Towards String Support in JayHorn
(Competition Contribution)

Ali Shamakhi'® (1), Hossein Hojjat!2@®, and Philipp Riimmer3

! University of Tehran, Tehran, Iran
{ali.shamakhi,hojjat}@ut.ac.ir
2 Tehran Institute for Advanced Studies, Tehran, Iran
3 Uppsala University, Uppsala, Sweden
philipp.ruemmer@it.uu.se

Abstract. JayHorn is a Horn clause-based model checker for Java pro-
grams that has been competing at SV-COMP since 2019. An ongoing re-
search and implementation effort is to add support for String data-type
to JayHorn. Since current Horn solvers do not support strings natively,
we consider a representation of (unbounded) strings using algebraic data-
types, more precisely as lists. This paper discusses Horn clause encodings
of different string operations, and presents preliminary results.

1 The JayHorn Approach and Architecture

We start by summarising the approach used in JayHorn, and refer to earlier pa-
pers [5,6,7] for more details. JayHorn is a verification tool that encodes sequential
Java programs as sets of Constrained Horn Clauses (CHCs) in order to check
for possible assertion violations. The main CHC encoding in JayHorn is inspired
by refinement types [2] and liquid types [8], and characterises programs in terms
of method contracts, state invariants, and instance invariants of classes [5]. This
encoding is over-approximate, and can prove absence of assertion violations. In
order to find counterexamples, i.e., prove existence of violations, JayHorn also
offers a bounded, under-approximate program encoding.

JayHorn is entirely implemented in Java, and uses the Soot framework [10]
to process Java bytecode, and the CHC solver Eldarica [3] to solve Horn clauses.

2 Encoding of String Operations

In this paper, we focus on the handling of Strings and their operations, a feature
of Java that was not previously supported by JayHorn. Since JayHorn verifies
programs without imposing bounds on the number of execution steps or the
size of input data, our goal is to handle also unbounded strings. Unfortunately,
while there has been significant progress in SMT solving for strings, current CHC
solvers do not yet support strings natively. We therefore use recursive algebraic
data types to model strings, and follow the approach proposed in [4]: strings are
represented using lists, with a binary constructor cons and the constant nil.

http://orcid.org/0000-0003-4392-3334
http://orcid.org/0000-0002-4743-8750
http://orcid.org/0000-0002-2733-7098

2 A. Shamakhi et al.

There are two ways to encode a string using cons and nil. The Left-To-Right
(LTR) encoding starts with the leftmost character of the string. For example,
"Jay" = cons(‘J’,cons(‘a’,cons(‘y’,nil))). The Right-to-Left (RTL) encoding
starts with the rightmost character. Each encoding has its own benefits and
drawbacks in modeling various operations, an aspect we evaluate in this paper.

Three different LTR encodings of the concatenation operation are described
in [4], and equivalent RTL encodings are easy to define. Moving beyond concate-
nation, in this paper we show models of some of the more involved operations.

2.1 The CompareTo Operation

The String.compareTo method in Java returns an integer, which is the differ-
ence of the length of strings if one of the strings is a prefix of the other (e.g.,
"cat".compareTo("c") == 2), or the difference of their leftmost same-index
different characters otherwise (e.g., "card".compareTo("cash") == -1, since
their leftmost same-index different characters are ‘r’ and ‘s’, respectively).

The method is modeled using predicate Py (left, right, comparison_result)
under LTR encoding, which allows us to recursively remove leftmost characters
from both strings to reach a state which the comparison_result is known.

Prec(z,nilylen(z)) + true

Prec(nil,y, —len(y)) <« true

Prec(z,2,0) <+ true

PT&C(ConS(jv LE), COﬂS(k, y)vj - k) —] 7& k
Prec(cons(h,x), cons(h,y),d) <+ Pre(x,y,d)

The predicate under RTL encoding needs an extra argument to keep track
of whether the comparison_result is based on character difference or not, so the
predicate is P, (left, right, comparison_result, char_diff). The clauses use the len
function to compute the length of a string, which is a built-in function in Eldarica.

’

P, .(z,nil len(x), false) <+ true
P, (nil,y, —len(y), false) < true
P;ec (z,x,0, false) <« true
P, (cons(h,x),y,d + 1, false) < P..(x,y,d,false) Alen(z) > len(y)
P, (x,cons(h,y),d — 1, false) < P..(z,y,d,false) Alen(z) < len(y)
P, (cons(j,x),cons(k,x),j — k, true) <« j#k
P, (cons(h,x),y,d, true) < P...(x,y,d,true)
P!, (z,cons(h,y),d, true) < P...(x,y,d,true)

2.2 Integer to String conversion

The integer to string conversion relies on extracting digits one by one, which is
done using integer arithmetic. Under LTR encoding, during the conversion pro-
cess, the pre-condition stores the rest of the input after removing the converted
digits so far starting from the lowest position. For example, if the number is

Towards String Support in JayHorn (Competition Contribution) 3

1 =dp—_1---dy and the converted string so far is s = “dg_1- - -dp”, the rest of the
number will be r = d,,_1- - -dj which is stored at the pre-condition.

The pre-condition in RTL encoding stores the offset of the next digit that
needs to be extracted, since extracting digits from highest place values requires
knowing their positions.

2.3 StartsWith and EndsWith

The encoding of String.startsWith method needs to consider different states
of both strings and their relation, which leads to multiple recursive relations.

For example, if = starts with y, we can prepend ¢ to both strings under LTR
encoding (to get 2’ and y’) and the condition holds on the resulting strings
(i.e. ' starts with y'). For another example, if does not start with y and
len(x) > len(y) we can append c¢ to x under RTL encoding (to get z’) and the
condition holds on the resulting string (i.e. ' does not start with y).

Srec(zynil, true) <« true
Srec(, T, true) <+ true
Srec(nil,y, false) <« len(y) >0
Srec(cons(j, x), cons(k,y), false) < Spe.(x,y, false)
(LTR) Syec(cons(h, x),cons(h,y), true) < Spec(x,y, true)
(LTR) Srec(cons(j,x),cons(k,y), false) <+ j#k
(RTL) Srec(cons(h,), y, true) <+ Syec(x,y, true)
(RTL) Spec(cons(j,z),cons(k,x), false) <+ j#k
(RTL) Srec(cons(h, z),y, false) < Srec(x,y, false) Alen(x) > len(y)
(RTL) Srec(x,cons(h, y), false) < Srec(x,y, false)

The RTL encoding of endsWith is the same as LTR encoding of startsWith,
and the LTR encoding of endsWith is the same as RTL encoding of startsWith.

2.4 CharAt

The encoding definition of String.charAt relies on the fact that prepending
a character to a string under LTR encoding increases indices of all previous
characters by one, while appending a character to a string under RTL encoding
does not change those indices.

(LTR) ChAtyec(cons(h,t),0,h) < true
(LTR) ChAtpec(cons(h,t),i+1,¢) ChAtpec(t,i,c) N0 < i <len(t)
(RTL) ChAtyec(cons(h,t),len(t),h) <« true
(RTL) ChAtyec(cons(h,t),i,c) <+ ChAtrec(t,i,c) NO<1i<len(t)

3 Performance of the String Encoding

The following table shows the results of JayHorn on the 53 problems in the SV-
COMP Java track that involve strings. Many of the programs contain string

4 A. Shamakhi et al.

operations that are not yet handled in JayHorn, but the results already make
it possible to compare encoding choices. Uniformly, RTL performs better than
LTR (probably because appending characters to strings is more common than
adding characters in the beginning), and the under-approximating CHC encod-
ing of JayHorn performs better than the over-approximate encoding (probably
because over-approximation too often loses information about string contents).
The choice between Iterative, Recursive, or Recursive-with-precondition [4] for
string concatenation surprisingly had no effect on the results.

Iterative Recursive RecursiveWithPrec
U-Approx|O-Approx|U-Approx|O-Approx|U-Approx|O-Approx
LTR|RTL|LTR|RTL|LTR|RTL|LTR|RTL|LTR|RTL|LTR|RTL

Solved 4 6 1 3 4 6 1 3 4 6 1 3
Avg. Time (s)| 81 | 79 | 75| 16 | 79 | 78 | 7.6 | 16 | 77 | 78 | 7.7 | 16

Encoding
Choices

In other respects, JayHorn performed similarly in SV-COMP 2021 [1] as in
the two previous years. JayHorn gave one incorrect answer, for the problem
UnsatAddition02 and due to the use of unbounded integer arithmetic instead
of correct Java machine arithmetic semantics. JayHorn could correctly prove
125 benchmarks safe, and 151 benchmarks unsafe. Changes compared to 2020
include 59 of the 64 MinePump benchmarks (by encoding enums, see Section 4)
and 6 of the 53 string benchmarks that JayHorn solves now.

The biggest factor influencing the performance of JayHorn in SV-COMP is
still the incomplete model of the Java API in JayHorn, given the large number
of APT tests among the SV-COMP Java benchmarks. Our work on supporting
Strings, described in this paper, is one of the efforts to address the situation.

4 Tool Setup

The version submitted to SV-COMP 2021 is JayHorn version 0.7.5-strings,*
which is also available on Zenodo [9]. In the configuration used in the compe-
tition,> JayHorn only applies the Horn solver Eldarica. The Benchexec tool info
module is called jayhorn.py and the benchmark definition file jayhorn.xml.
JayHorn competes in the Java category.

Since JayHorn only has incomplete support for Java enums, in this year we
added a small source transformation tool® to JayHorn that has the purpose of
replacing enums with simple integer variables. The script used in the compe-
tition applies the transformation tool to the benchmark source code prior to
compilation to bytecode.

4 https://github.com/jayhorn/jayhorn/releases/tag/v0.7.5-strings

% Java options: ~Xss40000k -Xmx12g
JayHorn options: -inline-size 50 -conservative -specs -string-encoding
recursiveWithPrec -string-direction rtl

5 https://github.com/jayhorn/jayhorn/tree/devel /enum-eliminator

https://github.com/jayhorn/jayhorn/releases/tag/v0.7.5-strings
https://github.com/jayhorn/jayhorn/tree/devel/enum-eliminator

Towards String Support in JayHorn (Competition Contribution) 5

5 Software Project and Contributors

JayHorn was initially developed by Temesghen Kahsai, Philipp Riimmer, and
Martin Schéf, with contributions by Daniel Dietsch, Rody Kersten, Huascar
Sanchez, and Valentin Wiistholz [6,7]. Further development of the tool is at the
moment mainly carried out by the authors of this paper. JayHorn is open source,
and distributed under MIT license on https://github.com/jayhorn/jayhorn.

Acknowledgements. The work on JayHorn has been supported by the Swedish
Research Council (VR) under grant 2018-04727, by the Swedish Foundation for
Strategic Research (SSF) under the project WebSec (Ref. RIT17-0011), and by
grants from Microsoft and Amazon Web Services.

References

1. D. Beyer. Software verification: 10th comparative evaluation (SV-COMP 2021).
In Proc. TACAS (2), LNCS 12652. Springer, 2021.
2. T. Freeman and F. Pfenning. Refinement types for ML. In PLDI, pages 268-277,

New York, NY, USA, 1991. ACM.
3. H. Hojjat and P. Riimmer. The ELDARICA Horn solver. In FMCAD. IEEE, 2018.
4. H. Hojjat, P. Riimmer, and A. Shamakhi. On strings in software model checking.

In APLAS. Springer, 2019.

5. T. Kahsai, R. Kersten, P. Riimmer, and M. Schaf. Quantified heap invariants for
object-oriented programs. In LPAR. FasyChair, 2017.

6. T. Kahsai, P. Riilmmer, H. Sanchez, and M. Schaf. JayHorn: A framework for
verifying Java programs. In CAV. Springer, 2016.

7. T. Kahsai, P. Riilmmer, and M. Schaf. JayHorn: A Java model checker — (compe-
tition contribution). In D. Beyer, M. Huisman, F. Kordon, and B. Steffen, editors,
TACAS: TOOLympics, volume 11429 of LNCS, pages 214-218. Springer, 2019.

8. P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In R. Gupta and S. P.
Amarasinghe, editors, PLDI, pages 159-169. ACM, 2008.

9. A. Shamakhi, H. Hojjat, and P. Rimmer. JayHorn artifact at SV-COMP 2021.
Zenodo: https://doi.org/10.5281 /zenodo.4485702.

10. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot -
a Java Optimization Framework. In CASCON, 1999.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://github.com/jayhorn/jayhorn
https://doi.org/10.5281/zenodo.4485702
https://creativecommons.org/licenses/by/4.0/

	Towards String Support in JayHorn (Competition Contribution)

