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Abstract. In recent work, we have proposed an SMT-LIB theory of
heap tailored to Horn-clause verification. The theory makes it possible
to factor out the treatment of heap from verification systems, and lift
approaches to handle heap-allocated data-structures in verification to a
language-independent level. This paper gives an overview of the theory,
and presents ongoing research on decision and interpolation procedures.

1 Introduction

Tools for formal program verification are often engineered making use of var-
ious existing libraries and frameworks; for instance, compiler front-ends, con-
straint and SMT solvers, and more recently solvers for Constrained Horn Clauses
(CHCs). This way, the effort required to construct verification systems can be
reduced significantly, a wider range of languages or applications can be covered,
and the quality and performance of the resulting tool is improved. In this paper,
we consider the use of Constrained Horn Clauses, which represent an interme-
diate verification language tailored to the analysis of safety properties, and can
be solved by CHC solvers such as Spacer [20] or Eldarica [16]; for an overview
see [3, 28]. These solvers in turn utilise theorem provers or SMT solvers such as
Z3 [23] or Princess [27] to reason about the constraints in CHCs.

C Programs Java Programs · · ·

CHCs modulo Heap
(+ Integers, Bit-vectors, etc.)

Native SAT/Interpolation
Procedures for Heap

Encoding of Heap
as Arrays

Encoding of Heap
using Invariants [17]

Fig. 1. Program verification using the theory of heap.
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A challenging feature of languages, in this context, is the handling of heap-
allocated data-structures: such data-structures are today either represented ex-
plicitly using the theory of arrays (e.g., [19, 11]), or are transformed away with
the help of invariants or refinement types (e.g., [26, 4, 22, 17]). In [12], we moti-
vate the alternative approach of having heap as a native theory supported by
solvers, which turns CHCs into a standardised interchange format for programs
with heap data-structures. Figure 1 shows the resulting verification flow: verifi-
cation tools would take programs, for instance in C or Java, as input, and encode
them in a uniform way as CHCs modulo the theory of heap. The encoding keeps
heap operations like read, write, or allocation essentially intact, and it is up to
CHC and SMT solvers to process those operations further. CHC solvers could,
e.g., choose to encode heap into arrays, or apply invariant-based encoding.

In this paper, we present first steps of the development of native decision and
interpolation procedures for the theory of heap, covering two main reasoning
tasks needed to implement CHC solvers [29, 3]. The described procedures are
intended as a starting point and are currently largely unoptimised. We expect
that many optimisations from array solvers (e.g., [30, 9, 14, 7]) can be adapted.

1.1 Encoding Programs using the Theory of Heap

In Listing 1.1 a C program is given in order to show the intuition behind the
encoding and provide an overview of the theory. The program has a single func-
tion insertNode that allocates and initialises a list Node (as defined in line 1),
and appends it to the passed list pointed to by p.

One way to encode this program is using CHCs, and to consider the heap
as a single shared mutable data-structure. A theory of heap provides Heap and
Addr sorts, so Heap and Addr terms can be used in the CHCs just as any other
term. A diagram illustrating the effect of the CHCs is given in Figure 2. As an
example, the statement at line 4 of Listing 1.1 can be encoded using the topmost
constraint on the right-hand side of the diagram, which allocates a Node with
uninitialised fields. A CHC can then be constructed using the invariants I1 and
I2 that encode program state and the constraint C1 that encodes the transition
as I1(...) ∧ C1 → I2(...), where the dots “...” represent the program variables in
scope along with the heap term.

A complete SMT-LIB encoding of the program from Listing 1.1 is given in
Listing 1.2. Lines 1-9 show the heap declaration in SMT-LIB format, where:

– Heap and Addr are the names of the declared heap and address sorts,
– Object is the name of the selected object sort,
– Node and Object are the declared data-types,
– O Empty is the default Object term that is returned on invalid reads.

The object sort is said to be selected, because it could also be declared outside
the heap declaration and only specified here. This is not possible in this example
as one of the declared data-types (Node) has a field that points to an address on
the heap (i.e., Addr), and the address sort only becomes available with the heap
declaration.
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Listing 1.1. A C function that adds a new node to the head of a linked list.

1 s t r u c t Node { i n t data ; s t r u c t Node* next ; } ;
2
3 void insertNode ( i n t d , s t r u c t Node* p ) {
4 s t r u c t Node* n = malloc ( s i z e o f ( s t r u c t Node ) ) ;
5 n−>data = d ;
6 n−>next = p−>next ;
7 p−>next = n ;
8 }

Listing 1.2. Complete encoding of the program from Listing 1.1. The heap
declaration is given in SMT-LIB notation, while the clauses and the assertions
are given in Prolog notation. “:-” corresponds to a left implication arrow (i.e.,
“←”), and it is assumed that all variables occurring in the clauses are universally
quantified with the correct sort (i.e., ∀h : Heap. ∀p : Addr . . . .).

1 ( declare-heap
2 Heap ; declared Heap sort

3 Addr ; declared Address sort

4 Object ; chosen Object sort

5 O_Empty ; the default Object

6 ( ( Node 0) ( Object 0) ) ; ADTs

7 ( ( ( Node ( data Int ) ( next Addr ) ) ) ; Class constructors

8 ( ( O_Node ( getNode Node ) ) ; Object sort constructors

9 ( O_Empty ) ) ) )
10 ; invariant declarations

11 ( declare-fun I1 ( Heap Int Addr ) Bool ) ; <h,d,p >

12 ( declare-fun I2 ( Heap Int Addr Addr ) Bool ) ; <h,d,p,n >

13 ( declare-fun I3 ( Heap Int Addr Addr ) Bool ) ; <h,d,p,n >

14 ( declare-fun I4 ( Heap Int Addr Addr Addr ) Bool ) ; <h,d,p,n,t >

15 ( declare-fun I5 ( Heap Int Addr Addr ) Bool ) ; <h,d,p,n >

16 ( declare-fun I6 ( Heap Int Addr ) Bool ) ; <h,d,p >

17
18 ; Clauses (given in Prolog notation for readability)

19 I1 ( h,d,p ) :- h = emptyHeap .
20
21 I2 (h ' ,d,p,n ) :- I1 ( h,d,p ),
22 h ' = newHeap ( alloc ( h, O_Node ( _nonDet ) ) ) ,
23 n = newAddr ( alloc ( h, O_Node ( _nonDet ) ) ) .
24
25 I3 (h ' ,d,p,n ) :- I2 ( h,d,p,n ),
26 h ' = write ( h,n,
27 O_Node ( Node ( d,next ( getNode ( read ( h,n ) ) ) ) ) ) .
28
29 I4 ( h,d,p,n,t ) :- I3 ( h,d,p,n ), t = next ( getNode ( read ( h,p ) ) ) .
30
31 I5 (h ' ,d,p,n ) :- I4 ( h,d,p,n,t ),
32 h ' = write ( h,n,
33 O_Node ( Node ( data ( getNode ( read ( h,n ) ) ) ,t ) ) ) .
34
35 I6 (h ' ,d, p ) :- I5 ( h,d,p,n ),
36 h ' = write ( h,p,
37 O_Node ( Node ( data ( getNode ( read ( h,p ) ) ) ,n ) ) ) .
38
39 ; Assertions

40 false :- I2 ( h,d,p,n ), ! is_O_Node ( read ( h,n ) ) .
41 false :- I3 ( h,d,p,n ), ! is_O_Node ( read ( h,p ) ) . ; <- will fail

42 false :- I4 ( h,d,p,n,t ), ! is_O_Node ( read ( h,n ) ) .
43 false :- I5 ( h,d,p,n ), ! is_O_Node ( read ( h,p ) ) . ; <- will fail
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Fig. 2. The boxes on the left-hand side correspond to invariants encoding the state
of a program at a certain point. E.g., I1 is the entry point of insertNode, where the
only relevant variables in scope are the arguments of the function, and the heap. The
constraints on the right-hand side correspond to executing program statements. Black
arrows visualise the execution of the program. h is the Heap term representing the
heap. A h′ term in the constraints is equal to the h term of the next invariant. An
underscore represents a term that can have any value (of the correct sort within the
context). t is a fresh Addr variable. A blue arrow visualises where a pointer is pointing
to, and a red-dashed line symbolises an Object .

Specifying a single object sort makes it possible to have a unified sort on
the heap, and the flexibility of algebraic data-types (ADTs) simplifies encoding
many programming language types.

Lines 11-16 declare the invariants which are used in the CHCs. The rest of
the encoding shows the CHCs in Prolog notation as explained in Figure 2.

The assertions at lines 36-39 check the validity and type safety of heap ac-
cesses. These make use of testers that come with algebraic data-types. It can
be seen that in this case the assertions at lines 37 and 39 will fail, because the
first system transition at line 19 starts with the emptyHeap, which has no valid
addresses that p can point to.

2 Preliminaries

2.1 The Theory of Heap

Signature Functions and predicates of the theory are given in Table 1.

nullAddr returns an Addr which is unallocated (or invalid) in all heaps.
emptyHeap returns the Heap that is unallocated everywhere.
allocate takes a Heap and an Object , and returns an AllocationResultHeap.

AllocationResultHeap is an ADT representing the pair 〈Heap,Addr〉. The
returned Heap contains the passed Object at Addr .
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nullAddr : () → Addr
emptyHeap : () → Heap

allocate : Heap ×Object → Heap ×Addr (AllocationResultHeap)
valid : Heap ×Addr → Boolean
read : Heap ×Addr → Object
write : Heap ×Addr ×Object → Heap

Table 1. Functions and predicates of the theory of heap.

I(Heap) = I(Object)∗

I(Addr) = N

I(nullAddr) = 0
I(emptyHeap) = ε

I(read)(h, a) =

{
h[a− 1] if 0 < a ≤ |h|,
defObj otherwise.

I(write)(h, a, o) =

{
h[a− 1 7→ o] if 0 < a ≤ |h|,
h otherwise.

I(allocate)(h, o) = 〈h++ [o], |h|+ 1〉
I(valid)(h, a) = 0 < a ≤ |h|

Table 2. Interpretation of sorts, functions, and predicates in the theory of heap. The
symbol ++ denotes concatenation of two sequences.

valid is the predicate checking if the passed Addr is allocated in the passed Heap.
If it is allocated then we say that an access is valid ; it is invalid otherwise.

read returns the Object at the passed Addr of the passed Heap on a valid access.
If the access is invalid, then the specified default Object is returned instead
(line 5 in Listing 1.2).

write, if the access is valid, returns a heap where the passed Addr of the passed
Heap is updated with the passed Object , with all other locations unchanged.
If the access is invalid, the passed heap is returned without any changes.

Semantics A many-sorted signature can be defined as the triple L = 〈S,Σf , Σp〉
where S is a set of sorts, Σf is a set of function symbols and Σp is a set of relation
symbols. A structure is a pair 〈D, I〉 where D is the domain (consisting of disjoint
subsets for each sort in S), and I is an interpretation function that associates
each f ∈ Σf and p ∈ Σp to some n-ary function or relation. Arguments of both
f and p and the values of f are specified using the sorts in S.

The heap is interpreted as an ordered sequence of zero or more heap objects.
The sort Object can in principle be any selected sort, but will in most cases be an
ADT, and be interpreted as the set of constructor terms of the ADT. Addresses
(Addr) are interpreted as natural numbers. h[k] denotes the (k + 1)–th heap
object, where k ∈ N. Formal definitions are given in Table 2.
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2.2 An Interpolating Sequent Calculus for First-Order Logic
modulo Integers

We formulate our decision procedure for heap formulas on top of a simple logic
of Presburger arithmetic constraints combined with uninterpreted predicates,
introduced in [27] and extended in [5, 6] to support Craig interpolation. Since
the logic does not support functions, the heap operators (and also ADTs) have
to be encoded using relations, with explicit rules for functional consistency; this
setting closely models the situation in SMT solvers, where functions are handled
by a separate theory implementing congruence closure.

Let x range over an infinite set X of variables, p over a set P of uninterpreted
predicates with fixed arity, and α over the set Z of integers. The syntax of terms
and formulae is defined by the following grammar:

φ ::= t = 0 || t ≤ 0 || p(t, . . . , t) ||φ ∧ φ ||φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ

t ::= α ||x ||αt+ · · ·+ αt

The symbol t denotes terms of linear arithmetic. Substitution of a term t for a
variable x in φ is denoted by [x/t]φ; we assume that variable capture is avoided
by renaming bound variables as necessary. For simplicity, we sometimes write
s = t as a shorthand of s− t = 0, and the inequality s ≤ t for s− t ≤ 0. The
abbreviation true (false) stands for the equality 0 = 0 (1 = 0), and the formula
φ → ψ abbreviates ¬φ ∨ ψ. Semantic notions such as structures, models, satis-
fiability, and validity are defined as is common (e.g., [13]), but we assume that
evaluation always happens over the universe Z of integers.

A Sequent Calculus for the Base Logic For checking whether a formula
in the base logic is satisfiable or valid, we work with a simplified version of the
calculus presented in [27], a part of which is shown in Table 3. If Γ , ∆ are sets of
formulae, then Γ ` ∆ is a sequent. A sequent is valid if the formula

∧
Γ →

∨
∆

is valid. Proofs are trees growing upward, in which each node is labelled with
a sequent, and each non-leaf node is related to the node(s) directly above it
through an application of a calculus rule. A proof is closed if it is finite and all
leaves are justified by an instance of a rule without premises. Soundness of the
calculus implies that the root of a closed proof is a valid sequent.

In addition to propositional and quantifier rules in Table 3, the calculus in
[27] also includes rules for equations and inequalities in Presburger arithmetic;
the details of those rules are not relevant for this paper.

Craig Interpolation in the Base Logic Given formulas A and B such that
A∧B is unsatisfiable, Craig interpolation can determine a formula I such that the
implications A⇒ I and B ⇒ ¬I hold, and non-logical symbols in I occur in both
A and B [10]. An interpolating version of our sequent calculus has been presented
in [5, 6], and is summarised in Table 4. To keep track of the partitions A,B, the
calculus operates on labelled formulas bφcL (with L for “left”) to indicate that
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Γ, φ ` ∆ Γ,ψ ` ∆

Γ, φ ∨ ψ ` ∆
∨-left

Γ, φ ` ∆ Γ,ψ ` ∆

Γ ` φ ∧ ψ,∆ ∧-right

Γ, φ, ψ ` ∆

Γ, φ ∧ ψ ` ∆
∧-left

Γ ` φ, ψ,∆

Γ ` φ ∨ ψ,∆ ∨-right

Γ ` φ,∆

Γ,¬φ ` ∆
¬-left

Γ, φ ` ∆

Γ ` ¬φ,∆ ¬-right

∗
Γ, φ ` φ,∆

close

Γ, [x/t]φ, ∀x.φ ` ∆

Γ,∀x.φ ` ∆
∀-left

Γ, [x/x′]φ ` ∆

Γ,∃x.φ ` ∆
∃-left

Γ ` [x/t]φ, ∃x.φ,∆
Γ ` ∃x.φ,∆ ∃-right

Γ ` [x/x′]φ,∆

Γ ` ∀x.φ,∆ ∀-right

Table 3. A selection of the basic calculus rules for propositional and first-order logic.
In the rules ∃-left and ∀-right, x′ is a variable that does not occur in the conclusion.

φ is derived from A, and similarly formulas bφcR for φ derived from B. If Γ ,
∆ are finite sets of L/R-labelled formulas, and I is an unlabelled formula, then
Γ ` ∆ I I is an interpolating sequent.

Semantics of interpolating sequents is defined using the projections ΓL =def

{φ | bφcL ∈ Γ} and ΓR =def {φ | bφcR ∈ Γ}, which extract the L/R-parts
of a set Γ of labelled formulae. A sequent Γ ` ∆ I I is valid if 1. the se-
quent ΓL ` I,∆L is valid, 2. the sequent ΓR, I ` ∆R is valid, and 3. the vari-
ables and uninterpreted predicates/functions in I occur in both ΓL ∪ ∆L and
ΓR ∪∆R. As a special case, note that the sequent bAcL, bBcR ` ∅ I I is valid
iff I is an interpolant of A ∧ B. Soundness of the calculus guarantees that the
root of a closed interpolating proof is a valid interpolating sequent.

To solve an interpolation problem A ∧B, a prover typically first constructs
a proof of A,B ` ∅ using the ordinary calculus from Table 3. Once a closed
proof has been found, it can be lifted to an interpolating proof: this is done by
replacing the root formulas A,B with bAcL, bBcR, respectively, and recursively
assigning labels to all other formulas as defined by the rules from Table 4. Then,
starting from the leaves, intermediate interpolants are computed and propagated
back to the root, leading to an interpolating sequent bAcL, bBcR ` ∅ I I.

2.3 Reduction for the Theory of Algebraic Data-Types

The heap theory uses ADTs to represent the objects stored on a heap, which
means that a decision procedure for heap formulas also has to handle ADTs.
For this purpose, in principle any existing algorithm for ADT formulas can be
used, e.g., [18, 2, 31, 25]. In this paper, we make use of the reduction approach for
ADT formulas defined in [15], which translates a quantifier-free ADT formula to
an equisatisfiable formula in the combined theory of equality and uninterpreted
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Γ, bφcL ` ∆ I I Γ, bψcL ` ∆ I J

Γ, bφ ∨ ψcL ` ∆ I I ∨ J
∨-leftL

Γ, bφcR ` ∆ I I Γ, bψcR ` ∆ I J

Γ, bφ ∨ ψcR ` ∆ I I ∧ J
∨-leftR

Γ, bφcD, bψcD ` ∆ I I

Γ, bφ ∧ ψcD ` ∆ I I
∧-leftD

Γ ` bφcD,∆ I I

Γ, b¬φcD ` ∆ I I
¬-leftD

∗
Γ, bφcL ` bφcR,∆ I φ

closeLR
∗

Γ, bφcR ` bφcR,∆ I true
closeRR

Γ, b[x/t]φcR, b∀x.φcR ` ∆ I I

Γ, b∀x.φcR ` ∆ I ∃Lt I
∀-leftR

Γ, b[x/x′]φcD ` ∆ I I

Γ, b∃x.φcD ` ∆ I I
∃-leftD

Table 4. A selection of interpolating rules for propositional and first-order logic. Pa-
rameter D stands for either L or R. The quantifier ∃Lt denotes existential quantification
over all free variables occurring in t but not in ΓR ∪∆R. In ∃-leftD and ∀-rightD,
x′ is a fresh variable that does not occur in the conclusion.

functions (EUF) and linear integers (LIA). An EUF+LIA formula can be trans-
lated further to a formula in the base logic from the previous section, and this
way also Craig interpolants can be computed for ADT formulas.

The details of [15] are not important for the present paper, and we only
assume that a function adtReduction is available that maps quantifier-free ADT
formulas to equisatisfiable formulas in the base language.

3 A Decision Procedure for the Theory of Heap

We now define our calculus and decision procedure for quantifier-free heap for-
mulas. Similarly to the approach chosen in [15, 1], the procedure consists of two
components: a set of rewriting rules for translating heap formulas to a core lan-
guage (Section 3.2, Table 5), and a set of sequent calculus rules for handling the
core language (Section 3.3, Table 6).

3.1 The Core Language for Heap Formulas

Our core language for heap constraints is defined on top of first-order logic
modulo integers, as introduced in Section 2.2. Like in [15, 1], in the core language
only integer terms are used, and the sorts Heap and Addr are both replaced with
Int ; in case of Addr , the range of values is restricted to non-negative numbers
by adding explicit domain predicates for all address variables in a formula. The
object sort Object , and all other ADT sorts, are mapped to integers as in [15].

Our core language provides four predicates specific for heap constraints:
heapSize(h, n) expresses that heap h contains n allocated locations; predicate
allocHeap(h, o, h′) expresses that allocating a fresh address in heap h, and stor-
ing object o at this address, yields the new heap h′; read(h, a, o) expresses that
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nullAddr = a _ 0 = a

emptyHeap = h _ heapSize(h, 0)

allocate(h, o). 1 = h′ _ allocHeap(h, o, h′) ∧
∃x.(heapSize(h, x− 1) ∧ heapSize(h′, x) ∧ read(h′, x, o))

allocate(h, o). 2 = a _ heapSize(h, a− 1)

read(h, a) = o _ read(h, a, o) ∧
∃x.(heapSize(h, x) ∧ ((0 < a ∧ a ≤ x) ∨ defObj = o)))

write(h, a, o) = h′ _
write(h, a, o, h′) ∧
∃x.(heapSize(h, x) ∧ heapSize(h′, x) ∧

(0 ≥ a ∨ a > x ∨ (0 < a ∧ a ≤ x ∧ read(h′, a, o))))

valid(h, a) _ ∃x.(heapSize(h, x) ∧ 0 < a ∧ a ≤ x)

¬valid(h, a) _ ∃x.(heapSize(h, x) ∧ (0 ≥ a ∨ a > x))

h 6= h′ _

∃x, x′, a, o, o′.
heapSize(h, x) ∧ heapSize(h′, x′) ∧

(x 6= x′ ∨
(x = x′ ∧ 0 < a ∧ a ≤ x ∧
read(h, a, o) ∧ read(h′, a, o′) ∧ o 6= o′))


Table 5. Rewriting rules for translation of flat heap formulas to the core language.
The rules only apply in positive positions. In the rules, a is an address variable, h, h′

are heap variables, and o, o′ are heap object variables.

Γ ` h1 = h2,∆ Γ, . . . , t = t′ ` ∆

Γ, heapSize(h1, t), heapSize(h2, t
′) ` ∆

heap-size-fc

Γ ` h1 = h2,∆ Γ, . . . ` a = a′,∆ Γ, . . . , a = a′, o = o′ ` ∆

Γ, read(h1, a, o), read(h2, a
′, o′) ` ∆

read-fc

Γ ` h2 = h3,∆ Γ, . . . , read(h1, a
′, o′) ` a = a′,∆ Γ, . . . , a = a′ ` ∆

Γ,write(h1, a, o, h2), read(h3, a
′, o′) ` ∆

row↓

Γ ` h1 = h3,∆ Γ, . . . , read(h2, a
′, o′) ` a = a′,∆ Γ, . . . , a = a′ ` ∆

Γ,write(h1, a, o, h2), read(h3, a
′, o′) ` ∆

row↑

Γ ` h2 = h3,∆ Γ, . . . , read(h1, a
′, o′) ` a = a′,∆ Γ, . . . , a = a′ ` ∆

Γ, allocHeap(h1, o, h2), heapSize(h2, a), read(h3, a
′, o′) ` ∆

roa↓

Γ ` h1 = h3,∆ Γ, . . . , read(h2, a
′, o′) ` a = a′,∆ Γ, . . . , a = a′ ` ∆

Γ, allocHeap(h1, o, h2), heapSize(h2, a), read(h3, a
′, o′) ` ∆

roa↑

Table 6. Sequent calculus rules for heap formulas in the core language. The rules are
only applicable if the equation in the first premise follows from equations between heap
variables in Γ ; i.e., the compared terms are in the same equivalence class constructed
by congruence closure. The dots . . . stand for the matched literals in the conclusion.
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reading from address a in heap h yields object o; and write(h, a, o, h′) expresses
that storing object o at address a in heap h yields the new heap h′.

The intended semantics of the four predicates essentially follows the heap
semantics in Section 2.1, which in particular means that reading from unallocated
addresses yields some default value defObj , and that writing to unallocated
addresses does not change a heap. The null address is, following the standard
convention, represented by 0, and the address allocated by allocHeap(h, a, o, h′)
is the next free address in h, and coincides with the size of the heap h′.

In addition to the four heap predicates, the core language also provides the
predicates necessary to represent ADTs; the details of this reduction are given
in [15], but the core language is essentially agnostic of the object representation.

3.2 Translation to the Core Language

For sake of presentation, we make several simplifying assumptions when defining
the translation of (quantifier-free) heap formulas φ to the core language. (i) We
assume that φ has been brought into a flat form upfront. A formula φ is flat if
function symbols (in particular the functions in Table 1) only occur in equations
of the form g(x1, . . . , xn) = x0 (where x0, . . . , xn do not contain functions),
and only in positive positions (under an even number of negations). We further
assume that (ii) φ is in negation normal form, and that (iii) allocate only occurs in
the form allocate(. . .). 1 or allocate(. . .). 2, i.e., the result of allocation is directly
projected to the new heap or the allocated address. Finally, we assume that
(iv) the object domain Object is infinite, so that the mapping to Int defined
in [15] does not introduce any side conditions. The assumptions (i)–(iii) can be
established by rewriting the considered heap formula. Flatness can be established
at the cost of introducing a linear number of additional variables.

Given a formula φ satisfying those assumptions, and containing variables
x1, . . . , xl with sorts σ1, . . . , σl, the translation to a formula φ̃ in the core language
is then defined as follows:

φ̃ =def adtReduction

(
heapRewr(φ) ∧

l∧
i=1

Inσi(xi)

)
(1)

In this definition, heapRewr is the function defined by the rewriting rules in
Table 5, adtReduction is the ADT reduction defined in [15], and Inσ(x) are
domain constraints defined as:

Inσ(x) =def


true if σ = Heap

x ≥ 0 if σ = Addr

true otherwise

(2)

Note that, as a slight abuse of notation, the formulas φ and φ̃ contain the same
variables x1, . . . , xl, we only interpret the variables in φ̃ as integer variables.
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Example 1. Consider the following formula φ = A ∧B, which is unsatisfiable in
the theory of heap storing integers as heap objects:

valid(h, a) ∧ write(h, a, 42) = h′︸ ︷︷ ︸
A

∧ read(h′, a) = 43︸ ︷︷ ︸
B

The formula contains a write that stores 42 at a valid address of h, so that read
from the same address of the updated heap h′ must return 42. If the rewriting
rules are applied to φ using the definition from (1), we obtain the following
formula φ̃ in the core language; adtReduction has no effect as there are no ADT
functions nor predicates:

a ≥ 0 ∧ ∃x.(heapSize(h, x) ∧ 0 < a ∧ a ≤ x) ∧(
write(h, a, 42, h′) ∧ ∃x.(heapSize(h, x) ∧ heapSize(h′, x) ∧

(0 ≥ a ∨ a > x ∨ (0 < a ∧ a ≤ x ∧ read(h′, a, 42))))

)
∧(

read(h′, a, 43) ∧ ∃x.(heapSize(h′, x) ∧ ((0 < a ∧ a ≤ x) ∨ defObj = 43)))
) (3)

3.3 The Sequent Calculus for the Core Language

Table 6 shows the additional calculus rules (beyond the rules discussed in Sec-
tion 2.2) needed to reason about heap formulas in the core language: two rules
establishing functional consistency of the relations heapSize and read , two rules
capturing the read-over-write (row) axiom of heaps, and two rules capturing the
read-over-allocation (roa) axiom. All of the rules have a first premise that asserts
the equality of multiple heap terms; such equalities are handled explicitly since
the calculus never rewrites predicate literals.

Functional consistency is not needed for the relations write and allocHeap,
since the read-over-write and read-over-allocation rules are sufficient to reason
about the heaps produced by those relations. We do not need rules encoding
extensionality of heap either, since the only way to observe heap (dis-)equality
is through negated equations h 6= h′, which are already transformed away by the
last rewriting rule in Table 5.

The row↓ and row↑ rules can be used to move a read literal over a write lit-
eral, provided that the address a′ that is read from is different from the address a
written to. The second premise of the rules represents the case that a 6= a′, and
introduces a new read literal; the third premise represents the a = a′ case. Inter-
estingly, it is not necessary to check whether the addresses a, a′ are valid in the
considered heaps, since writing to an invalid address does not mutate a heap.

The rules roa↓ and roa↑ describe the same transformation for the combi-
nation of a read with an allocHeap literal.

Example 2. We continue Example 1, and show how to construct a proof tree for
(3). For sake of presentation, we first simplify (3) by introducing Skolem symbols
for the quantified variables, and contextual simplification, leading to:

heapSize(h, n) ∧ heapSize(h′, n) ∧ 0 < a ∧ a ≤ n ∧
write(h, a, 42, h′) ∧ read(h′, a, 42) ∧

}
A′

read(h′, a, 43) ∧ heapSize(h′, n′) ∧ ((0 < a ∧ a ≤ n′) ∨ defObj = 43)
}
B′
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We can then prove unsatisfiability of A′ ∧ B′ by constructing a proof starting
with the sequent A′, B′ ` ∅. The main step in the proof is the application of
the rule read-fc for functional consistency of read :

∗
. . . ` h′ = h′

∗
. . . ` a = a

∗
a = a, 42 = 43 `

read(h′, a, 42), read(h′, a, 43), . . . `
read-fc

A′, B′ ` ∅ ∧-left∗
(4)

3.4 Properties of the Calculus

The following theorem observes soundness and completeness of our calculus,
when applied to a formula that has been rewritten to the core language. In
addition, we can observe that systematic application of the rules terminates (in
the sense that no new formulas can be added anymore) because the rules in
Table 6 do not introduce new terms, and do not remove atoms, and therefore
only finitely many atoms will be generated. This implies that the calculus even
represents a decision procedure.

Theorem 1. Suppose φ is a heap formula satisfying the assumptions in Sec-
tion 3.2, and φ̃ is the corresponding formula in the core language. Then φ is
unsatisfiable if and only if a closed proof of the sequent φ̃ ` ∅ exists.

Proof. “⇐” This is the soundness direction. For a proof by contradiction, assume
that φ is satisfiable, i.e., there is a variable assignment β satisfying φ in the
structure defined in Section 2.1. There are then bijections bobj : I(Object) → Z

and bhp : I(Heap)→ Z, and we can construct a solution ((Z, Ĩ), β̃) of φ̃:

Ĩ(heapSize) = {(n, |b−1hp (n)|) | n ∈ Z}

Ĩ(allocHeap) = {(n,m, bhp(b−1hp (n) ++ [b−1obj(m)])) | n,m ∈ Z}

Ĩ(read) = {(n, a, bobj(b−1hp (n)[a− 1])) | n ∈ Z and a ∈ {1, . . . , |b−1hp (n)|}} ∪

{(n, a, bobj(defObj )) | n ∈ Z and a 6∈ {1, . . . , |b−1hp (n)|}}

Ĩ(write) =

{
(n, a, o, bhp(b−1hp (n)[a− 1 7→ b−1obj(o)]))

| n, o ∈ Z and a ∈ {1, . . . , |b−1hp (n)|}

}
∪

{(n, a, o, n) | n, o ∈ Z and a 6∈ {1, . . . , |b−1hp (n)|}}

β̃(x) = bobj(β(x)) if x : Object

β̃(x) = bhp(β(x)) if x : Heap

β̃(x) = β(x) if x : Addr

The translation of other variables and relations is as defined in [15].
By checking the cases in Table 5, we can see that ((Z, Ĩ), β̃) is indeed a

solution of φ̃, and that the sequent φ̃ ` is therefore counter-satisfiable. It can
also be checked that the rules preserve this counter-model: whenever ((Z, Ĩ), β̃) is
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a counter-model of the conclusion of a rule application, it will also be a counter-
model of at least one of the premises. This means that no closed proof can exist.

“⇒” This is the completeness direction. Suppose φ is a formula so that no
closed proof exists for the sequent φ̃ ` ∅; we show that φ is satisfiable. For this,
assume that P is a proof-attempt for φ̃ ` ∅ with a branch that cannot be closed;
that Γ ` ∆ is the last sequent on that branch; and that the rules from Table 6
(and the rest of the calculus) have been applied exhaustively on the branch.
Since systematic application of the rules terminates, only finitely many atoms
with the predicates P = {heapSize, read ,write, allocHeap} can be generated.

We extract a solution of φ from Γ ` ∆. First consider the sub-sequent Γ ′ ` ∆
of Γ ` ∆ that is obtained by removing the P -atoms from Γ ; since the calculus
from Section 2.2 has been applied exhaustively, a counter-model (Z, I ′), β′ of
Γ ′ ` ∆ exists.

Heap variables h can only occur in equations h = h′ or as arguments of P -
atoms in Γ . Define an equivalence relation h ' h′ as the reflexive and transitive
closure of equations between heap variables in Γ . We write [h] for the class of
variable h, and R([h]) = {(valβ′(a), valβ′(o)) | read(h′, a, o) ∈ Γ, h′ ' h} for
the reads in Γ from [h]. Since the rule read-fc has been applied exhaustively,
R([h]) will contain at most one value valβ′(o) for each address valβ′(a), i.e., the
data read is consistent.

Whenever R([h]) 6= ∅, then Γ also contains an atom heapSize(h′, t) for some
h′ ' h, since the rules in Table 5 are designed in such a way that every read
is accompanied by heapSize, and heapSize-atoms also exist for the pre- and the
post-heap of every write and allocHeap. The rule heap-size-fc ensures that the
elements of [h] are assigned consistent sizes, so that we can set

S([h]) =

{
valβ′(t) if heapSize(h′, t) ∈ Γ for some h′ ' h
0 otherwise .

As shown in [15], from the counter-model (Z, I ′), β′ it is possible to recon-
struct ADT terms, and we can define a bijection bobj : I(Object) → Z (where
I is the interpretation defined in Section 2.1) such that whenever the Object-
ADT-term t is extracted for valβ′(o), for some variable o of sort Object in φ,
then bobj(t) = valβ′(o). We can then define H([h]) = [t1, . . . , tS([h])] as the heap
represented by [h], with

ti =

{
b−1obj(v) if there is (i, v) ∈ R([h])

defObj otherwise .

The solution of φ is the variable assignment β, defined by

β(x) =


H([x]) if x : Heap

b−1obj(valβ′(x)) if x : Object

β′(x) if x : Addr

β(x) (as in [15] for other ADT variables) .
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To see that β indeed satisfies φ, translate β to a structure ((Z, Ĩ), β̃) as in “⇐”.
Because the rules row↓,row↑,roa↓,roa↑ have been applied exhaustively, this
structure is a counter-model of Γ ` ∆. By checking the rules of the calculus
individually, we can further see that whenever ((Z, Ĩ), β̃) is a counter-model
of one of the premises of a rule application, it is also a counter-model of the
conclusion, and therefore a model of φ̃. ut

4 Craig Interpolation in the Theory of Heap

It is well-known that the (standard) quantifier-free theory of arrays does not
admit Craig interpolation: in some cases all interpolants for an unsatisfiable,
quantifier-free conjunction A∧B will need quantifiers [21]. The same observation
applies to the theory of heap. For software verification, however, even imperfect
interpolation procedures are useful, and the interesting question arises how the
interpolating calculus from Section 2.2 can be generalised to heap formulas.

For interpolation, the conjuncts of an interpolation problem A ∧ B can be
translated to the core language independently, i.e., an interpolant Ĩ of the rewrit-
ten conjunction Ã ∧ B̃ is computed. Since Ĩ will be an interpolant in the core
language as well, it has to be mapped back to a normal heap formula I by replac-
ing the relations from Section 3.1 with the original heap functions (Section 2.1).
Whether this is possible in all cases is a question that require more research.

For interpolation in the core language, interpolating versions of the heap rules
(Table 6) are needed. We follow the approach used in [5, 1] (which in turn resem-
bles the use of theory lemmas in SMT in general), which we summarise in this
section. When translating a proof to an interpolating proof, we replace applica-
tions of the heap rules with instantiation of an equivalent theory axiom QAx .
Suppose a non-interpolating proof contains a rule application

....
Γ, Γ ′, Γ1 ` ∆1, ∆

′, ∆ · · ·

....
Γ, Γ ′, Γn ` ∆n, ∆

′, ∆

Γ, Γ ′ ` ∆′, ∆
R

....

in which Γ ′, ∆′ are the formulas assumed by the rule application, Γ,∆ are side
formulas not required or affected by the application, and Γ1, ∆1, . . . , Γn, ∆n are
newly introduced formulas in the individual branches.

The (unquantified) theory axiom Ax corresponding to the rule application
expresses that the conjunction of the premises has to imply the conclusion;
the quantified theory axiom QAx =def ∀S.Ax in addition contains universal
quantifiers for all variables S occurring in Ax .

Ax =def

n∧
i=1

(∧
Γi →

∨
∆i

)
→

(∧
Γ ′ →

∨
∆′
)

Ax and QAx are specific to the application of R: the axioms for two distinct
applications of R will in general be different formulas. QAx is defined in such
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a way that the effect of R can be simulated by introducing QAx in the an-
tecedent, instantiating it with the right terms, and applying propositional rules.
This construction leads to a proof using only the standard rules from Section 2.2,
which can be interpolated as discussed earlier. Since QAx is a valid formula not
containing any free variables, it can be introduced in a proof at any point, and
labelled bQAxcL or bQAxcR on demand.

An immediate consequence of this approach is the possibility of quantifiers
occurring in interpolants. This is because the interpolating rules ∀-leftL/R (Ta-
ble 4) have to introduce quantifiers ∀Rt/∃Lt for local symbols in the substituted
term t; whether such quantifiers actually occur in the final interpolant depends
on the applied heap rules, and on the order of rule application. However, as we
have observed in the beginning of the section, quantifiers in heap interpolants
are in general unavoidable.

Example 3. We continue Example 2, and show how to extract an interpolant for
the conjunction A ∧B. Since A′ and B′ in Example 2 are simplified versions of
the conjuncts Ã and B̃ in the core language, respectively, interpolation can start
A′, B′. The rule application read-fc can be encoded as the following theory
axioms:

Ax = (h′ = h′ ∧ a = a ∧ 42 6= 43)→ ¬(read(h′, a, 42) ∧ read(h′, a, 43))

≡ ¬read(h′, a, 42) ∨ ¬read(h′, a, 43)

QAx ≡ ∀h. (¬read(h, a, 42) ∨ ¬read(h, a, 43))

Replacing the application of read-fc with the axiom, and adding formula labels,
we obtain the following interpolating proof of the conjunction A′ ∧B′:

∗
bread(h′, a, 42)cL ` bread(h′, a, 42)cR I J̃

closeLR

bread(h′, a, 42)cL, b¬read(h′, a, 42)cR ` I J̃
¬-leftR ...

bread(h′, a, 42)cL, bread(h′, a, 43)cR,
b¬read(h′, a, 42) ∨ ¬read(h′, a, 43)cR

` I J̃ ∧ true

∨-leftR

bread(h′, a, 42)cL, bread(h′, a, 43)cR, bQAxcR, . . . ` I Ĩ
∀-leftR

bA′cL, bB′cR ` ∅ I Ĩ
∧-left∗

The interpolant extracted from this proof is Ĩ ≡ read(h′, a, 42), and stems from
the application of the rule closeLR in the left sub-proof. In the right sub-proof
(not shown here), only R-labelled formulas are needed, and the sub-interpolant
generated by the rule close-RR is true. The interpolant Ĩ in the core language
can be translated back to the heap formula I = (read(h′, a) = 42). Note that
this formula is a correct interpolant even though it does not explicitly state that
a is a valid address in h′.

The proof could also be rewritten to use the L-labelled axiom bQAxcL instead
of bQAxcR. As a result, the label of several formulas and rule applications would
then change from R to L, and the final interpolant becomes read(h′, a) 6= 43.
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5 Related Work

This paper presents the first (and largely unoptimised) decision and interpolation
procedures for the theory of heap, which we hope will facilitate further research.
Since the theory of heap is quite close to the theory of arrays, we discuss some
existing work on array decision and interpolation procedures in this section.

There is a large body of research on array decision procedures for SMT.
Stump et al. present a decision procedure for the extensional theory of arrays,
including several extensions [30]. Our rules for heap have similarities with this
procedure. De Moura et. al. define a decision procedure for combinatory array
logic [24]. Hoenicke et al. present an algorithm for the theory of arrays where
lemmas are created lazily based on weak equivalences [9]. Brummayer et al.
present a decision procedure for the extensional theory of arrays that introduces
lemmas lazily, guided by congruence closure [7].

Interpolation procedures for arrays have been presented in a number of recent
publications, in particular tackling the problem of defining array theories that
admit quantifier-free interpolation. Bruttomesso et. al. observe that adding a
diff function to the theory of arrays establishes quantifier-free interpolation,
and present an interpolation procedure [8]. An interpolation procedure based
on weak equivalences, extending [9], is given in [14], again ensuring quantifier-
free interpolants by adding a diff function. Totla et. al. present an interpolation
procedure for arrays based on complete instantiation [32].

6 Conclusions and Outlook

The paper presents a calculus for deciding heap theory formulas and proves
it sound and complete. A procedure to generate interpolants using only the
standard rules from Section 2.2 is also presented. The procedures are intended
as a starting point to initiate further research on more optimised decision and
interpolation procedures for the theory of heap. In particular, we believe that
many of the approaches surveyed in the previous section, developed for the theory
of arrays, can be adapted also to the theory of heap.

An orthogonal line of research concerns simplification techniques for CHCs
modulo the theory of heap. Such techniques can for instance use Abstract In-
terpretation to derive the validity of heap addresses, or the type of objects at
specific addresses. CHCs could also be simplified by eliminating repeated reads
from the same address, across multiple clauses, or by additional arguments to
predicates in order to partially expand heap arguments.
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object-oriented programs. In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning,
Maun, Botswana, May 7-12, 2017. EPiC Series in Computing, vol. 46, pp. 368–384.
EasyChair (2017), https://easychair.org/publications/paper/Pmh

18. Kapur, D., Majumdar, R., Zarba, C.G.: Interpolation for data structures. In:
SIGSOFT’06/FSE-14. pp. 105–116. ACM, New York, NY, USA (2006)

19. Komuravelli, A., Bjørner, N., Gurfinkel, A., McMillan, K.L.: Compositional ver-
ification of procedural programs using Horn clauses over integers and arrays. In:
Kaivola, R., Wahl, T. (eds.) Formal Methods in Computer-Aided Design, FMCAD
2015, Austin, Texas, USA, September 27-30, 2015. pp. 89–96. IEEE (2015)

20. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction in
smt-based unbounded software model checking. In: Sharygina, N., Veith, H. (eds.)
Computer Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings. Lecture Notes in Computer
Science, vol. 8044, pp. 846–862. Springer (2013), https://doi.org/10.1007/978-3-
642-39799-8 59

21. McMillan, K.L.: An interpolating theorem prover. In: Jensen, K., Podelski, A.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems, 10th
International Conference, TACAS 2004, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March
29 - April 2, 2004, Proceedings. Lecture Notes in Computer Science, vol. 2988, pp.
16–30. Springer (2004), https://doi.org/10.1007/978-3-540-24730-2 2

22. Monniaux, D., Gonnord, L.: Cell morphing: From array programs to array-
free Horn clauses. In: Rival, X. (ed.) Static Analysis - 23rd International Sym-
posium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings. Lec-
ture Notes in Computer Science, vol. 9837, pp. 361–382. Springer (2016),
https://doi.org/10.1007/978-3-662-53413-7 18

23. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,



Reasoning in the Theory of Heap: Satisfiability and Interpolation 19

Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4963, pp. 337–340. Springer (2008), https://doi.org/10.1007/978-3-540-78800-
3 24

24. de Moura, L.M., Bjørner, N.: Generalized, efficient array decision procedures. In:
Proceedings of 9th International Conference on Formal Methods in Computer-
Aided Design, FMCAD 2009, 15-18 November 2009, Austin, Texas, USA. pp. 45–
52. IEEE (2009), https://doi.org/10.1109/FMCAD.2009.5351142

25. Reynolds, A., Blanchette, J.C.: A decision procedure for (co)datatypes
in SMT solvers. J. Autom. Reasoning 58(3), 341–362 (2017),
https://doi.org/10.1007/s10817-016-9372-6

26. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Gupta, R., Amaras-
inghe, S.P. (eds.) Proceedings of the ACM SIGPLAN 2008 Conference on Pro-
gramming Language Design and Implementation, Tucson, AZ, USA, June 7-13,
2008. pp. 159–169. ACM (2008), https://doi.org/10.1145/1375581.1375602
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