
JayHorn: A Java Model Checker
(Competition Contribution)

Temesghen Kahsai1, Philipp Rümmer2, and Martin Schäf3

1 The University of Iowa
2 Uppsala University
3 SRI International

Abstract. JayHorn is a model checker for verifying sequential Java pro-
grams annotated with assertions expressing safety conditions. JayHorn
uses the Soot library to read Java bytecode and translate it to the Jimple
three-address format, then converts the Jimple code in several stages to a
set of constrained Horn clauses, and solves the Horn clauses using solvers
like SPACER and Eldarica. JayHorn uses a novel, invariant-based repre-
sentation of heap data-structures, and is therefore particularly useful
for analyzing programs with unbounded data-structures and unbounded
run-time. JayHorn is open source and distributed under MIT license.4

1 The JayHorn Approach

JayHorn is a model checker for verifying the absence of assertion violations in
sequential Java programs by automatically inferring program annotations that
are sufficient to witness program safety. Annotations are quantifier-free formulas
in first-order logic modulo relevant theories like LIA. The choice of annotations
is inspired by refinement types [1] and liquid types [7], and consists of:

– for each method m, a pre-condition pre_m defining conditions under which
the method can be invoked, and a post-condition post_m stating the effect of
the method in terms of the method parameters, the method result, possible
exceptions, and certain ghost variables encoding the state of the heap;

– for each control location l, a state invariant loc_l describing the possible
values of local variables that are in scope;

– for each class C, an instance invariant inv_C describing possible values of
object fields and the dynamic object type.

The sufficiency of annotations is characterized by a set of constrained Horn
constraints expressing that state invariants in a method body are ensured by the
method pre-condition and preserved by all statements in the method body, that
methods establish their post-conditions, and that updating the fields of an object
preserves the instance invariant inv_C; more details are provided in [4]. Given the
complete set of conditions on the annotations, the actual annotation inference
can be carried out with the help of off-the-shelf Horn solvers, like SPACER [5],
which uses a variant of PDR/IC3, and Eldarica [3], which uses CEGAR.

4 https://github.com/jayhorn/jayhorn

https://github.com/jayhorn/jayhorn


2 Temesghen Kahsai, Philipp Rümmer, and Martin Schäf

Exception 
Removal 

De-
virtualization 

Simplification + 
Propagation 

Horn Clause 
Generation 

… 

CHC Solver 

Transformation 
validated with Randoop 

SPACER Heap 
Encoding 

API Modelling 

Method 
Inlining 

By
te

-c
od

e 

Fig. 1. Architectural overview of JayHorn.

The representation of heap data-structures using instance invariants in gen-
eral over-approximates the program behavior, since instance invariants have to
hold for the possible states of all objects of some class (as well as all elements of
encoded arrays), at any point during program execution, and they cannot refer
to local variables or to fields of other objects. The encoding (and JayHorn) is
therefore incomplete, and it is easy to construct correct Java programs that can-
not be verified using any choice of annotations [4]. To prevent incorrect answers,
JayHorn applies a counterexample validation step whenever the generated Horn
clauses are found to be unsatisfiable (see Section 2).

2 Architecture of JayHorn (Fig. 1)

Program transformations: In its default configuration, JayHorn takes Java byte-
code as input and checks if Java assert can be violated. JayHorn accepts any
input that is supported by the Soot framework [8]: Java class files, Jar archives,
or Android apk. For code that is not annotated with assert statements, Jay-
Horn also provides an option to guard possible NullPointerExceptions, Array-
IndexOutOfBoundsExceptions, and ClassCastExceptions with assertions.

Soot is used to translate Java bytecode to the simplified Jimple three-address
format, followed by a set of transformations to further simplify a program, among
them elimination of exception handling and implicit exceptional control-flow;
replacement of switch statements by if statements; and de-virtualization of
method calls in the input program. We can test the correctness (or soundness) of
these steps by comparing input/output behavior of the original and transformed
code. Since this step is crucial for the soundness of the overall system, we employ
Randoop [6] to automate this test.

On the simplified input program, JayHorn performs one abstraction step to
eliminate arrays, again implemented as a bytecode transformation in Soot. Ar-
rays in Java are objects, so there are a few subtleties that makes it harder to
handle them. For example, access to the length field of an array is not a regular



JayHorn: A Java Model Checker 3

field access but a special bytecode instruction. To simplify the later generation
of Horn clauses, we transform arrays into real objects, and introduce a get and
put method to access the array elements.

The next step is the replacement of all heap accesses with push/pull instruc-
tions that copy all fields of an object in a single step to/from local variables [4],
preparing the ground for the later representation of heap using invariants. The
placement of push/pull is optimized to use as few statements as possible, this
way reducing the size of generated constraints, and minimizing the effect of later
over-approximations.

Horn clause generation: The transformed simplified Java program is then en-
coded as a set of constrained Horn clauses, using uninterpreted predicates to
represent the annotations from Section 1. The encoding is mostly standard, and
follows the rules given in [2]. The push/pull instructions are replaced with as-
sertions and assumptions of the corresponding instance invariant inv_C [4].

In order to mitigate incompleteness due to the instance invariants, JayHorn
implements number of refinements of the basic encoding, extending the set of
programs that can be captured using instance invariants. Flow-sensitive instance
invariants rely on a separate static analysis to determine which pushes a pull

instruction can read from, and can this way distinguish different object states.
Vector references enrich references with additional information about an object,
for instance the dynamic type, the allocation site, or values of immutable fields.

Counterexample validation: Since the encoding of programs using instance in-
variants over-approximates program behavior, there is a possibility of spurious
assertion violations. JayHorn therefore implements a separate counterexample
validation step with a precise, but bounded representation of heap (i.e., an under-
approximate program encoding). This step is applied when the encoding with
instance invariants leads to an inconclusive result. If neither over-approximate
nor under-approximate encoding are able to infer a conclusive result, JayHorn
reports UNKNOWN as overall verification result.

3 Weaknesses and Strengths

Weaknesses: The development of JayHorn is ongoing, and at this point several
key Java features are not fully supported yet, including (i) strings; (ii) enums;
(iii) bounded integer data-types; (iv) floating-point data-types; (v) reflection
and dynamic loading; (vi) concurrency. The JayHorn model of the Java API is
rudimentary, so that JayHorn assumes arbitrary behavior for most API functions.
Some parts of JayHorn also need more optimization to reduce the run-time of the
tool, in particular some of the program transformation steps. The Horn encoding
could be optimized to use fewer relation symbols with smaller arity.

Strengths: Due to way heap is encoded, JayHorn is particularly suitable for the
analysis of relatively shallow properties of programs with unbounded iteration,



4 Temesghen Kahsai, Philipp Rümmer, and Martin Schäf

unbounded recursion, or unbounded heap data-structures; examples illustrating
the capabilities of JayHorn are given in [4].

SV-COMP 2019: The mentioned features make JayHorn a relatively bad match
for the Java benchmarks used in SV-COMP 2019, which are predominantly
regression tests checking the correct handling of language features and of the
Java string API. A large fraction of the benchmarks (the MinePump family) relies
on correct handling of enums, and could therefore not be solved by JayHorn. Only
a few of the SV-COMP benchmarks contain unboundedness in the form of loops,
recursion, or heap data-structures.

JayHorn gave a wrong answer for two benchmarks in the competition. The
program UnsatAddition02 was incorrectly classified as correct (true), since Jay-
Horn assumes unbounded integers. synchronized was incorrectly reported to
be incorrect (false) due to an incomplete model of the synchronized construct,
JayHorn does not support concurrency yet.

The results in the competition are overall promising, but do not represent a
typical application scenario of JayHorn. The JayHorn team plans to address this
for 2020 by submitting further benchmarks to SV-COMP, and by completing
Java support of JayHorn, in particular fully supporting strings.

4 Download and Use of JayHorn

JayHorn is fully implemented in Java, and uses the libraries mentioned in Fig. 1.
The version submitted to SV-COMP 2019 is JayHorn version 0.6.5 In the config-
uration used in the competition,6 JayHorn only applies the Horn solver Eldarica.
Since Eldarica is itself implemented in Scala, this means that no native code was
used in JayHorn in the competition. The Benchexec tool info module is called
jayhorn.py and the benchmark definition file jayhorn.xml. JayHorn competes
in the Java category.

To run JayHorn 0.6, it is enough to download the Jar file jayhorn.jar from
the link below, and run it on bytecode:

wget https://raw.githubusercontent.com/jayhorn/jayhorn/devel/ \

jayhorn/src/test/resources/horn-encoding/classics/UnsatMccarthy91.java

wget https://github.com/jayhorn/jayhorn/releases/download/v0.6/jayhorn.jar

mkdir tmp

javac UnsatMccarthy91.java -d tmp

java -Xss40m -Xmx3000m -jar jayhorn.jar -inline-size 10 -solution -j tmp

Acknowledgement. We are grateful for contributions to JayHorn by Daniel Di-
etsch, Rody Kersten, Huascar Sanchez, and Valentin Wüstholz. The development
of JayHorn is funded in parts by AFRL contract No. FA8750-15-C-0010, NSF
Award No. 1422705, by the Swedish Research Council (VR) under grants 2014-
5484 and 2018-4727, and by the Swedish Foundation for Strategic Research (SSF)
under the project WebSec (Ref. RIT17-0011).

5 https://github.com/jayhorn/jayhorn/releases/tag/v0.6
6 Java options -Xss40m -Xmx3000m, JayHorn options -inline-size 10

https://github.com/jayhorn/jayhorn/releases/tag/v0.6


JayHorn: A Java Model Checker 5

References

1. T. Freeman and F. Pfenning. Refinement types for ML. In PLDI, pages 268–277,
New York, NY, USA, 1991. ACM.

2. S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing
software verifiers from proof rules. In PLDI, pages 405–416. ACM, 2012.

3. H. Hojjat and P. Rümmer. The ELDARICA Horn solver. In N. Bjørner and
A. Gurfinkel, editors, FMCAD, pages 1–7. IEEE, 2018.

4. T. Kahsai, R. Kersten, P. Rümmer, and M. Schäf. Quantified heap invariants for
object-oriented programs. In LPAR-21, volume 46 of EPiC, pages 368–384, 2017.

5. A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-based model checking for recursive
programs. Formal Methods in System Design, 48(3):175–205, 2016.

6. C. Pacheco and M. D. Ernst. Randoop: Feedback-directed random testing for java.
In OOPSLA, pages 815–816, New York, NY, USA, 2007. ACM.

7. P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In R. Gupta and S. P.
Amarasinghe, editors, PLDI, pages 159–169. ACM, 2008.

8. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot -
a Java Optimization Framework. In CASCON, 1999.


	JayHorn: A Java Model Checker (Competition Contribution)[-2ex]

