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Abstract. E-matching is the most commonly used technique to handle
quantifiers in SMT solvers. It works by identifying characteristic sub-
expressions of quantified formulae, named triggers, which are matched
during proof search on ground terms to discover relevant instantiations of
the quantified formula. E-matching has proven to be an efficient and prac-
tical approach to handle quantifiers, in particular because triggers can be
provided by the user to guide proof search; however, as it is heuristic in
nature, e-matching alone is typically insufficient to establish a complete
proof procedure. In contrast, free variable methods in tableau-like calculi
are more robust and give rise to complete procedures, e.g., for first-order
logic, but are not comparable to e-matching in terms of scalability. This
paper discusses how e-matching can be combined with free variable ap-
proaches, leading to calculi that enjoy similar completeness properties as
pure free variable procedures, but in which it is still possible for a user
to provide domain-specific triggers to improve performance.

1 Introduction

SAT and SMT solvers form the backbone of many of today’s verification sys-
tems, responsible for discharging verification conditions that encode correctness
properties of hardware or software designs. Such verification conditions are often
generated in the context of intricate theories, including various kinds of arith-
metic, uninterpreted functions and equality, the theory of arrays, or the theory
of quantifiers. Despite much research over the past years, efficient and scalable
reasoning in the combination of such theories remains challenging: in particu-
lar for handling quantifiers, most state-of-the-art SMT solvers have to resort to
heuristic techniques like e-matching and triggers [7, 8]. E-matching is a popu-
lar method due to its simplicity and performance, but offers little completeness
guarantees and is sensitive to syntactic manipulations of input formulae.

This paper takes the standpoint that heuristics like e-matching should be
considered as optimisations, and triggers as hints, possibly affecting the perfor-
mance, but not the completeness of an SMT solver. In other words, the set of
formulae that a solver can prove should be independent from chosen triggers.
Working towards this goal, the paper presents calculi integrating constraint-
based free variable reasoning with e-matching, the individual contributions being
(i) a free variable sequent calculus for first-order logic (Sect. 3), with support for
e-matching and user-provided triggers to guide instantiation of quantified formu-
lae, partly inspired by the positive unit hyper-resolution calculus [14, 15]; (ii) a



similar calculus for first-order logic modulo linear integer arithmetic (Sect. 5),
extending the calculus in [23]; (iii) as a component of both calculi, an approach to
capture functions and congruence closure procedures (commonly used in SMT)
as uninterpreted predicates (Sect. 4); (iv) a complete implementation of the cal-
culus in (ii), called Princess, and experimental evaluation against SMT solvers
competing in the SMT competition 2011 (AUFLIA category) (Sect. 6).

The calculus in (i) is sound and complete for first-order logic, while (ii) is
sound and complete for fragments such as Presburger arithmetic, the univer-
sal and the existential fragment of first-order logic modulo integers, and the
languages accepted by related methods like ME(LIA) [4] and the complete in-
stantiation method in [9]. The completeness results are significantly stronger
than those guaranteed by most SMT solvers, and hold independently from the
application of e-matching or the choice of triggers in proofs.

1.1 Introductory Example

We start by illustrating e-matching and free variable methods using an exam-
ple. The first-order theory of non-extensional arrays [16] is often encoded using
uninterpreted function symbols sel and sto by means of the following axioms:

∀x, y, z. sel(sto(x, y, z), y)
.
= z (1)

∀x, y1, y2, z.
(
y1

.
= y2 ∨ sel(sto(x, y1, z), y2)

.
= sel(x, y2)

)
(2)

Intuitively, sel(x, y) retrieves the element of array x stored at position y, while
sto(x, y, z) denotes the array that is identical to x, except that position y stores
value z. In order to prove that some formula holds over the theory of arrays, the
underlined expressions can be used as triggers that determine when and how the
axioms should be instantiated. Generally, triggers consist of a single or multiple
expressions (normally sub-expressions in the body of the quantified formula)
that contain all quantified variables. For instance, to prove that the implication

b
.
= sto(a, 1, 2) → sel(b, 2)

.
= sel(a, 2) (3)

holds over the theory of arrays, we can observe that the term sel(sto(a, 1, 2), 2)
occurs in the implication, modulo some equational reasoning. This term matches
the underlined pattern in (2), and suggests to instantiate (2) to obtain the in-
stance 1

.
= 2 ∨ sel(sto(a, 1, 2), 2)

.
= sel(a, 2). In fact, (3) follows for this instance

of (2), when reasoning in the theories of uninterpreted functions and arithmetic,
which allows us to conclude the validity of (3).

Axioms and triggers as shown above are commonly used in SMT solvers,
and give rise to efficient decision procedures for ground problems over arrays.1

However, in the presence of quantifiers, e-matching might be unable to determine
the right instantiations, possibly because required instantiations do not exist as
ground terms in the formula. For instance, variants of (3) might include:

b
.
= sto(a, 1, 2) → ∃x. sel(b, x)

.
= sel(a, 2) (4)

b
.
= sto(a, 1, 2) → ∃x. sel(b, x+ 1)

.
= sel(a, 2) (5)

b
.
= sto(a, 1, 2) → ∃x. sel(b, x)

.
= sel(a, x) (6)
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Although the formulae are still valid, the match sel(sto(a, 1, 2), 2) used previ-
ously has been eliminated, which makes proof search more intricate. The state-
of-the-art e-matching-based SMT solver CVC3 ([3], version 2.4.1) is able to solve
(3), but none of (4), (5), (6). A more realistic example, though similar in na-
ture to the formulae shown here, was reported in [12, Sect. 3.3], where a simple
modification (Skolemisation) of a small formula prevented Z3 [19] from finding
a proof. The goal of the calculus developed in this paper (and of our imple-
mentation Princess) is to obtain a system that is more robust against such
modifications, by combining e-matching with constraint-based free variable rea-
soning, while retaining the scalability of SMT solvers.

The general philosophy of free variable methods [11] is to delay the choice of
instantiations for quantified formulae with the help of symbolic reasoning. For
example, we could instantiate the formula ∃x.sel(b, x+ 1)

.
= sel(a, 2) using a free

variable X, resulting in sel(b,X + 1)
.
= sel(a, 2). Modulo equational reasoning,

this creates the term sel(sto(a, 1, 2), X+1), which can be unified with the trigger
in (2) under the constraint X

.
= 1. It is then possible to proceed with the proof as

described above. After closing the proof, we can conclude that (5) indeed holds,
since the derived constraint X

.
= 1 is satisfiable: it is possible (retrospectively)

to instantiate ∃x.sel(b, x+ 1)
.
= sel(a, 2) with the concrete term X = 1.

This example demonstrates that a free variable calculus can be used to com-
pute answers to queries, in a manner similar to constraint logic programming.
The system developed in this paper is more general than “ordinary” logic pro-
gramming, however, since no restrictions on the use of quantifiers are imposed.

2 Background

2.1 Syntax and Semantics of Considered Logics

We assume familiarity with classical first-order logic (FOL, e.g., [11]). Let x range
over an infinite set X of variables, c over an infinite set C of constant symbols,
p over a set P of uninterpreted predicates with fixed arity, f over a set F of
uninterpreted functions with fixed arity, and α over the set Z of integers. The
syntax of the unityped logics in this paper is defined by the following grammar:

φ ::= φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ || t
.
= 0 || t ≤ 0 || p(t, . . . , t)

t ::= α || c || x || αt+ · · ·+ αt || f(t, . . . , t)

The symbol t denotes terms constructed using functions and arithmetic opera-
tions. A formula φ is called closed if all variables in φ are bound by quantifiers,
and ground if it does not contain variables or quantifiers. A location within a
formula φ is called positive if it is underneath an even number of negations ¬,
otherwise negative. Simultaneous substitution of terms t̄ = (t1, . . . , tn) for vari-
ables x̄ = (x1, . . . , xn) in φ is denoted by [x̄/t̄]φ; we assume that variable capture

1 We are grateful to the anonymous referees pointing out that a further trigger (not
shown here) is needed in (2) for a complete array procedure.
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is avoided by renaming bound variables as necessary. For simplicity, we some-
times write s

.
= t as a shorthand of 1 · s+ (−1) · t .= 0. The abbreviation true

(false) stands for 0
.
= 0 (1

.
= 0), and implication φ→ ψ for ¬φ ∨ ψ.

We consider fragments of the syntax shown above, including function-free
first-order logic (Sect. 2.3, 3), full first-order logic (Sect. 4), and first-order logic
with linear integer arithmetic (Sect. 5). Semantics of any such logic L is defined
by identifying a class SL of structures (U, I), where U is a non-empty universe,
and I is an interpretation that maps predicates p ∈ P to relations over U , func-
tions f ∈ F to set-theoretic functions over U , and constants c ∈ C to values in
U . Given (U, I), the evaluation of terms and formulae is defined recursively as
is common. A closed formula is called valid if it evaluates to true for all struc-
tures (U, I) ∈ SL, and satisfiable if it evaluates to true for at least one structure.

2.2 Sequent Calculi with Constraints

Throughout the paper we will work with the constraint sequent calculus that is
introduced in [23]. The calculus differs from normal Gentzen-style sequent cal-
culi [11] in that every sequent Γ ` ∆ is annotated with a constraint C (written
Γ ` ∆ ⇓ C) that captures unification conditions derived in a sub-proof. Such
unification conditions come into play when free variables (which technically are
treated as constants) are used to instantiate quantified formulae. All calculi in
this paper are designed such that constraints cannot contain uninterpreted predi-
cates or functions, so that validity/satisfiability of constraints is decidable. Proof
procedures and refinements for the calculi are discussed in [23, 22].

More formally, if Γ , ∆ are finite sets of closed formulae (the antecedent and
succedent) and C is a closed formula, then Γ ` ∆ ⇓ C is called a constrained
sequent. A sequent Γ ` ∆ ⇓ C is called valid if the formula (

∧
Γ ∧ C)→

∨
∆

is valid. A calculus rule is a binary relation between finite sets of sequents (the
premises) and single sequents (the conclusion). Proof trees are defined as is com-
mon as trees growing upwards in which each node is labelled with a constrained
sequent, and in which each node that is not a leaf is related with the nodes
directly above through an instance of a calculus rule. A proof is closed if it is
finite, and if all leaves are justified by a rule instance without premises.

2.3 The Basic Calculus for Function-Free First-Order Logic

At the core of all calculi introduced in this paper is a calculus for first-order logic
with equality, at this point including uninterpreted predicates, but no functions:

φFOL ::= φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ || s
.
= s || p(s̄) s ::= c || x

Since functions and arithmetic are not included in the logic, terms can only be
(symbolic) constants or bound variables. Semantics is defined over the class SFOL

of structures (U, I) with arbitrary non-empty universe U . The constraint calcu-
lus PredEqC for the logic is shown in Fig. 1, with constraints consisting of
(possibly negated) equalities, Boolean connectives, and quantifiers. The validity
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Γ, φ ` ∆ ⇓ C Γ,ψ ` ∆ ⇓ D
Γ, φ ∨ ψ ` ∆ ⇓ C ∧D

∨l
Γ, φ, ψ ` ∆ ⇓ C
Γ, φ ∧ ψ ` ∆ ⇓ C

∧l
Γ ` φ,∆ ⇓ C
Γ,¬φ ` ∆ ⇓ C

¬l

Γ ` φ,∆ ⇓ C Γ ` ψ,∆ ⇓ D
Γ ` φ ∧ ψ,∆ ⇓ C ∧D

∧r
Γ ` φ, ψ,∆ ⇓ C
Γ ` φ ∨ ψ,∆ ⇓ C

∨r
Γ, φ ` ∆ ⇓ C
Γ ` ¬φ,∆ ⇓ C

¬r

Γ, [x/c]φ, ∀x.φ ` ∆ ⇓ [x/c]C

Γ, ∀x.φ ` ∆ ⇓ ∃x.C ∀l
Γ, [x/c]φ ` ∆ ⇓ [x/c]C

Γ, ∃x.φ ` ∆ ⇓ ∀x.C ∃l
Γ ` ∆ ⇓ C

Γ, s
.
= t ` ∆ ⇓ s 6 .= t ∨ C

=l

Γ ` [x/c]φ, ∃x.φ,∆ ⇓ [x/c]C

Γ ` ∃x.φ,∆ ⇓ ∃x.C ∃r
Γ ` [x/c]φ,∆ ⇓ [x/c]C

Γ ` ∀x.φ,∆ ⇓ ∀x.C ∀r
∗

Γ ` s .= t,∆ ⇓ s .= t
=r

∗
Γ, p(s1, . . . , sn) ` p(t1, . . . , tn), ∆ ⇓

∧
i si

.
= ti

pc
[s/t]Γ, s

.
= t ` [s/t]∆ ⇓ C

Γ, s
.
= t ` ∆ ⇓ C

=red

Fig. 1. The rules of the calculus PredEqC for first-order predicate logic. In all rules,
c is a constant that does not occur in the conclusion: in contrast to the use of Skolem
functions and free variables in tableaux, the same kinds of symbols (constants) are
used to handle both existential and universal quantifiers. Arbitrary renaming of bound
variables is allowed in the constraints when necessary to avoid variable capture.

of formulae of this kind is decidable by quantifier elimination [11]. The calculus is
analytic and contains two rules for each formula constructor, as well as a closure
rule pc to unify complementary literals. As an optimisation, the rule =red can
be used to destructively apply equations; the rule is not necessary to establish
completeness, but relevant (together with further refinements) to turn PredEqC

into a practical calculus [23, 22].

Lemma 1 (Soundness [22]). If a sequent Γ ` ∆ ⇓ C is provable in PredEqC ,
then it is valid (holds in all SFOL-structures).

In particular, proving a sequent Γ ` ∆ ⇓ C with a valid constraint C im-
plies that also the implication

∧
Γ →

∨
∆ is valid. This gives rise to a constraint-

based proof procedure that iteratively constructs proof trees for an input se-
quent Γ ` ∆ ⇓ ? with a yet unknown constraint. The constraints in a proof
can be filled in once all proof branches have been closed. In each iteration, the
procedure checks whether the constraint generated by the current proof is valid,
in which case the procedure can terminate with the result that the input prob-
lem has been proven; otherwise, the current proof has to be unfolded further.
Strategies for generating proofs (without the need for backtracking, i.e., undoing
previous proof steps) are discussed in [23].

Example 2. We show how to prove ¬∀x.(¬p(x) ∨ x .
= c) ∨ ¬p(d) ∨ p(c), in which

p ∈ P is a unary predicate and c, d ∈ C are constants:

∗
p(d) ` p(a) ⇓ d .

= a
pc

¬p(a), p(d) ` . . . ⇓ d .
= a

¬l

∗
a
.
= c, p(d) ` p(c) ⇓ d .

= c
pc

a
.
= c, p(d) ` p(c) ⇓ a 6 .= c ∨ d .

= c
=l

. . . ,¬p(a) ∨ a .
= c, p(d) ` p(c) ⇓ d .

= a ∧ (a 6 .= c ∨ d .
= c)

∨l

∀x.(¬p(x) ∨ x .
= c), p(d) ` p(c) ⇓ R

∀l

` ¬∀x.(¬p(x) ∨ x .
= c) ∨ ¬p(d) ∨ p(c) ⇓ R

∨r∗,¬r∗
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In order to instantiate the universal quantifier, the fresh constant a is introduced;
the constant is quantified existentially in the derived constraints, and therefore
can be seen as a “free variable.” The constraints on the right-hand side of ⇓ are
practically filled in after closing the proof using pc. The validity of the original
formula follows from the validity of R = ∃x.(d .

= x ∧ (x 6 .= c ∨ d .
= c)).

Lemma 3 (Completeness [24]). Suppose φ is closed and valid. Then there is
a valid constraint C such that ` φ ⇓ C is provable in PredEqC .

3 Positive Unit Hyper-Resolution

As argued in Sect. 1.1, axioms and quantified formulae (in particular in verifica-
tion problems) are often manually formulated with a clear, directed application
strategy in mind. This makes it possible to systematically instantiate axioms in
a manner that more resembles the execution of a functional or logic program
than the search for a proof. From a practical point of view, providing support
for this style of reasoning (even if it is only applicable to a subset of input prob-
lems) is crucial to achieve the scalability needed for applications. We integrate
such user-guided reasoning into our calculus with the help of concepts from the
positive unit hyper-resolution (PUHR) calculus, an approach first used in the
SATCHMO theorem prover [14, 15]. PUHR will be used in Sect. 4 to simulate
the e-matching method common in SMT solvers.

PUHR is a tableau procedure in which clauses are instantiated by matching
negative literals on (ground) literals already present on a proof branch. Starting
from the calculus PredEqC defined in the last section, we introduce a similar
rule in our hyper-resolution sequent calculus PredEqHRC , instantiating quanti-
fied formulae that are “guarded” by negative literals ¬p1(t̄1), . . . ,¬pn(t̄n) using
symbols from matching literals p1(s̄1), . . . , pn(s̄n) in the antecedent of a sequent:

Γ,
{
pi(s̄i)

}n
i=1

, ∀x̄.
(∨n

i=1 ¬pi(t̄i) ∨ φ
)
, simp

(
∀x̄.
(∨n

i=1 s̄i 6
.
= t̄i ∨ φ

))
` ∆ ⇓ C

Γ,
{
pi(s̄i)

}n
i=1

, ∀x̄.
(∨n

i=1 ¬pi(t̄i) ∨ φ
)
` ∆ ⇓ C

∀l-m

Given literals {pi(s̄i)}ni=1 in a sequent, a quantified formula ∀x̄. (
∨n
i=1 ¬pi(t̄i) ∨ φ)

can be instantiated using the argument terms s̄i by simultaneously solving the
systems s̄i

.
= t̄i of equalities. In contrast to the original PUHR [14], we do not

require formulae to be range restricted. Note that the formula φ might be false
and disappear, and that the literals {pi(s̄i)}ni=1 are not necessarily distinct. The
solving of equalities is formulated using a recursive simplification function simp:

simp(∀x̄.(t 6 .= t ∨ φ)) = simp(∀x̄.φ)
simp(∀x̄.(xi 6

.
= t ∨ φ)) = simp(∀x̄.[xi/t]φ) (xi 6= t)

simp(∀x̄.(t 6 .= xi ∨ φ)) = simp(∀x̄.[xi/t]φ) (xi 6= t)
simp(∀x̄.(s 6 .= t ∨ φ)) = s 6 .= t ∨ simp(∀x̄.φ) (s, t 6∈ x̄)

simp(∀x̄.φ) = ∀(x̄ ∩ fv(φ)). φ (otherwise)

A rule ∃r-m similar to ∀l-m is introduced for existentially quantified formu-
lae ∃x̄. (

∧n
i=1 pi(t̄i) ∧ φ) in the succedent. The soundness of the new rules is
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immediate, since the rules only introduce instances of quantified formulae al-
ready present in a sequent. After adding ∀l-m and ∃r-m, it is possible to impose
the side-condition that the rule ∀l is no longer allowed to be applied to formu-
lae ∀x̄. (

∨n
i=1 ¬pi(t̄i)∨φ); similarly for ∃r. In other words, the ordinary rules ∀l

and ∃r may only be applied to formulae that do not start with negative literals.
We denote the resulting calculus by PredEqHRC .

Example 4. We show how the proof from Example 2 can be carried over to
PredEqHRC . To this end, observe that the formula ∀x.(¬p(x) ∨ x .

= c) in the
antecedent is amenable to hyper-resolution, so that it is no longer necessary to
introduce the constant a in the proof. Also proof splitting can now be avoided:

∗
d
.
= c, p(d) ` p(c) ⇓ d .

= c
pc

. . . , d
.
= c, p(d) ` p(c) ⇓ d 6 .= c ∨ d .

= c
=l

∀x.(¬p(x) ∨ x .
= c), p(d) ` p(c) ⇓ true

∀l-m

` ¬∀x.(¬p(x) ∨ x .
= c) ∨ ¬p(d) ∨ p(c) ⇓ true

∨r∗,¬r∗

∀l-m introduces the formula simp(∀x.(d 6 .= x ∨ x .
= c)), which can be simplified

to d
.
= c. A further optimisation is the use of =red to minimise constraints.

Lemma 5 (Completeness [24]). Suppose φ is closed and valid. Then there is
a valid constraint C such that ` φ ⇓ C is provable in PredEqHRC .

Importantly for efficiency, a variety of refinements [22] restricting applications
of ∃r-m, ∀l-m can be imposed, without losing this completeness result.

4 E-Matching through Relational Encoding

For practical applications, uninterpreted functions are more common and of-
ten more important than uninterpreted predicates. Uninterpreted functions and
equalities are in SMT solvers normally represented using congruence closure
methods [21], which build a congruence graph (also called e-graph) containing
nodes for all function terms present in a problem, with edges representing as-
serted equalities. More formally, given a finite subterm-closed set T of terms and
a finite set E of equalities, the congruence graph is the undirected graph (T,E′),
where E′ ⊇ E is the smallest transitive and reflexive set of edges satisfying:

if f(s1, . . . , sn), f(t1, . . . , tn) ∈ T are nodes with {(s1, t1), . . . , (sn, tn)} ⊆ E′,
then also (f(s1, . . . , sn), f(t1, . . . , tn)) ∈ E′.

The relation E′ can be constructed by fixed-point iteration, starting from the
given equalities E. Congruence graphs can be used to efficiently decide whether
an equality s

.
= t follows from the set E of equalities. The congruence graph is

also used as the underlying datastructure for e-matching, since matching terms
(modulo equations) can efficiently be found using the congruence graph. We
discuss in this section how both congruence closure and e-matching can be un-
derstood as an encoding of functions as uninterpreted predicates, enabling the
integration of e-matching with free variables, without preventing the implemen-
tation of congruence closure with the help of efficient native datastructures.
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4.1 Relational Encoding of Functions

We consider first-order logic including function symbols, which means that the
grammar for terms shown in the beginning of Sect. 2.3 is extended to:

s ::= c || x || f(s, . . . , s)

where f ∈ F ranges over function symbols. For the purpose of the encoding of
functions into relations, we assume that a fresh (n+ 1)-ary uninterpreted pred-
icate fp ∈ P exists for every n-ary uninterpreted function f ∈ F , representing
the graph of f . The relation fp satisfies two axioms, functionality and totality:

Funf = ∀x̄, y1, y2.
(
¬fp(x̄, y1)∨¬fp(x̄, y2)∨y1

.
= y2

)
, Totf = ∀x̄.∃y. fp(x̄, y) .

We can then translate from formulae φ over the functional vocabulary F
(and relational vocabulary P ) to formulae φRel purely over the relational vocab-
ulary P . This can be done by means of the following rewriting rules:

∃-enc: ψ[f(t̄)]  ∃x. (fp(t̄, x) ∧ ψ[x])

∀-enc: ψ[f(t̄)]  ∀x. (¬fp(t̄, x) ∨ ψ[x])

Both rules have the side condition that rewritten occurrences of f(t̄) must not
be in the scope of quantifiers binding variables in the terms t̄; furthermore, the
variable x must be fresh in ψ[f(t̄)]. It is possible, however, to apply the rewriting
rules to arbitrary sub-formulae of a given formula φ; in other words, the predicate
and quantifier that encode a function application f(t̄) can be placed arbitrarily
in the rewritten formula, as long as the function application remains in the scope
of the quantifier. Rewriting strategies are discussed later in this section.

Lemma 6. Suppose φ is a closed formula over the vocabulary F , and φRel is a
function-free formula obtained from φ by application of the rewriting rules ∃-enc
and ∀-enc. Then φ is valid iff

∧
f∈F

(
Funf ∧ Totf

)
→ φRel is valid.

Since the calculi PredEqC and PredEqHRC are sound and complete for first-
order logic without function symbols, we can therefore construct calculi for first-
order logic including functions by first encoding functions as relations.

4.2 Ground Reasoning and Congruence Closure

We first concentrate on quantifier-free first-order formulae with functions. In this
setting, it is easy to see that the hyper-resolution calculus PredEqHRC , in com-
bination with the functionality axioms Funf for functions f , is able to simulate
congruence closure procedures. This is supported by the following strengthened
version of Lem. 6, which observes that totality axioms are not necessary when
solving essentially ground formulae:

Lemma 7. Suppose φ is a closed formula over the vocabulary F , and φRel a
function-free formula obtained from φ by application of the rewriting rules ∃-enc
and ∀-enc that contains ∀-quantifiers only in positive positions, and ∃-quantifiers
only in negative positions. Then φ is valid iff

∧
f∈F Funf → φRel is valid.
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The assumptions of the lemma require that the rewriting rule ∀-enc is only
applied in positive, and ∃-enc only in negative positions when deriving φRel

from φ. As a result, there are only two kinds of quantifiers in the last formula in
Lem. 7: quantifiers in φRel that can be eliminated with the help of the rules ∃l
and ∀r by means of Skolem symbols, and the quantifiers in the axioms Funf .
Since the latter can be handled using ∀l-m, formulae

∧
f∈F Funf → φRel can be

proven in the calculus PredEqHRC purely through ground reasoning, without
ever resorting to the rules ∀l/∃r that introduce existentially quantified con-
stants. This style of reasoning closely corresponds to congruence closure, with
literals fp(t̄, s) in the antecedent of sequents representing equivalence classes of
nodes of the congruence graph (T,E′), and instantiation of axioms Funf simu-
lating the addition of further edges to the congruence relation E′.

Example 8. We show how φ = (p(f(a)) ∧ a .
= b ∧ b .= c→ p(f(c))) is proven us-

ing the relational encoding. The corresponding formula φRel is obtained by re-
placing the function terms f(a), f(b) with fresh quantified variables x, y:

φRel = ∀x, y.
(
fp(a, x) ∧ fp(c, y) ∧ p(x) ∧ a .

= b ∧ b .= c → p(y)
)

We can then construct a proof of Funf → φRel using the rules =red and ∀l-
m. The central step in the proof is to conclude u

.
= v by instantiating the ax-

iom Funf using the symbols occurring in the literals fp(c, u) and fp(c, v):

∗
Funf , u

.
= v, fp(c, v), p(v) ` p(v)

pc

Funf , u
.
= v, fp(c, u), fp(c, v), p(u), . . . ` p(v)

=red

Funf , fp(c, u), fp(c, v), p(u), a
.
= c, b

.
= c ` p(v)

∀l-m

Funf , fp(b, u), fp(c, v), p(u), a
.
= b, b

.
= c ` p(v)

=red

Funf , fp(a, u), fp(c, v), p(u), a
.
= b, b

.
= c ` p(v)

=red

` Funf → φRel
∀r, . . .

a b c

f(a)/u f(c)/v

p(f(a)) p(f(c))

The constraint ⇓ true of each of the sequents has been left out. The proof
can also be visualised using the congruence graph shown on the right.

4.3 Relational E-Matching and Free Variables to Handle Quantifiers

E-matching instantiates quantified formulae ∀x.φ by means of pattern matching:
triggers are identified in the matrix φ, and are compared with the expressions oc-
curring in the congruence graph to determine relevant instances of the formula.
This process can be simulated using the relational function encoding, in combi-
nation with the hyper-resolution calculus PredEqHRC , by deliberately choosing
whether literals fp(t̄, x) in the relational formula ∀x.φRel are introduced with
positive or negative sign: since the unit-hyper-resolution rule ∀l-m only consid-
ers negative literals in the matrix φRel of ∀x.φRel for matching, it is possible
to encode triggers by negating the respective literals fp(t̄, x) (i.e., by using the
rewriting rule ∀-enc to generate such literals), and keeping all other literals pos-
itive using the rule ∃-enc.
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Example 9. Consider the quantified formula ∀x.f(x)
.
= g(x). Four possible ways

of encoding the formula using relations, corresponding to different strategies
when applying the rules ∀-enc and ∃-enc, are:

∀x.∃y, z.
(
fp(x, y) ∧ gp(x, z) ∧ y

.
= z
)

(7)

∀x, y.
(
¬fp(x, y) ∨ ∃z.(gp(x, z) ∧ y

.
= z)

)
(8)

∀x, z.
(
¬gp(x, z) ∨ ∃y.(fp(x, y) ∧ y .

= z)
)

(9)

∀x, y, z.
(
¬fp(x, y) ∨ ¬gp(x, z) ∨ y

.
= z
)

(10)

Each of the relational formulae corresponds to a particular selection of triggers
in ∀x.f(x)

.
= g(x):

– in (7), no triggers have been chosen, with the result that the hyper-resolution
rule ∀l-m is not applicable. Instantiation of (7) is only possible using the
rule ∀l, replacing the bound variable x with an existentially quantified con-
stant that can later unified with some term.

– in (8), the term f(x) (corresponding to the negative literal fp(x, y)) has

been selected as trigger. In the calculus PredEqHRC , (8) can only be in-
stantiated using the rule ∀l-m, and only in case a literal fp(s, t) occurs in
the antecedent of a sequent, substituting the terms s, t for the variables x, y.
This corresponds to e-matching the expression f(x) on a node f(t) of a
congruence graph. No free variables are needed to instantiate (8).

– similarly, in (9) the term g(x) is trigger.
– in (10), both f(x) and g(x) have been chosen as a multi-trigger, which means

that (10) only can be instantiated if literals fp(s, t) and gp(s
′, t′) occur in

an antecedent. In this case, the instance s 6 .= s′ ∨ t .= t′ will be generated,
expressing that the equality t

.
= t′ can be assumed if s and s′ are unifiable.

In terms of e-graphs, the formula would only be instantiated if the e-graph
contains nodes f(s), g(s′) such that s, s′ are in the same equivalence class.

The following proof fragment illustrates how (9) can be instantiated referring
to a literal gp(a, b) in the antecedent, effectively adding fp(a, b) to the sequent:

gp(a, b), (9), fp(a, b), b
.
= u ` ⇓ [y/u]C

gp(a, b), (9), fp(a, u), u
.
= b ` ⇓ [y/u]C

=red

gp(a, b), (9), ∃y.(fp(a, y) ∧ y .
= b) ` ⇓ ∀y.C

∃l,∧l

gp(a, b), (9) ` ⇓ ∀y.C ∀l-m
(11)

The way in which a formula φ is translated to φRel determines how quantified
sub-formulae are instantiated, in the same way as SMT solvers can be guided
by specifying triggers (Alg. 1 shows how the translation can be done system-
atically, for a given set of triggers). However, it can be observed that the four
encodings (7)–(10) are all equivalent w.r.t. provability of theorems: in combina-
tion with the axioms Funf , Fung, Totf , Totg each of the formulae can simulate
each other formula. The choice of triggers in formulae therefore only influences
efficiency, not completeness. For instance, formula (9) in (11) can be replaced

10



Algorithm 1: EncodeTrigger: relational encoding of a quantified for-
mula for a specific set of triggers

Input: Formula ∀x̄.φ, set T of trigger terms with variables from x̄
Output: Relational formula φRel

qvars ← {x | x ∈ x̄};
premises ← ∅;
while T contains function terms do

pick (sub)term f(t̄) in T s.t. t̄ does not contain functions;
pick fresh variable y;
qvars ← qvars ∪ {y};
premises ← premises ∪ {fp(t̄, y)};
substitute y for f(t̄) everywhere in T and φ;

end
apply ∃-enc exhaustively to φ;
return ∀x∈qvars .

(∨
p∈premises ¬p ∨ φ

)
;

with (8) in the following way (the constraints of the sequents have been left out
for sake of brevity):

∗
. . . ` x

.
= a

=r
fp(x, b), gp(x, b), gp(a, b), v

.
= b `

fp(x, v), gp(x, v), gp(a, b), v
.
= b `

=red

. . . , fp(x, v), gp(x, v), gp(a, b), x 6 .= a ∨ v .
= b `

∨l,¬l

Fung , fp(x, v), gp(x, v), v
.
= u, gp(a, b) ` ∀l-m

Fung, fp(x, u), gp(x, v), u
.
= v, gp(a, b) `

=red

Fung, . . . , fp(x, u), ∃z.(gp(x, z) ∧ u .
= z), gp(a, b) `

∃l,∧l

Fung,Totf , fp(x, u), gp(a, b), (8) ` ∀l-m

Fung,Totf , gp(a, b), (8) `
∀l,∃l

This illustrates that PUHR/e-matching-based reasoning (through ∀l-m and
∃r-m) can be mixed freely with free variable reasoning (through ∀l and ∃r).
Proofs constructed without applying the rules ∀l and ∃r closely correspond
to the ground reasoning in an SMT solver, while each application of ∀l or ∃r
conceptually introduces a free variable that, at a later point during proof con-
struction, can be unified with other terms, extracting unification conditions in
the form of constraints.

5 Extension to Linear Integer Arithmetic

All techniques discussed so far carry over to first-order logic modulo the the-
ory of linear integer arithmetic (FOL(LIA)), via integration into the calculus
defined in [23]. The syntax of FOL(LIA) is defined by the grammar in the begin-
ning of Sect. 2.1 and combines first-order logic (with uninterpreted predicates
and functions) with arithmetic terms and predicates. Semantics is defined over
structures (Z, I) with the set of integers as universe.

11



Γ, t
.
= 0 ` φ[s+ α · t],∆ ⇓ C
Γ, t

.
= 0 ` φ[s],∆ ⇓ C

=red-Z
Γ, s ≤ 0, t ≤ 0, αs+ βt ≤ 0 ` ∆ ⇓ C

Γ, s ≤ 0, t ≤ 0 ` ∆ ⇓ C ≤l-Z

Γ, p(s1, . . . , sn) ` p(t1, . . . , tn),
∧

i si − ti
.
= 0,∆ ⇓ C

Γ, p(s1, . . . , sn) ` p(t1, . . . , tn),∆ ⇓ C
pu-Z

∗
Γ, φ1, . . . , φn ` ψ1, . . . , ψm,∆ ⇓ ¬φ1 ∨ · · · ∨ ψ1 ∨ · · ·

close

Fig. 2. A selection of rules of the calculus PresPredC ; for a complete list see [23]. In
=red-Z, α is a literal; we write φ[s] in the succedent to denote that s occurs in an
arbitrary formula in the sequent, which can in particular also be in the antecedent. In
≤l-Z, α, β > 0 are positive literals. In close-Z, the formulae φ1, . . . , φn, ψ1, . . . , ψm do
not contain uninterpreted predicates.

As for FOL, we first introduce a calculus for the function-free fragment of
FOL(LIA). The integration of functions is then done in the same way as in
Sect. 3, 4 with the help of a relational encoding. The calculus PresPredC for the
function-free fragment consists of the rules in Fig. 1, together with a number
of rules specific for linear integer arithmetic, a selection of which are shown in
Fig. 2 (as a result, the rules =l, =r, =red, and pc of the first-order calculus
can be removed); in the full calculus, also simplification and splitting rules are
needed [23]. A more general closure rule close has to be used than in PredEqC

to support disjunctive constraints. Constraints in PresPredC are always formulae
in Presburger arithmetic (PA), i.e., do not contain uninterpreted predicates.

Lemma 10 (Soundness [23]). If a sequent Γ ` ∆ ⇓ C can be proven in
PresPredC , then it is valid.

The logic FOL(LIA) subsumes Presburger arithmetic. Since the logic of quan-
tified Presburger arithmetic with predicates is Π1

1 -complete [10], no complete
calculi can exist for FOL(LIA); however, it can be shown that the calculi intro-
duced in this section are complete for relevant and non-trivial fragments:

Lemma 11 (Completeness [23]). Suppose φ is a closed formula without func-
tions or constants in one of the following fragments:

(i) φ does not contain uninterpreted predicates (i.e., in Presburger arithmetic);
(ii) φ contains universal (exist.) quantifiers only in positive (negative) positions;
(iii) φ contains universal (exist.) quantifiers only in negative (positive) positions;
(iv) φ is of the form ∀x̄.(σ → ψ), where σ is a formula in Presburger arithmetic

(without uninterpreted predicates) that has only finitely many solutions in x̄,
and ψ contains universal (existential) quantifiers only in negative (positive)
positions (i.e., a formula accepted by the ME(LIA) calculus [4]).

Then there is a valid constraint C such that ` φ ⇓ C is provable in PresPredC .

Practically, it can be observed that PresPredC can often also be applied suc-
cessfully to formulae outside of those fragments.
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5.1 Hyper-Resolution and E-Matching for FOL(LIA)

The unit hyper-resolution rule ∀l-m (and similarly the rule ∃r-m) defined in
Sect. 3 can be integrated in the calculus PresPredC in the same way as in the
earlier first-order calculi, in order to instantiate formulae ∀x̄. (

∨n
i=1 ¬pi(t̄i) ∨ φ)

by matching. In this context, the simplification function simp can be (but does
not have to be) replaced with a function tailored to integer arithmetic, i.e., a
function that is able to solve the system

∨n
i=1 s̄i 6

.
= t̄i modulo integer arithmetic.

The calculus PresPredHRC is derived from PresPredC by adding the rules
∀l-m and ∃r-m, and by imposing the side condition that the rule ∀l is no longer
applied to formulae of the shape ∀x̄. (

∨n
i=1 ¬pi(t̄i)∨φ); similarly for the rule ∃r.

As before, the soundness of the rules ∀l-m and ∃r-m is immediate. We can also
observe that PresPredHRC is relatively complete, in the sense that formulae
that are provable in PresPredC can also be proven using PresPredHRC :

Lemma 12. Suppose Γ ` ∆ ⇓ C is provable in PresPredC , where C is valid.
Then there is a valid constraint C ′ so that PresPredHRC can prove Γ ` ∆ ⇓ C ′.

Encoding of functions. The relational encoding of functions from Sect. 4 can be
used to obtain a calculus for the full logic FOL(LIA) with functions. Although
there are no complete calculi for the full logic, we can observe that PresPredC

(and therefore, by Lem. 12, PresPredHRC) can handle at least all formulae that
can be proven by considering a finite set of ground instances:

Lemma 13. Suppose ∃x̄.φ is a closed formula in FOL(LIA), with functions
taken from a finite set F , such that φ is quantifier-free. If there is a valid disjunc-
tion

∨n
i=1[x̄/t̄i]φ of ground instances of ∃x̄.φ, then there is a valid constraint C

such that {Funf ,Totf}f∈F ` (∃x̄.φ)Rel ⇓ C is provable in PresPredC .

The lemma directly generalises to disjunctions of existentially quantified for-
mulae, which in particular entails that PresPredC is complete for the class of
essentially uninterpreted formulae F (modulo linear integer arithmetic) with fi-
nite ground instantiation F∗ defined in [9], and thus also for the array property
fragment [6] (PresPredC cannot easily be turned into a decision procedure, how-
ever, since it would be unclear how to ensure termination on invalid problems).

6 Experiments and Related Work

We have implemented the described calculus PresPredHRC for FOL(LIA) in the
theorem prover Princess,2 and are in the process of adding further optimisa-
tions. Princess uses the relational encoding from Sect. 4 to represent functions,
and heuristics similar to the ones in Simplify [7] to automatically identify triggers
in quantified formulae; redundancy criteria [22] and theory propagation help to
reduce the number of instances generated from quantified formulae. Princess
is able to handle all of the examples discussed in Sect. 1.1.

2 http://www.philipp.ruemmer.org/princess.shtml
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AUFLIA+p (193) AUFLIA-p (193)

Z3 191 191

Princess 145 137

CVC3 132 128

Fig. 3. Number of solved benchmarks, out of 2×193 unsatisfiable (scrambled) AUFLIA
benchmarks selected in the SMT competition 2011. Experiments with Princess were
done on an Intel Core i5 2-core machine with 3.2GHz, with a timeout of 1200s, heap-
space limited to 4Gb. The benchmarks in AUFLIA+p contain hand-written triggers
for most of the quantified formulae, while all triggers have been removed in AUFLIA-p.
The corresponding figures for Z3 and CVC3 are the results obtained during the SMT
competition 2011 (http://www.smtexec.org/exec/?jobs=856).

To evaluate the overhead of the relational function encoding, we compared
the performance of Princess with the SMT solvers CVC3 [3] and Z3 [19], using
benchmarks selected in the SMT competition 2011. Since our work concentrates
on proof construction, we only considered unsatisfiable benchmarks, removing 13
satisfiable AUFLIA problems in each category. The results show that Princess,
while currently not being able to compete with the fastest SMT solver Z3, per-
forms better than the (state-of-the-art) e-matching-based CVC3. This is promis-
ing, since Princess does not (yet) use SMT techniques like lemma learning,
which are important for large or propositionally complex problems. Princess
can solve most benchmarks using e-matching alone, but uses free variables in 17
of the (solved) benchmarks, typically in smaller (but harder) instances.

Related Work E-matching is today used in most SMT solvers, based on tech-
niques that go back to the Simplify prover [7] and The Stanford Pascal Veri-
fier [20]; since then, various refinements of the e-matching approach have been
published, for instance [8, 18]. To the best of our knowledge, e-matching has not
previously been combined with free variable methods. An instantiation method
similar to e-matching, but with much stronger completeness results, has been
published in [9] and is used in Z3; a comparison with our method is in Sect. 5.1.

There is a large body of work on integrating theories into resolution and
superposition calculi (e.g., [25, 2, 13, 1]), as well as on the integration of resolution
into SMT [17]. These approaches completely avoid e-matching, offering stronger
completeness guarantees but limiting the possibility of user-provided guidance.

The model evolution calculus has been extended to theories, including integer
arithmetic [4, 5]. Our approach resembles model evolution in that it also uses free
variables in a tableaux setting, albeit in a more “rigid”/global manner. Further
differences are that ME(LIA) works on clauses, only supports a restricted form
of existential quantification, and has a more explicit representation of models.
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22. Rümmer, P.: Calculi for Program Incorrectness and Arithmetic. Ph.D. thesis, Uni-
versity of Gothenburg (2008)
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