
LFM 2004 Preliminary Version

Ensuring the Correctness of Lightweight Tactics
for JavaCard Dynamic Logic

Richard Bubel 1 Andreas Roth 2 Philipp Rümmer 3

Institut für Logik, Komplexität und Deduktionssysteme
Universität Karlsruhe, Germany

Department of Computer Science and Engineering
Chalmers University of Technology & Göteborg University, Sweden

Abstract

The interactive theorem prover developed in the KeY project, which implements
a sequent calculus for JavaCard Dynamic Logic (JavaCardDL) is based on taclets.
Taclets are lightweight tactics with easy to master syntax and semantics. Adding
new taclets to the calculus is quite simple, but poses correctness problems. We
present an approach how derived (non-axiomatic) taclets for JavaCardDL can be
proven sound in JavaCardDL itself. Together with proof management facilities,
our concept allows the safe introduction of new derived taclets while preserving the
soundness of the calculus.

Key words: taclets, lightweight tactics, dynamic logic,
theorem proving

1 Introduction

Background

Taclets are a new approach for constructing powerful interactive theorem
provers [4]. First introduced as Schematic Theory Specific Rules [9], they
are an efficient and convenient framework for lightweight tactics. Their most
important advantages are the restricted and, thus, easy to master syntax and
semantics compared to an approach based on meta languages like ML, and
their seamless integration with graphical user interfaces of theorem provers
which they can be efficiently compiled [7] into.

Taclets contain three kinds of information, the logical content of the rule
to be applied, information about side-conditions on their applicability, and

1 Email: bubel@ira.uka.de
2 Email: aroth@ira.uka.de
3 Email: philipp@chalmers.se

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Bubel, Roth, Rümmer

pragmatic information for interactive and automatic use. Due to their easy
syntax and intuitive operational semantics, a person with some familiarity in
formal methods should be able to write own taclets after a short time of study.

The interactive theorem prover developed in the KeY project [5,1] is based
on taclets implementing a sequent calculus for JavaCard Dynamic Logic (Java-
CardDL) [3]. JavaCard is a subset of Java lacking multi-threading, garbage
collection and graphical user interfaces, but with additional features like trans-
actions.

JavaCardDL has around three hundred axiomatic rules, this means taclets
that capture the JavaCard semantics. Correctness of rules is crucial since new
taclets can be introduced quite easily. The work presented here ensures the
correctness of derived taclets for JavaCardDL by providing means to prove
them correct relatively to the core set of JavaCardDL axioms (possibly en-
riched with further axioms for certain theories). The soundness of taclets can
be proven in the calculus itself by showing the validity of an appropriately
constructed proof obligation. This report extends the respective approach for
classical first-order logic described in [9] to JavaCardDL.

Related Work

Related to our approach are other projects for program verification like
Bali [16,17], where consistency and correctness of rules that cover the Java
semantics are ensured using Isabelle, or the LOOP project [11] where PVS is
used as foundation, and the calculus rules are thus obtained as higher order
logic theorems.

Complementary to the presented approach—ensuring correctness of de-
rived taclets—further work has been carried out in the KeY project in order
to cross-validate selected axiomatic rules against the Java axiomatisation of
Bali [13,15,18] covering assignment rules (esp. for arrays) and KeY’s improved
while-invariant rule as introduced in [6]. Further, [2] describes the automatic
verification of an important subset of the JavaCardDL calculus rules against
a Maude rewriting semantics of Java.

Structure of this Paper

In Sect. 1.1 we repeat the most important concepts of classical dynamic
logic and JavaCardDL. A formal description of taclets and a definition of the
basic vocabulary used throughout the paper is given in Sect. 2. The different
steps to be performed in order to prove the correctness of derived taclets
are described in Sect. 3–5. In Sect. 6 we give a justification of the complete
procedure as main theorem. Finally, in Sect. 7 we discuss the current and
future work to be done.

2

Bubel, Roth, Rümmer

1.1 Dynamic Logic

Classical Dynamic Logics

The family of dynamic logics (DL) [10] belongs to the class of multi-modal
logics. As programs are first-class citizens in DL formulas, DL is well-suited for
program analysis and reasoning purposes. For the sake of simplicity and as a
consequence of using a non-concurrent and real world programming language,
we will only consider deterministic programs.

Let p be an arbitrary program and φ a first-order or dynamic logic formula,
then

• 〈p〉φ (“diamond p φ”): p terminates and after the execution of p formula φ
holds

• [p]φ (“box p φ”): if p terminates then after the execution of p formula φ
holds

are typical representatives of DL formulas. Deterministic propositional dy-
namic logic (DPDL) is defined over a signature Σ = (At0,Prg0, Op), where
At0,Prg0 are enumerable sets of propositional variables and atomic programs
(resp.). Besides the classical propositional operators ¬,→ the operator set Op
contains box [p] and diamond 〈p〉 modalities for each program p. The set of
formulas is the smallest set defined inductively over At0 and Prg0:

• all classical propositional formulas are formulas in DPDL

• if φ, ψ are DPDL formulas then φ→ ψ and ¬φ are DPDL formulas

• if p ∈ Prg is a program and φ a formula in PDL then 〈p〉φ and [p]φ are
DPDL formulas

• the set Prg of programs is the smallest set satisfying
(i) Prg0 ⊆ Prg
(ii) if p, q ∈ Prg and ψ ∈ DPDL then

‘p;q’ (concatenation), ‘ if (ψ) {p} else {q}’ and ‘while (ψ) {p}’
are programs.

The semantics can be defined in terms of Kripke frames (S, (ρp)p∈Prg) with
a set S of states, and transition relations ρp : S → S which define the semantics
of each program p ∈ Prg . The relations ρp have to adhere to certain conditions
w.r.t. the program constructors (;, if−else, etc.) from the definition above,
for example, program composition ρp;q = ρq ◦ ρp.

An excerpt from an axiom system for DPDL in terms of sequent calculus
rules is given in Table 1.

DPDL is useful to reason about program properties induced by the pro-
gram constructors. However, as a consequence of constructing programs from
atomic programs without any fixed semantics, they lack possibilities to talk
about individual programs and, thus, about functional properties.

Like the step from propositional to first-order logic, one extends DPDL to
deterministic quantified dynamic logics (DQDL). DQDL extends the proposi-

3

Bubel, Roth, Rümmer

Γ ` 〈 if (ψ) {p; while (ψ) {p} } else {}〉φ,∆

Γ ` 〈while (ψ) {p}〉φ,∆
(1)

Γ, ψ ` 〈p〉φ, ∆ Γ,¬ψ ` 〈q〉φ, ∆

Γ ` 〈 if (ψ) {p} else {q}〉φ, ∆
(2)

Γ ` 〈p〉〈q〉φ, ∆

Γ ` 〈p;q〉φ, ∆
(3)

Γ{x←z}, x
.
= t{x←z} ` φ,∆{x←z}

Γ ` 〈x=t〉φ,∆
(4)

Table 1
DPDL/DQDL Axiomatisation (excerpt). z is a new variable.

tional part to full first-order logic (with equality and a universe D), and on the
program side it replaces the atomic programs with assignments of the form
v=t, where v is a variable and t an arbitrary term. In general, each program
state s ∈ S is assigned a first order structure (D, I) and a variable valuation

σ : Var → D respecting ρx=t(s) = s′ with σ′ = σt(D,I),σ

x .

Again a relatively 4 complete calculus can be given, the corresponding
assignment rule is shown in Table 1.

Example 1.1 For the universe D = N
of natural numbers, the DQDL formula
〈x=3;y=x;〉y .

= x can be proven valid
with the rules of Table 1 as shown on the
right.

∗
x
.
= 3, y

.
= x ` y

.
= x

(close)

x
.
= 3 ` 〈y=x;〉y .

= x
(4)

` 〈x=3;〉〈y=x;〉y .
= x

(4)

` 〈x=3;y=x;〉y .
= x

(3)

JavaCardDL

The step from academic languages as described in the previous paragraphs
to real world programming languages like JavaCard [8,14] leads to several
complications. In the next few paragraphs, we introduce some features of
JavaCardDL [3]. First some preliminaries:

• Formulas must not occur in JavaCardDL programs, instead Java expressions
of type boolean are used as guards.

• The set of variables Var = PVar] LVar is the disjoint union of pro-
gram variables PVar and logical variables LVar. In contrast to logical
variables, program variables can occur in programs as well as in formu-
las, but cannot be bound by quantifiers. For instance, let x ∈ LVar and
o, u ∈ PVar, then ∀x.〈o=u;〉x .

= u is a well-formed JavaCardDL formula,
whereas ∀x.〈o=x ;〉x .

= u is not.

4 Usually DQDL is interpreted in an arithmetic structure.

4

Bubel, Roth, Rümmer

• All states have the same universe D, and predicates are assumed to have
the same meaning in all states (they are rigid).

A sequent calculus covering JavaCard has to cope with aliasing, side-
effects, abrupt termination as result of thrown exceptions, breaks, continues
or returns and more. The KeY approach follows the symbolic execution
paradigm, thus a majority of the calculus rules realises a JavaCard interpreter
reducing expressions and statements stepwise to side-effect free assignments.

Example 1.2 An easy-to-use decomposition rule similar to (3) is not avail-
able in JavaCardDL due to abrupt termination. For example

` 〈 l :{ if (v == 0) { break l; } else { v = 0; } v = 3;} 〉v .
= 3

cannot be decomposed to

` 〈 l :{ if (v == 0) { break l; } else { v = 0; } }〉〈v = 3〉v .
= 3,

as this is obviously not equivalent for v = 0.

Decomposition was essential for DPDL and DQDL in order to reduce the
complexity of programs stepwise to atomic programs or assignments, which
can be handled by calculus rules without the need of a dedicated rule for each
program.

JavaCardDL therefore introduces the notion of a first active statement to
which a rule applies, and a program context ‘ .. ◦1 ...’ whose inactive prefix
‘ .. ’ matches on all preceding labels, opening braces or try blocks. Consider
the following rule:

#b
.
= true ` 〈 .. {#sta1} ...〉φ #b

.
= false ` 〈 .. {#sta2} ...〉φ

` 〈 .. if (#b) {#sta1} else {#sta2} ...〉φ
(5)

where #b is a side-effect free boolean expression and #sta1, #sta2 are arbi-
trary JavaCard statements.

Example 1.3 (Example 1.2 continued) Applying rule (5) to

` 〈 l :{ if (v == 0) { break l; } else { v = 0; } v = 3;}〉v .=3

where ◦1 corresponds to the program between ‘ l :{’ (inactive program prefix)
and ‘v = 3;}’ (suffix of the program context) now yields the two sequents

(i) (v==0)
.
= true ` 〈 l :{ { break l; } v = 3; }〉v .=3 and

(ii) (v==0)
.
= false ` 〈 l :{ { v = 0; } v = 3; }〉v .=3

2 Taclets

Taclets are lightweight, stand-alone tactics with simple syntax and semantics.
Their introduction was motivated by the observation that only few basic ac-

5

Bubel, Roth, Rümmer

tions in proof construction are sufficient to implement most rules for first-order
modal logic. These are:

• to recognise sequents as an axiom, and to close the according proof branch,

• to modify at most one formula per rule application,

• to add a finite (and fixed) number of formulas to a sequent,

• to let a proof goal split in a fixed number of branches,

• to restrict the applicability according to context information.

These are the only actions which taclet constructs are provided for. This
restriction turns out to reduce the complexity for users of a proof system
significantly [4].

Taclets by Example

Taclets describe rule schemas in a concise and readable way. A simple
example rewrites terms 1 + 1 with 2. In taclet notation such a rule schema is
written as:

find(1 + 1) replacewith(2)

In a taclet—in addition to the logical content of the described rule—an op-
erational meaning is encoded: If a user of a taclet-based prover selects the term
of the find-part (i.e. 1 + 1) of a taclet and chooses the taclet for application,
the find-part is replaced with (an instantiation of) the replacewith-term
(i.e. 2).

In this simple form, the rule schemas described by taclets are not expressive
enough for practical use; schema variables and more constructs besides find
and replacewith make them powerful enough to fulfil the requirements posed
above.

Schema Variables and Instantiations

Expressions 5 in taclets may contain elements from a set SV of schema
variables. An instantiation ι(v) of a schema variable v ∈ SV is a concrete
expression that must fulfil certain conditions depending on the kind of the
schema variable (see below). We may, e.g., define a schema variable i such
that ι(i) must be a term of an integer sort.

Expressions e in taclets containing schema variables from SV are called
schematic expressions over SV . The instantiation map ι can canonically be
extended to schematic expressions:

ι(op(e1, . . . , en)) =

 ι(op) if n = 0 and op ∈ SV

op(ι(e1), . . . , ι(en)) otherwise
(6)

5 By expression we denote syntactic elements like terms or formulas, but in the context of
JavaCardDL also Java programs.

6

Bubel, Roth, Rümmer

Thus, e describes a set of concrete expressions:

{ι(e) | ι is an instantiation map for every v ∈ SV }

For instance, a taclet find(i + i) replacewith(2 ∗ i) contains schematic terms
over {i}. Applied on a sequent containing the term 3+3, i is instantiated with
ι(i) = 3 and the taclet replaces ι(i + i) = 3 + 3 with ι(2 ∗ i) = 2 ∗ 3 in the new
goal.

Taclet Syntax

The clause replacewith(2) is an example of a goal template, this means
the description of how a goal changes by applying the taclet. More than
one goal template may be part of a taclet, separated by semicolons, which
describes that a goal is split by the taclet. If there is no goal template in a
taclet, applications close the proof branch. Additionally, goal templates may
contain the following clauses:

• While in the example taclets above the find- and replacewith-parts con-
sisted of terms, they can also be sequents. All find- and replacewith-
parts of a taclet must either be terms or sequents. These sequents indicate
that the described expression must be a top-level formula in either the
antecedent or succedent, e.g. a taclet find(`φ→ ψ) replacewith(φ `ψ)
(over the schema variables {φ, ψ}) is applicable only to top-level formulas
in the succedent. A sequent in the find-part must have either an empty
antecedent or succedent.

• Taclet applications can add formulas to the antecedent or succedent. This
is denoted by the keyword add followed by a schematic sequent (similarly
to replacewith).

• Taclets support the dynamic enlargement of the taclet rule base by adding
new taclets using the keyword addrules. We omit this feature in the present
paper, although a treatment similar to what is shown here is possible.

Often, more requirements on the sequents that a taclet should be applicable to
is needed. Such side conditions are described by the following optional taclet
constituents:

• A taclet that contains an if followed by a schematic sequent context is only
directly applicable if context is a “sub-sequent” of the sequent the taclet is
applied to. If this is not the case, the taclet is however still applicable but,
by an automatic cut, it is required to show the if-condition.

• Predefined clauses in a varcond-part describe conditions on the instantia-
tions of schema variables. The most important ones are:
– v not free in s, which disallows logical variables ι(v) to occur unbound

in ι(s).
– v new depending on s, which introduces a new skolem symbol ι(v) (pos-

sibly depending on free “meta variables” occurring in ι(s)).

7

Bubel, Roth, Rümmer

The complete syntax of taclets is reiterated here as an overview:

[if (context)] [find (f)] [varcond (c1,. . . ,ck)]

[replacewith (rw1)] [add (add1)];
...

...

[replacewith (rwn)] [add (addn)]

(7)

For i = 1 . . . n, context and addi stand for a schematic sequent, f and rwi for
a schematic term, formula, or sequent but all of the same kind. c1, . . . , ck are
variable conditions.

Additionally—though out of scope of this paper—taclets can be assigned
to one or several rule sets, which makes them available to be automatically
executed by strategies. For a homogenous treatment in this paper f and
rwi are declared to be never empty: we assume that skipping replacewith

is a shorthand for rwi = f , a skipped find means f = ` false, and false
always occurs in succedents of sequents. A skipped if- or add-part means
context = ` or addi = ` (resp.).

Schema Variable Types

While the above definitions have been general enough to be applied to
every first-order modal logic, we are now focusing on special schema variables
for JavaCardDL. Let SVtac denote the schema variables contained in a taclet
tac. Schema variables v ∈ SVtac are assigned to one out of a predefined list of
types, each having special properties concerning admissible instantiations ι(v).
An instrument to define these properties is to introduce prefix sets (denoted
by Πl(v), Πpv(v), and Πjmp(v)) for schema variables v. A selection of the most
relevant schema variable types is given below. If v is of type

• Variable, then v is assigned a sort, ι(v) must be of that sort. Moreover,
ι(v) must be a logical variable. For v 6= v′ ∈ SV : if v′ is a Variable schema
variable then ι(v) 6= ι(v′). ι(v) must not occur bound in ι(v′′) for all v′′ ∈ SV .

• Term, then v is assigned a sort, ι(v) must be of that sort.
v is assigned a set Πl(v) ⊆ SV of schema variables. Πl(v) is defined to be

the smallest set with, for all constituents of tac, if v occurs in the scope of a
Variable schema variable v′ ∈ SV then v′ ∈ Πl(v) except there is a variable
condition v′ not free in v declared in t. v is assigned a set Πpv(v) which
is the smallest set of program variables that occur but are not declared in
tac or are declared above 6 every occurrence of v.

We require from instantiations ι: If, for some v′ ∈ SVtac, ι(v
′) is a logical

variable that occurs unbound in ι(v) then v′ ∈ Πl(v); if ι(v′) is a program

6 If we consider tac as abstract syntax tree.

8

Bubel, Roth, Rümmer

variable that occurs undeclared in ι(v) then v′ ∈ Πpv(v).

• Formula, then as for Term, v is assigned Πl(v) and Πpv(v). v must fulfil the
same conditions concerning these sets.

• Statement, then ι(v) is a JavaCard statement. Again, v is assigned Πpv(v)
and it must satisfy the same conditions as above concerning this set.

v is assigned a set Πjmp(v) consisting of JavaCard statements break,
continue, break l, continue l for all labels l, if v is enclosed with a suitable
jump target. If jst is a break or continue statement of ι(v) with a target
not in ι(v) then jst ∈ Πjmp(v).

7 Usually Statement schema variables have
names starting with # to distinguish them from regular Java elements.

• ProgramVariable, then ι(v) is a local program variable or class attribute of
Java. v is assigned a Java type and ι(v) must be of that type. Again, names
of this kind of variable start with #.

• ProgramContext, then ι(v) is a program transformation 8 pt that takes a
Java program element α and delivers a new program element pt(α), such
that pt(α) is a sequence of statements of which the first one contains α and
has only opening braces, opening try blocks, etc., in front. For this case,
the continuation of the instantiation map (6) is then modified to

ι(op(e1, . . . , en)) := pt(ι(e1))

if n = 1 and op is a ProgramContext schema variable.
Usually, v is denoted by .. e1 ... containing the schematic Java program

e1, as introduced in Sect. 1.1.

Example 2.1 The following taclet performs a cut with the condition that the
focused term (t) equals 0 and replaces it in the respective goal by 0. We declare
t as Term schema variable of an integer sort.

find(t) replacewith(0) add(t
.
= 0 `);

replacewith(t) add(` t
.
= 0)

(8)

As an example that represents a rule of JavaCardDL, we take a taclet
that replaces the postfix increment operator applied to a program variable (x)
behind a statement (#sta) with an equivalent statement using assignment and
the + operator, and leaves the formula (φ) behind the diamond unchanged.
#sta is a Statement schema variable and φ a Formula schema variable.

find(〈#sta x++;〉φ) replacewith(〈#sta x=x+1;〉φ) (9)

Finally, the following taclet splits a proof for an if statement with the

7 For a complete treatment of JavaCardDL it is furthermore necessary to consider return-
statements, which are left out in this paper
8 Thus being an exception from the statement above that ι(v) must be an expression.

9

Bubel, Roth, Rümmer

condition x==0 (where x is a concrete local variable) and produces goals,
reducing the formula to the statements of the appropriate branch and the if
condition put to the correct side of the sequent. #sta1 and #sta2 are Statement
schema variables and φ is a Formula schema variable.

find(〈 l : if (x==0) #sta1 else #sta2〉φ)

replacewith(〈 l : #sta1 〉φ) add(x
.
= 0 `);

replacewith(〈 l : #sta2 〉φ) add(` x
.
= 0)

(10)

Semantics

Taclets have a precise operational semantics, which is described in detail
in [4], and which we have sketched informally above. For the purposes of this
paper it is sufficient to fix the logical meaning of a taclet in the traditional
rule schema notation.

We denote the union of two sequents and the subset relation between two
sequents as follows:(

Γ1 `∆1

)
∪

(
Γ2 `∆2

)
:= Γ1,Γ2 `∆1,∆2(

Γ1 `∆1

)
⊆

(
Γ2 `∆2

)
iff Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2

First, we assume that f is a schematic sequent, i.e. the taclet tac can only
be applied to top-level formulas. By the operational semantics of taclets [4],
tac represents the rule schema:

rw1 ∪ add1 ∪ (Γ `∆) . . . rwk ∪ addk ∪ (Γ `∆)

f ∪ (Γ `∆) (11)

where Γ `∆ is an arbitrary sequent with context ⊆ f ∪ (Γ `∆).

Similarly, if f is a schematic term or formula (seq[e] denotes a sequent
with an arbitrary but for a rule fixed occurrence of an expression e):

seq[rw1] ∪ add1 ∪ (Γ `∆) . . . seq[rwk] ∪ addk ∪ (Γ `∆)

seq[f] ∪ (Γ `∆)

where Γ `∆ is an arbitrary sequent with context ⊆ seq[f] ∪ (Γ `∆).

In Sect. 4, the notion of meaning formulas is derived that makes the mean-
ing of these rule schemas induced by taclets more precise.

Due to their simplicity and operational meaning, taclets can be schemat-
ically compiled into the GUI of taclet-based interactive theorem provers: In
the KeY system a mouse click over an expression displays only those taclets
whose find-part can be matched with the expression in focus. This drastically
reduces the cognitive burden on the user. For an extensive account on user
interaction see [4].

10

Bubel, Roth, Rümmer

3 Outline of Bootstrapping Taclets

After having introduced basic notions and notations, we can focus on the
task of how to ensure correctness of derived taclets. We aim to prove their
soundness within the JavaCardDL calculus itself. Our approach is based on [9]
which has already provided this kind of bootstrapping for classical first-order
logic.

Given a taclet tac, we first derive a meaning formula M(tac) (see Sect. 4),
which is supposed to be valid if and only if all possible applications of tac are
correct proof steps. For example, consider the following taclet tac0:

find(true ∧ φ `) replacewith(φ `)

with a Formula schema variable φ. The corresponding meaning formula is

M(tac0) = ¬φ→ ¬(true ∧ φ) or equivalently (true ∧ φ) → φ

Intuitively, the meaning formula states that if a formula in an antecedent
is replaced, the new formula must be at most as strong as the old one. If this
can be proven for all instantiations of φ, i.e. for all formulas, then obviously
tac0 is sound.

Unfortunately, meaning formulas contain schema variables (here: φ) and
are thus no JavaCardDL formulas. Moreover, we have to quantify somehow
over all formulas. Skolemisation of schema variables (see Sect. 5) helps us,
however, not having to leave our original logic and not having to employ
higher order logics on the object level. Skolemisation of meaning formula
M(tac0) leads to

MSk(tac0) = (true ∧ φSk) → φSk,

where φSk is a new nullary predicate. We call these formulas MSk(tac) taclet
proof obligations. MSk(tac) is a JavaCardDL formula (with a slightly extended
vocabulary) and can be loaded into our interactive theorem prover. If the
proof obligation can be proven successfully then correctness of the taclet is
ensured for all possible applications according to the definition of the meaning
formula. The proof of the corresponding theorem is given in [12] and sketched
in Sect. 6.

On a semantic level, this theorem can be justified by arguing that if an ap-
plication of the taclet tac leads to an incorrect proof, a suitable interpretation
D can be constructed such that the meaning formula M(tac) is not satisfied
under D (which is a direct consequence of the definition of meaning formulas)
and thus M(tac) could not have been proven. This semantic argumentation
works fine for first-order logics [9], but when JavaCardDL comes into play, the
complete complex JavaCard semantics would have to be incorporated in the
reasoning.

Instead, we take a syntactic approach getting the JavaCard semantics via
the JavaCardDL calculus for free. The basic idea is to show that an application

11

Bubel, Roth, Rümmer

of a taclet tac can always be replaced by a transformed proof of MSk(tac).

4 Meaning Formulas of Taclets

The basis for our reasoning about the correctness of taclets is a meaning
formula [9] derived in this section. It is declared to be the meaning of a taclet
independently from concrete taclet application mechanisms, thus providing
a very flexible way to address soundness issues. In fact we define a taclet
application mechanism to be correct if (and only if) taclets with valid meaning
formulas are translated into sound rules. 9 To show that a taclet is correct it
is thus sufficient to prove the validity of its meaning formula.

For the whole section we define (Γ `∆)∗ :=
∧

Γ →
∨

∆, in particular
(`φ)∗ = φ and (φ `)∗ = ¬φ. Furthermore, in this section by the validity of
a sequent we mean the validity of (Γ `∆)∗. We define a (sequent) calculus C
to be sound if only valid sequents are derivable in C. We conceive rules

P1 . . . Pn

Q

as relations between tuples of sequents (the premisses) and single sequents
(the conclusion) and define that a rule R ∈ C is sound if for all tuples
(〈P1, . . . , Pk〉, Q) ∈ R:

if P1, . . . , Pk are valid, then Q is valid. (12)

For the calculus C we can state:

Lemma 4.1 C is sound if all rules R ∈ C are sound.

The rules Rtac we are interested in are defined through taclets tac over
a set SV of schema variables in the form as defined in (7). Assuming first
that the find-part is a sequent, taclets induce the rule schema (11). To apply
Lem. 4.1, for each instantiation ι of SV , (12) must be shown for k = n,
Pi = ι(rwi ∪ addi ∪ Γ `∆) (i = 1 . . . n), and Q = ι(f ∪ Γ `∆). Since the
formulas of Γ `∆ which are not in context are arbitrary and not influenced
by the rule application we can simply omit them and show the lemma for
Pi = ι(rwi ∪ addi ∪ context) (i = 1 . . . n) and Q = ι(f ∪ context). We assume
that tac does not introduce skolem functions, i.e. does not contain such a
variable condition. Then by the deduction theorem, the global condition (12)
can be strengthened to the local implication, namely that P ∗1 ∧ . . .∧P ∗n → Q∗

must be valid.

Since ι, as defined by (6), treats propositional junctors as a homomorphism
and the operator (·)∗ is a homomorphism regarding the union of sequents up to
propositional transformations, this formula can now be simplified as follows:

9 As a schematic formula, the meaning formula is by definition valid iff all instances of the
formula are valid.

12

Bubel, Roth, Rümmer

P ∗1 ∧ . . . ∧ P ∗n → Q∗=
n∧

i=1

ι(rwi ∪ addi ∪ context)∗ → ι(f ∪ context)∗ (13)

= ι
(n∧

i=1

(rw∗i ∨ add∗i) → (f ∗ ∨ context∗)
)
. (14)

If (14) is proven for all instantiations ι, then the rule Rtac represented by tac
is sound.

In the next definition our previously made assumptions are revoked: the
variable condition svi new depending on. . . introduces new skolem functions.
If P1, . . . , Pn contain skolem symbols that do not occur in Q, the interpretation
of the symbols can be regarded as universally quantified in (12) by the usual
definition of ‘valid’. Because of their negation in (13), they are existentially
bound in the meaning formula. Moreover, taclets that have terms or formulas
instead of sequents as find-part and replacewith-parts are reduced to a rule
that adds an equivalence f ↔ rwi or equation f = rwi to the antecedent.

Definition 4.2 (Meaning Formula) Each taclet tac, as declared in (7), is
assigned an unquantified meaning formula tac∗, which is defined by:

tac∗ :=



∧n
i=1(rw

∗
i ∨ add∗i) → (f ∗ ∨ context∗) if f is a sequent∧n

i=1

(
f
.
= rwi → add∗i

)
→ context∗ if f is a term∧n

i=1

(
(f ↔ rwi) → add∗i

)
→ context∗ if f is a formula

Suppose sv1, . . . , svk ∈ SVtac are all schema variables, which tac contains a
variable condition svi new depending on. . . for. M(tac) := ∃x1 . . . ∃xk.φ is
defined to be the meaning formula of tac where φ is obtained from tac∗ by
replacing each svi with a new Variable schema variable xi with the same sort
as svi.

Example 4.3 (Example 2.1 continued) The taclets tac1, tac2, and tac3

defined through (8), (9), and (10), resp., have (after applying some proposi-
tional equivalence transformations) the following meaning formulas:

M(tac1) =
(
t
.
= 0 ∧ t

.
= 0

)
∨

(
t
.
= t ∧ ¬(t

.
= 0)

)
(15)

M(tac2) = 〈#sta x++;〉φ↔ 〈#sta x=x+1;〉φ (16)

M(tac3) =
(
(〈 l : if (x==0) #sta1 else #sta2〉φ↔ 〈 l : #sta1 〉φ)

∧ x
.
= 0

)
∨

(
(〈 l : if (x==0) #sta1 else #sta2〉φ↔ 〈 l : #sta2 〉φ)

∧ ¬(x
.
= 0)

)
(17)

13

Bubel, Roth, Rümmer

5 Construction of Proof Obligations

Except for trivial taclets, the meaning formula M(tac) of a taclet tac contains
schema variables, which is at least inconvenient for proving M(tac). Variables
of these types, however, do not occur bound within the formula (resp., when
considering validity, they can be regarded as implicitly universally quantified),
and hence it is possible to replace them in a suitable way without altering the
validity of the meaning formula:

• Schema variables for logical variables or program variables can simply be
replaced with new concrete variables. It has to be taken in account, how-
ever, that when instantiating a schematic expression it is possible that two
different schema variables of type ProgramVariable are instantiated with the
same concrete variable (which is not possible for Variable schema variables
by the definitions of Sect. 2). By the presence or absence of such colli-
sions, the set of instances of a schematic expression is divided into (finitely
many) classes, which all have to be considered to capture the meaning of
the schematic expression.

• Schema variables for terms, formulas or Java statements can be replaced
with suitable “skolem” symbols, which are similar to the atomic programs
of DPDL for Statement schema variables. To model the notion of abrupt
termination, which does not exist in DPDL, tuples of Java jump statements
are attached to occurrences of symbols for statements.

• Schema variables for program contexts can be replaced with a surrogate
Java block containing atomic programs.

From now on, we only consider the replacement of schema variables for
logical variables, terms, formulas and statements, and we also assume that
the concerned taclets only contain schema variables of these kinds. Other
kinds of schema variables are treated in a similar way in [12].

5.1 Skolem symbols

We define two syntactic domains that consist of symbols for the skolemisation
of schema variables:

• Symbols that are placeholders for terms and formulas, and which are similar
to ordinary function and predicate symbols

• Symbols that are placeholders for Java statements, similar to the atomic
programs of DPDL.

As usual, the elements of both domains are assigned signatures that deter-
mine syntactically well-formed expressions. Their shape is described in more
detail as follows.

14

Bubel, Roth, Rümmer

Skolem Symbols for Terms and Formulas

The sets of symbols for terms and formulas are denoted with FuncSk and
PredSk (resp.). The signature

α(sSk) =

{
(S, S1, . . . , Sn, T1, . . . , Tk) for sSk ∈ FuncSk

(S1, . . . , Sn, T1, . . . , Tk) for sSk ∈ PredSk

of a symbol sSk ∈ FuncSk ∪ PredSk consists of

• a result sort S, if sSk ∈ FuncSk,

• a finite sequence S1, . . . , Sn of sorts that determines the number and kinds
of term arguments; this sequence corresponds to the signature of ordinary
predicate symbols,

• a finite sequence T1, . . . , Tk of Java types, which are the component types
of a tuple of program variables that sSk is applied to.

Accordingly, the inductive definition of well-formed terms and formulas is
extended by:

If sSk ∈ FuncSk ∪ PredSk is a symbol with the signature α(sSk) as above,
t1, . . . , tn are terms of the sorts S1, . . . , Sn and pv1, . . . , pvk ∈ PVar are
program variables of the types T1, . . . , Tk, then

sSk(t1, . . . , tn; pv1, . . . , pvk)

is a term of sort S or a formula (resp.).

Skolem Symbols for Statements

The set of skolem symbols used for statements is denoted with StatementSk.
The signature α(stSk) = (T1, . . . , Tk,m) of a symbol stSk ∈ StatementSk con-
sists of

• a finite sequence T1, . . . , Tk of Java types (analogously to the symbols for
terms or formulas),

• a natural number m that gives the size of the jump table; this is a tuple of
Java statements that are arguments of occurrences of stSk within programs.

The symbols StatementSk extend the definition of well-formed Java programs,
i.e. the following (informal) rule is added to the Java grammar [8]:

Given stSk ∈ StatementSk of signature α(stSk) = (T1, . . . , Tk,m), program
variables pv1, . . . , pvk of the types T1, . . . , Tk and let jst1, . . . , jstm be Java
statements of the following kinds 10

• return-statements, with or without an argument (a plain program vari-
able).

10 Which are exactly the reasons that can lead to an abrupt termination of a statement,
see [8].

15

Bubel, Roth, Rümmer

• break- and continue-statements, with or without a label.
• throw-statements whose argument is a program variable.
Then

stSk(pv1, . . . , pvk; jst1; . . . ; jstm)

is a statement.

5.2 From Meaning Formula to Proof Obligation

From now on we suppose that a taclet tac with meaning formula M(tac)
is fixed. Let SVtac be the set of schema variables that M(tac) contains. We
define an instantiation ιSk over SVtac that replaces each schema variable either
with a JavaCardDL variable or with an appropriate skolem expression. The
definition refers to the properties of schema variables as introduced in Sect. 2:

• If x ∈ SVtac is of type Variable, then ιSk(x) ∈ LVar is a new logical variable
that has the same sort as x.

• If sv ∈ SVtac is of type Term, Formula or Statement, then let {pv1, . . . , pvk} =
Πpv(sv) be the program variables that can occur undeclared in instantiations
of sv. Let T1, . . . , Tk be the Java types of pv1, . . . , pvk.

• If sv ∈ SVtac is of type Term, then

ιSk(sv) = fSk(v1, . . . , vl; pv1, . . . , pvk)

is a term, where
– v1, . . . , vl with vi = ιSk(xi) are the instantiations of x1, . . . , xl ∈ SVtac,

which are distinct Variable schema variables determined by the prefix
Πl(sv) = {x1, . . . , xl} of sv in tac

– and fSk ∈ FuncSk denotes a new skolem symbol with signature

α(fSk) = (S, S1, . . . , Sl, T1, . . . , Tk)

where S is the sort of sv and S1, . . . , Sl are the sorts of v1, . . . , vl.

• Analogously, if sv ∈ SVtac is a schema variable of type Formula, then

ιSk(sv) = pSk(v1, . . . , vl; pv1, . . . , pvk)

is a formula containing a new skolem symbol pSk ∈ PredSk for formulas.

• If sv ∈ SVtac is a schema variable of type Statement, then two additional
(and new) program variables are needed: tsv of Java type Throwable,
and dsv of Java type int (the latter variable is used in Sect. 5.3). Let
{jst1, . . . , jstm} = Πjmp(sv) be jump statements that can occur uncaught in
instantiations of sv. The instantiation ιSk(sv) of sv is the statement 11

ιSk(sv) = stSk(pv1, . . . , pvk, tsv, dsv; jst1; . . . ; jstm; throw tsv)

11 We always add a throw-statement, as instantiations of sv may always terminate abruptly
through an exception regardless of Πjmp(sv).

16

Bubel, Roth, Rümmer

where stSk denotes a new skolem symbol for statements with signature
α(stSk) = (T1, . . . , Tk,m+ 1).

Finally, the taclet proof obligation of tac is defined to be the formula

MSk(tac) := ιSk(M(tac))

Example 5.1 (Example 4.3 continued) The proof obligations listed below
can be constructed from the meaning formulas of taclets tac1, tac2 and tac3:

MSk(tac1) =
(
tSk

.
= 0 ∧ tSk

.
= 0

)
∨

(
tSk

.
= tSk ∧ ¬(tSk

.
= 0)

)
(18)

MSk(tac2) = (19)

〈staSk(v, t#sta, d#sta; throw t#sta); v++;〉pSk(v) ↔

〈staSk(v, t#sta, d#sta; throw t#sta); v=v+1;〉pSk(v)
(20)

MSk(tac3) = (21)(
(〈 l : if (x==0) β1 else β2〉pSk(x) ↔ 〈 l : β1〉pSk(x)) ∧ x

.
= 0

)
∨(

(〈 l : if (x==0) β1 else β2〉pSk(x) ↔ 〈 l : β2〉pSk(x)) ∧ ¬(x
.
= 0)

) (22)

where we use the abbreviations

β1 = sta1Sk(x, t#sta1, d#sta1; break l; throw t#sta1);

β2 = sta2Sk(x, t#sta2, d#sta2; break l; throw t#sta2);

5.3 Decomposition Rules

Calculus rules for JavaCardDL programs always modify the leading statements
within a program block (see Sect. 1). Unfortunately, the addition of skolem
symbols for statements would destroy the (relative) completeness of a set of
rules: If a skolem symbol turns up as the first active statement of a program
block, no JavaCardDL rule will be applicable to that block.

As we have stated in Sect. 1.1 that a “naive” decomposition rule for Java-
CardDL cannot be posed due to abrupt termination, we define a family of
decomposition rules specifically for statement skolem symbols. These rules
cope with abrupt termination by applying a transformation to the state-
ment α = stSk(. . .). This transformation splits α in two parts α1 = st′Sk(. . .)
and α2, such that the concatenation α1;α2 is equivalent to the original state-
ment α. Furthermore, the first program fragment α1 is constructed in a way
that prevents abrupt termination, and thus, the equivalence

〈.. stSk(. . .); β ...〉φ↔ 〈st′Sk(. . .)〉〈.. α2; β ...〉φ (23)

holds. The remaining statement α2 does no longer contain any skolem sym-
bols, i.e. it is a pure JavaCard program, and hence it is possible to handle α2

by the application of regular JavaCardDL rules.

17

Bubel, Roth, Rümmer

We assume that for each statement skolem symbol stSk ∈ StatementSk that
occurs within ιSk a second new skolem symbol Dec(stSk) is introduced, which
has the same signature as stSk except for the jump table:

α(stSk) = (T1, . . . , Tk,m) =⇒ α(Dec(stSk)) = (T1, . . . , Tk, 0).

Following equivalence (23), two decomposition taclets D�stSk
and D�

stSk
for

diamond and box modalities (resp.) are introduced for each statement skolem
symbol stSk that occurs in ιSk. We only give the definition of D�stSk

, as the
taclet for boxes is obtained analogously:

D�stSk
: { find (〈.. stSk(p1, . . . , pk; #jst1; . . . ; #jstm); ...〉φ)

replacewith (〈Dec(stSk)(p1, . . . , pk);〉〈.. ic ...〉φ) }

where p1, . . . , pk are schema variables for program variables, #jst1, . . . ,#jstm
are variables for statements corresponding to the signature α(stSk) and φ is a
schema variable for formulas. Furthermore the taclet contains an if-cascade ic,
which is denoted by α2 in equivalence (23):

{ i f (pk == 1) #jst1
else i f (pk == 2) . . .
else i f (pk == m) #jstm }

In this statement at most one of the jump statements represented by the
schema variables #jst1, . . . ,#jstm is selected and executed, depending on the
value of the last program variable argument pk (note that the type of pk is
int by the definitions of the last section).

Example 5.2 An application of the decomposition rule for diamond modali-
ties could look as follows:

` 〈st′Sk(t, d)〉〈try { if (d == 1) throw t; } catch (Exception e) {...}〉φ
` 〈try { stSk(t, d; throw t); } catch (Exception e) {...}〉φ

6 Main Result

To show that tac is derivable, which is by Sect. 4 equivalent to the derivability
of all instances ofM(tac), we assume that there is a closed proofH ofMSk(tac)
using the sequent calculus for JavaCardDL (extended by the skolem symbols
and the decomposition taclets of Sect. 5). It is possible to transform H into a
proof Hφ for each instance φ of M(tac):

Theorem 6.1 (Main Result) Suppose that a proof H of MSk(tac) exists.
Then for each instance φ = κ(M(tac)) of the meaning formula M(tac) there
is a proof Hφ.

18

Bubel, Roth, Rümmer

In the following we will sketch a proof of Theorem 6.1. Due to lack of
space we skip most of the details of the proof; a more detailed account can be
found in [12].

The proof obligation MSk(tac) = ιSk(M(tac)) differs from other instances
φ = κ(M(tac)) of the meaning formula in the instantiation of schema vari-
ables for terms, formulas and statements: In MSk(tac) such variables are re-
placed with skolem symbols as introduced in Sect. 5.1. 12 Hence it is possible
to obtain a “proof” H ′ of φ by replacing each occurrence of a skolem sym-
bol sSk(. . .) = ιSk(sv) in H with the instantiation κ(sv) from φ. In general,
the tree H ′ cannot be expected to be a proof, as it is possible that the replace-
ment of skolem symbols leads to invalid rule applications. But by a slightly
more complex transformation, as sketched below, it is possible to obtain a
legal proof:

For the replacement of skolem symbols we define an appropriate kind of
substitutions: We assume that a mapping σ of the skolem symbols

SymSk := FuncSk ∪ PredSk ∪ StatementSk

to terms, formulas and Java statements “with holes” is given. Namely, we
allow that for a symbol sSk with signature α(sSk) = ([S,]S1, . . . , Sn, T1, . . . , Tk)
(or α(sSk) = (T1, . . . , Tk,m) for statement symbols), the value σ(sSk) contains
a number of holes ◦i labelled with natural numbers i ∈ {1, . . . , n+ k} (or
i ∈ {1, . . . , k +m}, resp.).

Example 6.2 For a predicate skolem symbol pSk ∈ PredSk, an example of a
substitution is given by the following mapping:

σ(pSk) = r(◦2, a) ∧ q(◦1) ∧ 〈◦2=1;〉φ for pSk ∈ PredSk, α(pSk) = (S, int).

The mapping σ is extended to terms, formulas, Java programs, sequents,
proof trees and taclets as a morphism, and by the replacement of skolem
symbols. Holes are replaced with the arguments of occurrences of skolem
symbols: 13

σ(sSk(r1, . . . , rl)) := {◦1/r1, . . . , ◦l/rl}
(
σ(sSk)

)
Example 6.3 (Example 6.2 continued) The mapping σ is applied in the
following way to a formula containing the symbol pSk:

σ
(
∀x.pSk(x; i)

)
= ∀x.

(
r(i, a) ∧ q(x) ∧ 〈 i=1;〉σ(φ)

)
12 Schema variables for logical variables are in both cases simply instantiated with logical
variables.
13 Extensive considerations about possible collisions are omitted in this document; see [12]
for details.

19

Bubel, Roth, Rümmer

6.1 Treatment of Taclets

The most important observation to prove Theorem 6.1 is the following lemma:

Lemma 6.4 (Lifting of Taclet Applications) Suppose that Rtac′ is a rule
schema that is described by a taclet tac′, and that tac ′ does not contain skolem
symbols (as introduced in Sect. 5.1). If an instance of Rtac′ is given by

P1 · · · Pn

Q

and σ is a substitution of skolem symbols, then there is a proof tree with root
sequent σ(Q), whose open goals are exactly the sequents σ(P1), . . . , σ(Pn).

Proof. First suppose that the considered rule application is not the applica-
tion of a rewrite taclet within an argument of a skolem symbol occurrence.
Then it can be shown that

σ(P1) · · · σ(Pn)

σ(Q)

is an instance of Rtac′ .

Otherwise, if a rewrite taclet is applied to a term t within an argument
of a skolem symbol occurrence, it is possible that a single occurrence of t in
Q produces more than one occurrence of σ(t) in σ(Q) (like in example 6.3,
where a single occurrence of the program variable i in the original formula
yields multiple occurrences after the application of σ). Provided that the cut-
rule and rules treating equations are available, it is then possible to perform a
cut with the equation σ(t)

.
= σ(t) and apply tac ′ to one side of the equation.

Afterwards the equations σ(t)
.
= σ(ti) can be used to replace all occurrences

of σ(t) successively. This is illustrated by the following proof tree fragment,
in which we use the notation (Γ `∆) = σ(Q):

σ(P1)....
Γ1, σ(t) .= σ(t1) ` ∆1 · · ·

σ(Pn)....
Γn, σ(t) .= σ(tn) ` ∆n

Γ, σ(t) .= σ(t) ` ∆ tac′ ∗
Γ ` ∆, σ(t) .= σ(t)

Γ ` ∆

2

Corollary 6.5 Suppose that the proof H of MSk(tac) = ιSk(M(tac)) only
consists of applications of taclets tac′, and that the concerned taclets tac′ do
not contain skolem symbols. Then for each instance φ = κ(M(tac)) of the
meaning formula M(tac) there is a proof Hφ.

Proof. W.l.o.g. we may assume that ιSk and κ are equal w.r.t. the instan-
tiations of schema variables of type Variable. Each taclet application within
H can then be replaced with the proof tree fragment that is obtained from

20

Bubel, Roth, Rümmer

Lem. 6.4, for a σ that substitutes skolem expressions sSk(. . .) = ιSk(sv) with
the concrete instantiation κ(sv), i.e. in a way such that σ(MSk(tac)) = φ. 2

6.2 Treatment of Decomposition Rules

Lem. 6.4 of the last section is not directly applicable to applications of the
taclets D�sSk

, D�
sSk

(Sect. 5.3), as these taclets contain statement skolem sym-
bols sSk and Dec(sSk). If these symbols are replaced with arbitrary Java state-
ments by the application of a substitution σ (as introduced in the previous
section), then the obtained taclet will furthermore be unsound in general.

We circumvent these problems by constructing particular substitutions σ
of the symbols sSk and Dec(sSk) with the property that σ(D�sSk

), σ(D�
sSk

) are
sound taclets, so that subsequently Lem. 6.4 can be applied for obtaining a
proof tree.

Lemma 6.6 Suppose that σ is a substitution that replaces all skolem symbols
of a formula ψ, and sSk is a skolem symbol for statements. Then there is a
substitution σ′ that differs from σ only in the symbols sSk, Dec(sSk), such that

(i) σ′(D�sSk
), σ′(D�

sSk
) are sound taclets

(ii) There is a proof tree (fragment) whose root is `σ(ψ), such that the only
goal left is `σ′(ψ).

Referring to this lemma it is possible to formulate an analogue of Lem. 6.4
for decomposition taclets:

Lemma 6.7 (Lifting of Decompositions) Suppose that RD is a rule that
is described by a decomposition taclet D (D = D�sSk

or D = D�
sSk

). If an
instance of RD is given by

P
Q

and σ′ is a substitution of skolem symbols as in Lem. 6.6 w.r.t. D, then there
is a proof tree of σ′(Q), whose only goal left is the sequent σ′(P).

Proof. First the application of D is replaced with an application of the
taclet σ′(D), which is sound by Lem. 6.6, (i) (this substitutes certain oc-
currences of sSk, Dec(sSk) within P and Q). Subsequently Lem. 6.4 can be
applied to the resulting rule application w.r.t. σ′. 2

Corollary 6.8 Suppose that the proof H of MSk(tac) = ιSk(M(tac)) only
consists of applications of taclets tac ′ that do not contain skolem symbols,
and of applications of decomposition taclets. Then for each instance φ =
κ(M(tac)) of the meaning formula M(tac) there is a proof Hφ.

Proof. σ is chosen as in the proof of Cor. 6.5. By repeated application of
Lem. 6.6, (ii) it is possible to construct a proof tree with root sequent `φ and
a single goal `σ′(MSk(tac)), with a substitution σ′ that is chosen according
to Lem. 6.6 for each skolem symbol sSk for statements.

21

Bubel, Roth, Rümmer

It is then possible to construct a closed proof tree of ` σ′(MSk(tac)) by
transforming H: Each taclet application within H is replaced with the proof
tree fragment that is obtained from Lem. 6.4 or Lem. 6.7 (according to the
kind of the taclet). 2

7 Conclusions

In this paper, we have outlined how to ensure correctness of derived taclets.
Because of limited space, we have only sketched the basic idea and covered
only some few kinds of schema variables. The presented concept is completely
integrated in the taclet-based KeY prover, which also supports a bigger class
of possible JavaCardDL taclets.

As future work, it remains

• to generalise the concept of skolemisation of meaning formulas,

• to study quantified first-order logics with skolemised statements as ‘atomic’
programs, and

• to explore further areas of application, as for example, proofs of program
transformation properties.

Taclets are a simple but powerful concept. By their syntactic and semantic
simplicity, users are enabled to write new rules and add them to the system
easily. We have shown that, despite this fact, the correctness of the rule base
can be efficiently ensured—even for a special purpose logic like JavaCardDL.

Acknowledgements

We would like to thank Martin Giese and Steffen Schlager for useful com-
ments on earlier versions of this paper, as well as Bernhard Beckert and P.H.
Schmitt for fruitful discussions. Also we want to thank the anonymous referees
and workshop organisers.

References

[1] Ahrendt, W., T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager and P. H. Schmitt, The KeY tool, Software
and System Modeling 4 (2005), pp. 32–54.

[2] Ahrendt, W., A. Roth and R. Sasse, Automatic validation of transformation
rules for Java verification against a rewriting semantics, in: G. Sutcliffe and
A. Voronkov, editors, Proceedings, 12th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Montego Bay, Jamaica,
LNCS 3835 (2005), pp. 412–426.

[3] Beckert, B., A Dynamic Logic for the Formal Verification of Java Card
Programs, in: I. Attali and T. Jensen, editors, Java on Smart Cards:

22

Bubel, Roth, Rümmer

Programming and Security. Revised Papers, Java Card 2000, International
Workshop, Cannes, France, LNCS 2041 (2001), pp. 6–24.

[4] Beckert, B., M. Giese, E. Habermalz, R. Hähnle, A. Roth, P. Rümmer and
S. Schlager, Taclets: a new paradigm for constructing interactive theorem
provers, Revista de la Real Academia de Ciencias Exactas, F́ısicas y Naturales,
Serie A: Matemáticas 98 (2004), special Issue on Symbolic Computation in
Logic and Artificial Intelligence.

[5] Beckert, B., R. Hähnle and P. H. Schmitt, editors, “Verification of Object-
Oriented Software: The KeY Approach,” LNCS 4334, Springer-Verlag, 2007.

[6] Beckert, B., S. Schlager and P. H. Schmitt, An improved rule for while
loops in deductive program verification, in: K.-K. Lau, editor, Proceedings,
Seventh International Conference on Formal Engineering Methods (ICFEM),
Manchester, UK, LNCS 3785 (2005), pp. 315–329.

[7] Giese, M., Taclets and the KeY prover, in: C. Lüth and D. Aspinall, editors,
Intl., Workshop on User Interfaces for Theorem Provers, UITP 2003, Rome,
Italy, Electronic Notes in Theoretical Computer Science (2004), to appear.

[8] Gosling, J., B. Joy, G. Steele and G. Bracha, “The Java Language Specification,”
Addison Wesley, 2000, 2nd edition.

[9] Habermalz, E., “Ein dynamisches automatisierbares interaktives Kalkül für
schematische theoriespezifische Regeln,” Ph.D. thesis, Universität Karlsruhe
(2000).

[10] Harel, D., Dynamic Logic, in: D. Gabbay and F. Guenthner, editors, Handbook
of Philosophical Logic, Vol. II, Reidel, 1984 pp. 497–604.

[11] Jacobs, B., J. van den Berg, M. Huisman, M. van Berkum, U. Hensel
and H. Tews, Reasoning about Java classes, in: Proceedings, Object-Oriented
Programming Systems, Languages and Applications (OOPSLA’98), Vancouver,
Canada, 1998, pp. 329–340.

[12] Rümmer, P., Ensuring the soundness of taclets – Constructing proof obligations
for Java Card DL taclets, Studienarbeit, Fakultät für Informatik, Universität
Karlsruhe (2003).

[13] Sasse, B., Formal correctness of a program logic calculus for the deductive
verification of Java programs, Studienarbeit, Fakultät für Informatik,
Universität Karlsruhe (2002).

[14] Sun Microsystems, Inc., Palo Alto/CA, “Java Card 2.0 Language Subset and
Virtual Machine Specification,” (1997).

[15] Trentelman, K., Proving correctness of javacard dl taclets using bali., in: SEFM,
2005, pp. 160–169.

[16] von Oheimb, D., Axiomatic semantics for Javalight , in: S. Drossopoulou,
S. Eisenbach, B. Jacobs, G. T. Leavens, P. Müller and A. Poetzsch-Heffter,
editors, Proceedings, Formal Techniques for Java Programs, Workshop at
ECOOP’00, Cannes, France, 2000.

23

Bubel, Roth, Rümmer

[17] von Oheimb, D., “Analyzing Java in Isabelle/HOL,” Ph.D. thesis, Institut für
Informatik, Technische Universität München (2001).

[18] Widmann, F., “Crossverification of While Loop Semantics,” Diplomarbeit,
Universität Karlsruhe, Fakultät für Informatik (2006).

24

	Introduction
	Dynamic Logic

	Taclets
	Outline of Bootstrapping Taclets
	Meaning Formulas of Taclets
	Construction of Proof Obligations
	Skolem symbols
	From Meaning Formula to Proof Obligation
	Decomposition Rules

	Main Result
	Treatment of Taclets
	Treatment of Decomposition Rules

	Conclusions
	References

