lits will be a T -model of φ.

The procedure then iterates over lits, and successively constructs a valuation β :
X → U such that (m,β) satisfies all selected literals, and therefore is a model of φ
(extend model). During this loop, we assume that β is a partial valuation defined
only for some of the variables in X. We use the notation β ↑ h to lift β from m to
m̂, setting all precision variables to greatest precision; formally defined as

(β ↑ h)(x) =

{
Î(ω) if x ∈ Xp
h(β(x)) otherwise .

The precise implementation of extend model is theory-specific. In general, the
function first attempts to evaluate a literal l as valm̂,β↑h(l). If this fails, the valu-
ation β has to be extended, for instance by including values β̂(x) for variables x
not yet assigned in β.

After all literals have been successfully asserted, β may be incomplete, so we
complete it (either randomly or by mapping value assignments from β̂) and return
the model (m,β). Note that, if all the asserted literals already have maximum
precision assigned then, by Lemma 2, model reconstruction cannot fail.

Applied to FPA. The function extract Tstructure is trivial for our FPA approx-
imations, since m and m̂ coincide for the sort sf of FP numbers. Further, by
approximating FPA using smaller domains of FP numbers, all of which are sub-
sets of the original domain, reconstruction of models is easy in some cases and
boils down to padding the obtained values with zero bits. The more difficult cases
concern literals with rounding in approximate FP semantics, since a significant er-
ror emerges when the literal is re-interpreted using higher-precision FP numbers.
A useful optimization is special treatment of equalities x = t in which one side
is a variable x not assigned in β, and all right-hand side variables are assigned.
In this case, the choice β(x) := valm̂,β↑h(t) will satisfy the equation. Use of this
heuristic partly mitigates the negative impact of rounding in approximate FP se-
mantics, since the errors originating in the (m̂, β̂) will not be present in (m,β).
The heuristic is not specific to the floating-point theory, and can be carried over
to other theories as well.

Example 2 — Model reconstruction. In order to illustrate how precise model re-
construction works, recall the formula obtained in Example 1. We fix the number
of PI controller loop iterations to N = 1, but for reasons of presentation slightly



Variable Defining term β̂(x) β(x)

Kp 1.25 1.25 1.25
Ki 0.125 0.125 0.125
set point 3.0 3.0 3.0
in0 4.0 4.0
error1 set point 	rm in0 1.0 1.0
integral1 integral init ⊕rm error1 1.0 1.0
auxa Kp �rm error1 1.25 1.25
auxb Ki �rm error1 0.125 0.125
out1 auxa ⊕rm auxb 1.25 1.375

Table 2: Model reconstruction from FP3,3 to FP53,11

change the values of the constants to Ki = 0.125, Kp = 1.25, and set point = 3.0.
Suppose further that the rounding mode is set to RoundTowardZero, and that the
property to be checked is the following: if 2.0 ≤ ino ≤ 4.0 then −1.0 ≤ out1 ≤ 1.0.
Approximate model construction is performed with the precision assignment γ that
maps all precision variables p0, p1, . . . , p8 to 0, i.e., all computations are performed
in the smallest floating-point domain FP3,3.

The columns in Tbl. 2 represent, respectively, the variables in the formula, the
terms those variables are assigned, their value in the model of the approximation
β̂ and their value in the reconstructed model β. The variables in the table are
topologically sorted, i.e., their order corresponds to the order of computation in
the program, which allows propagation of the rounding error through the formula
by interpreting equality as assignment when possible. Before proceeding to model
reconstruction, the reader should note that evaluation under the given model β̂
occurs without rounding, except for the value of out1, almost meeting the condi-
tions of Lemma 3 and Theorem 1. The exact value of out1 cannot be represented
in FP3,3 because 1.375 = 1.011 · 20 which requires 4 significant bits. Since there
are only 3 significant bits available, the value is rounded according to the rounding
mode rm (bold in Tbl. 2). The given model indeed violates the desired property
under I3,3. The procedure constructs the model β, by evaluating the expressions
using the interpretation function I53,11. Initially, there are no values in β, so it is
populated with values of variables that depend only on constants, cast up to the
sort FP53,11. Next it proceeds to variables whose value depends on other variables.
Since the order is topological, when there are no cycles (like in this example) all
the values needed for evaluation are already available in β. The missing values
in β are computed by reevaluating the terms assigned to each variable using val-
ues of variables already in β. Since all the variables except out1 are exact (in the
sense that no rounding occurred), then by Lemma 3, their values in β and β̂ are
(numerically) equal. In the case of out1, however, there is a discrepancy between
the two values. As there are no cyclic dependencies we can use the more precise
value obtained using I53,11. In general, the constructed model β has to be checked
against the constraints, because reconstruction is not guaranteed to succeed. In
this example however, the reconstructed β is indeed a satisfying assignment for
the formula in question.



5.3 Approximation Refinement

The overall goal of the refinement scheme outlined in Fig. 2 is to find a model
of the original constraints using a series of approximations defined by precision
assignments γ. We usually want γ to be as small as possible in the partial order
of precision assignments, since approximations with lower precision can be solved
more efficiently. During refinement, the precision assignment is adjusted so that
the approximation of the problem in the next iteration is closer to full semantics.
Intuitively, this increase in precision should be kept as small as possible, but as
large as necessary. Note that two different refinement procedures are required,
depending on whether an approximation is satisfiable or not. We refer to these
procedures as Model- and Proof-guided Approximation Refinement, respectively.

5.3.1 Model-guided Approximation Refinement

If a model (m̂, β̂) of φ̂ is obtained together with a reconstructed model (m,β) that
does not satisfy φ, we use the procedure described in Alg. 3 for adjusting γ. Since
the model reconstruction failed, there are literals in φ̂ which are critical for (m̂, β̂),
in the sense that they are satisfied by (m̂, β̂) and required to satisfy φ̂, but are not
satisfied by (m,β). Such literals can be identified through evaluation with both
(m̂, β̂) and (m,β) (as part of Alg. 3 via extract critical literals), and can then
be traversed, evaluating each sub-term under both structures. If a term g(cl, t̄) is
assigned different values in the two models, it witnesses discrepancies between
precise and approximate semantics; in this case, an error is computed using the
error function, mapping to some suitably defined error domain (e.g., the real
numbers R for errors represented numerically). The computed errors are then
used to select those operations whose precision argument cl should be assigned a
higher value.

Depending on refinement criteria, the rank terms function can be implemented
in different ways. For example, terms can be ordered according to the absolute error
which was calculated earlier; if there are too many terms to refine, only a certain
number of them will be selected for refinement. An example of a more complex
criterion follows:

Error-based selection aims at refining the terms introducing the greatest impre-
cision first. The absolute error of an expression is determined by the errors of its
sub-terms, and the error introduced by approximation of the operation itself. By
calculating the ratio between output and input error, refinement tries to select
those operations that cause the biggest increase in error. If we assume that theory
T is some numerical theory (i.e., it can be mapped to reals in a straightforward
manner), then we can define the error function (in Alg. 3) as absolute differ-
ence between its arguments. Then ∆(cl) represents the absolute error of the term
g(cl, t̄). This allows us to define the relative error δ(cl) of the term g(cl, t̄) as

δ(cl) =
∆(cl)

|valm̂,β↑h(g(ω, t̄))| .

Similar measures can be defined for non-numeric theories.
Since a term can have multiple sub-terms, we calculate the average relative

input error; alternatively, minimum or maximum input errors could be used. We



Algorithm 3: Model-guided Approximation Refinement

1 lits := extract critical literals(m̂, β̂, β, φ̂);
2 for l ∈ lits do
3 for g(cl, t̄) ∈ ordered subterms(l) do
4 if valm̂,β̂(g(cl, t̄)) 6= valm̂,β↑h(g(ω, t̄)) then

5 ∆(cl) := error(valm̂,β̂(g(cl, t̄)), valm̂,β↑h(g(ω, t̄));

6 end

7 end

8 end
9 chosenTerms := rank terms(∆);

10 γ := refine(γ, chosenTerms);

obtain a function characterizing the increase in error caused by an operation by
defining

errInc(cl) =
δ(cl)

1 + 1
kΣ

k
i=1δ(cl.i)

,

where g(cl, t̄) represents the term being ranked. The function rank terms then
selects terms g(cl, t̄) with maximum error increase errInc(cl).

Applied to FPA. The only difference to the general case is that we define relative
error δ(cl) to be +∞ if a special value (±∞, NaN) from (m̂, β̂) turns into a normal
value under (m,β). Our rank terms function ignores terms which have an infinite
average relative error of sub-terms. The refinement strategy will prioritize the
terms which introduce the largest error, but in the case of special values it will
refine the first imprecise terms that are encountered (in bottom up evaluation),
because once the special values occur as input error to a term we have no way
to estimate its actual error. After ranking the terms using the described criteria,
rank terms returns the top 30% highest ranked terms. The precision of chosen
terms is increased by a constant value.

5.3.2 Proof-guided Approximation Refinement

When no approximate model can be found, some theory solvers may still provide
valuable information why the problem could not be satisfied; for instance, proofs
of unsatisfiability or unsatisfiable cores. While it may be (computationally) hard
to determine which variables absolutely need to be refined in this case (and by
how much), in many cases a loose estimate is easy to compute. For instance, a
simple solution is to increase the precision of all variables appearing in the literals
of an unsatisfiable core.

Given an unsatisfiable formula φ in conjunctive normal form (CNF), any un-
satisfiable formula ψ that is a conjunction of a subset of clauses in φ is called an
unsatisfiable core. If a core ψ has no proper subformula that is unsatisfiable, it
is said to be a minimal unsatisfiable core. Given an unsatisfiable formula ψ any
formula φ that contains ψ is also unsatisfiable, since ψ is an unsatisfiable core of φ
in that case. Generalizing this observation to our approximation theory T̂ we get
the following lemma:



Algorithm 4: Proof-guided Approximation Refinement

1 ψ := extract unsat core(φ̂, γ);
2 if ∀x ∈ X ∩ vars(ψ) : γ(x) = ω then
3 return UNSAT;
4 else if φ ∈ seen cores then
5 γ′ := refine everything(φ, γ);
6 return γ′;

7 else if ∃(m,β) : m,β, γω |=T̂F ψ then
8 seen cores := seen cores ∪ {ψ};
9 γ′ := refine everything(φ, γ);

10 return γ′;

11 else
12 return UNSAT
13 end

Lemma 4 If ψ is the unsatisfiable core of the lifted formula φ̂ under precision
assignment γ and all precision variables occurring in ψ have maximal precision,
i.e., γ(x) = ω for all x ∈ X ∩ vars(ψ), then formula φ is unsatisfiable.

The proof-guided refinement is shown in Alg. 4. Lemma 4 provides a cheap
stopping condition for proof-guided refinement. If the found core is at full precision
(i.e., was obtained under the exact semantics), then regardless of precision of
other constraints the original formula φ is guaranteed to be unsatisfiable. However,
this is rarely the case (a number of refinement steps is necessary for precision
variables to reach value ω). Ideally the procedure would get a minimal core ψ and
it would be considerably smaller than the original constraint φ. In that case, a
satisfiability check of ψ with all the terms at full precision (i.e., ω) is likely to be
easier than a satisfiability check of φ. In the case the ψ is an unsatisfiable core
of φ, this is discovered by solving a considerably smaller formula. If ψ is not an
unsatisfiable core of φ, then its discovery is due to encoding at small precision, and
once encoded at full precision, the search space is going to be expanded enough
that the satisfiability check of ψ is likely to be quick.

In the case that ψ at full precision is an unsatisfiable core of φ, proof-guided
refinement returns UNSAT (by Lemma 4). Otherwise, we store the formula ψ in
seen cores, to be able to skip the satisfiability check if we encounter it (or any
of its subsets) in future iterations. All the precision variables are refined, since no
useful information is hidden in the core.

If the approximation theory uses a domain with the inclusion property and
multiple iterations yield unsatisfiable approximations of the formula φ then the
same solution space is explored repeatedly. Subsequent unsatisfiable iterations
are undesirable due to the fact that every previous call is subsumed by the latest
one, increasing the solving time unnecessarily. In the case when the approximation
theory is FPA, this can be easily avoided by introducing blocking clauses. Between
any two iterations, at least one variable had its precision increased, which means
that after bit-blasting its encoding will contain additional variables. Since the
domain satisfies the inclusion property, that means that all the newly introduced
variables implicitly had value false in the previous iterations. If the approximation
of the previous iteration was unsatisfiable, a single clause can be added to prevent
revisiting that subspace. The blocking clause expresses that at least one of the
newly introduced variables has to be true (i.e., non-zero).



Example of blocking clauses. Consider the following unsatisfiable formula:

x > y ∧ x/y < 1

Suppose that in the previous iteration x and y were approximated with fixed-point
numbers with m = 3 integral and f = 3 fractional bits and that the approximation
was unsatisfiable. After refinement, the next iteration will use m = 5 and f = 5
bits. Below the alignment of the two encodings by the decimal point is shown:

m2m1m0.f0f1f2

m4m3m2m1m0.f0f1f2f3f4

where mi denotes integral bits and fi fractional bits, for i ∈ {0, 1, 2, 3, 4, 5}. In the
previous iteration, the newly added bits f4, f3,m3,m4 implicitly had the value
false (zero). Since the previous satisfiability check returned UNSAT, we can safely
exclude those value combinations from the current search. In this example the
blocking clause that should be added is

xf4 ∨ xf3 ∨ xm3 ∨ xm4 ∨ yf4 ∨ yf3 ∨ ym3 ∨ ym4 .

It evaluates to false when all the newly introduced bits have the values they im-
plicitly had in the previous iteration, preventing further exploration of that part of
the search subspace. This technique can be applied to any approximation theory
with a domain that exhibits the inclusion property.

6 Experimental Evaluation

To assess the efficacy of our method, we present results of an experimental eval-
uation obtained through an implementation of the approximation using smaller
floating-point numbers (the ‘Smallfloat’ approximation) . We implemented this ap-
proach as a custom tactic [23] within the Z3 theorem prover [22]. All experiments
were performed on Intel Xeon 2.5 GHz machines with a time limit of 1200 sec and
a memory limit of 2 GB. The symbols T/O and M/O indicate that the time or the
memory limit were exceeded.

Implementation details. For the sake of reproducibility of our experiments, we
note that our implementation starts with an initial precision mapping γ that lim-
its the precision of all floating-point operations to s = 3 significand and e = 3
exponent bits. Upon refinement, operations receive an increase in precision that
represents 20% of the width of the full precision. We do not currently implement
any sophisticated proof-guided approximation refinement, but our prototype does
feature core-based refinement as described in Sec. 5.3.2 and Alg. 4.
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Fig. 3: Comparisons of our method with the bit-blasting-based decision procedure
in Z3.

Evaluation. Our benchmarks are taken from a recent evaluation of the ACDCL-
based MathSAT, by Brain et al. [2]. This benchmark set contains 214 benchmarks,
both satisfiable and unsatisfiable ones. The benchmarks originate from verification
problems of C programs performing numerical computations, where ranges and
error bounds of variables and expressions are verified; other benchmarks are ran-
domly generated systems of inequalities over bounded floating-point variables. We
evaluate two versions of our implementation of Smallfloat approximation, one with
a simple proof-guided refinement denoted Smallfloat (no cores) and the other fea-
turing core-based proof-guided refinement denoted Smallfloat. We compare against
Z3 [22] and MathSAT [6].

The results we obtain are briefly summarized in Tbl. 3, which shows that
our method solves more (satisfiable and unsatisfiable) instances than the ordinary
bit-blasting-based decision procedure in Z3. Our method solves roughly the same
number of satisfiable and unsatisfiable problems as the default procedure based on
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Fig. 4: Comparison of our approximation method with the bit-blasting-based
decision procedure in MathSAT.
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Fig. 5: Comparison of our approximation method with the ACDCL-based decision
procedure in MathSAT.

bit-blasting in MathSAT, and can handle significantly more satisfiable problems
(but fewer unsatisfiable ones) than the ACDCL-based procedure in MathSAT.
Few benchmarks are solved by only one solver and they are solved by the best
performing solver in their respective category.

Fig. 3–5 provides more detailed results, which show that on satisfiable formulas,
our approach (with core-based refinement) is about one order of magnitude faster
than Z3, and close to one order of magnitude faster than the default method in
MathSAT. In comparison to the ACDCL procedure in MathSAT, the picture is less
clear (Fig. 5): while our approximation solves a number of satisfiable problems that
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Z3 (Default) - 14 15 59 29
MathSAT (Default) 56 - 18 64 52
MathSAT (ACDCL) 73 71 - 75 74
Smallfloat (no cores) 0 5 12 - 2
Smallfloat 35 18 12 62 -

Table 4: Comparison of solver performance on unsatisfiable benchmarks; each
entry indicates the number of benchmarks which the approach in the row solves
faster than the approach in the column.

are hard for MathSAT, it requires more time than MathSAT on other problems.
In addition, the ACDCL procedure outperforms all other methods on unsatisfiable
problems.

To evaluate the performance of the proof-guided approximation refinement us-
ing unsatisfiable cores, we the compare all techniques on the unsatisfiable subset
of the benchmarks. Tbl. 4 indicates the numbers of benchmarks on which one ap-
proach (the row) performs better (solves vs did not solve, or solves faster) than
another approach (the column). Both versions of MathSAT perform much bet-
ter than the other solvers, which is expected. Of particular interest are the two
versions of Smallfloat approximation, since they show the impact of core-based
refinement on solving. We can see that Smallfloat, featuring core-based refine-
ment, solves 62 benchmarks faster than Smallfloat (no cores), while it is slower on
only two instances. This indicates that core-based refinement offers a substantial
improvement over the basic proof-guided refinement. Furthermore, by comparing
Smallfloat approximation to Z3 (Default), which is the underlying procedure used
by both versions of Smallfloat, we can see that it is faster on 37 instances, whereas
Smallfloat (no cores) did not outperform Z3 (Default) on any of the benchmarks.
We can conclude that, at least on this benchmark set, the core based refinement
offers significant improvement to performance of the approximation framework.
It not only improves runtime performance on almost all the benchmarks, it also
bridges the gap in performance that is incurred by the approximation framework
on more than half of the solved benchmarks.

Overall, it can be observed that our approximation method leads to signif-
icant improvements in solver performance, especially where satisfiable formulas
are concerned. Our method exhibits complementary performance to the ACDCL
procedure in MathSAT; one of the aspects to be investigated in future work is
a possible combination of the two methods, using an ACDCL solver to solve the
constraints obtained through approximation with our procedure.



7 Conclusion

We present a general method for efficient model construction through the use
of approximations. By computing a model of a formula interpreted in suitably
approximated semantics, followed by reconstruction of a genuine model in the
original semantics, scalability of existing decision procedures is improved for com-
plex background theories. Our method uses a refinement procedure to increase the
precision of the approximation on demand. Finally, we show that an instantiation
of our framework for floating-point arithmetic shows promising results in practice
and often outperforms state-of-the-art solvers.

While our prototype exhibits satisfactory performance on unsatisfiable prob-
lems, we believe that more work is needed in this area, and that further speed-
ups are possible. Furthermore, other background theories need to be investigated,
and custom approximation schemes for them be defined. It is also possible to
solve approximations with different precision assignments or background theories
in parallel, and to use the refinement information from multiple models (or proofs)
simultaneously. Increases in precision may then be adjusted based on differences
in precision between models, or depending on the runtime required to solve each
of the approximations.
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mous referees for insightful comments.
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A Additional Experimental Results

The following scatter plots provide additional experimental results, comparing the
performance of the ordinary bit-blasting-based decision procedure for FPA in Z3
(without approximation) with the two procedures in MathSAT.
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Fig. 6: MathSAT (ACDCL) vs Z3 Default.
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Fig. 7: Comparison of bit-blasting-based decision procedures.


