
Interpolating Quantifier-Free Presburger Arithmetic

Daniel Kroening1, Jérôme Leroux2, and Philipp Rümmer1

1 Oxford University Computing Laboratory, United Kingdom
2 Laboratoire Bordelais de Recherche en Informatique, France

Abstract. Craig interpolation has become a key ingredient in many symbolic
model checkers, serving as an approximative replacement for expensive quantifier
elimination. In this paper, we focus on an interpolating decision procedure for the
full quantifier-free fragment of Presburger Arithmetic, i.e., linear arithmetic over
the integers, a theory which is a good fit for the analysis of software systems. In
contrast to earlier procedures based on quantifier elimination and the Omega test,
our approach uses integer linear programming techniques: relaxation of interpo-
lation problems to the rationals, and a complete branch-and-bound rule tailored
to efficient interpolation. Equations are handled via a dedicated polynomial-time
sub-procedure. We have fully implemented our procedure on top of the SMT-
solver OpenSMT and present an extensive experimental evaluation.

1 Introduction

Craig interpolation has become a key ingredient in many symbolic model checkers,
serving as an approximative replacement for expensive quantifier elimination [10]. The
application of Craig interpolants in lieu of quantifier elimination relies on the avail-
ability of an effective interpolating decision procedure. In this paper, we focus on an
interpolating decision procedure for the quantifier-free fragment of Presburger Arith-
metic (QFPA for short), that is linear arithmetic over the integers, a theory which is a
good fit for the analysis of software systems. An interpolant ψ for a pair (φA, φB) of
Presburger formulas is a Presburger formula such that free variables in ψ occur both in
φA and φB , and such that φA entails ψ and φB entails ¬ψ.

Interpolating decision procedures typically derive the interpolant from a proof of
inconsistency of φA and φB , which in turn is computed by a decision procedure for the
underlying logic. Decision problems arising in software analysis are often large, and
call for a scalable algorithm. The most efficient decision procedures for the quantifier-
free fragment of the Presburger arithmetic known today use the Simplex algorithm in
combination with a variant of the branch-and-bound technique. The Simplex algorithm
is used to solve the relaxed problem, in which the variables are permitted to take frac-
tional values. In case a variable x obtains the fractional value r, branch-and-bound will
consider the two sub-problems in which x ≤ brc or x ≥ dre, respectively. The orig-
inal problem has an integer solution iff one of the two sub-problems has a solution.
Branch-and-bound is incomplete by itself, and usually augmented by a cutting-plane
technique, e.g., Gomory’s cutting planes. An instance of an efficient implementation of
these techniques is the SMT-solver Z3 [6].

In principle, any cut-based decision procedure for Presburger can be used for the
computation of interpolants. The primary problem is computational cost: for the most
common cut rules (in particular for Gomory’s cutting planes) it is possible to construct
cases where the derivation of interpolants from proofs has exponential complexity. This
high complexity is caused by mixed cuts, which involve rounding (rational) constant
terms of inequalities that are derived from both φA and φB . Intuitively, interpolating
calculi rely on identifying which parts of φA and φB are contributing to an intermediate
argument; additional effort is required when rounding intermediate arguments derived
from both φA and φB .

The contribution of this paper is a novel interpolating decision procedure for the
full QFPA fragment. Our algorithm computes in polynomial time interpolants for two
classes of constraints (i) conjunctions of inequality constraints unsatisfiable over the
rationals, and (ii) conjunctions of equality and divisibility constraints unsatisfiable over
the integers. For the full QFPA fragment, the algorithm is exponential in the worst case.
This complexity is proved tight since we exhibit formulas such that every interpolant
is exponentially large. Moreover the algorithm improves the doubly exponential upper
bound complexity known for the computation of interpolants based on the elimination
of blocks of quantifiers [17]. Our general procedure integrates efficient reasoning and
interpolation for equalities by means of a transformation of matrices into Smith Normal
Form, which resembles a known procedure for interpolating linear diophantine equa-
tions [7]. For reasoning about inequalities, our procedure uses a complete version of the
branch-and-cut principle that avoids mixed cuts and therefore allows interpolant extrac-
tion from proofs in polynomial time. Since the proof size is exponentially large in the
worst case, we deduce an exponential upper bound for the runtime of the algorithm.

Related Work. Interpolation procedures have been proposed for various fragments
of linear integer arithmetic. McMillan considers the logic of difference-bound con-
straints [12]. This logic, a fragment of QFPA, is decidable by reduction to rational
arithmetic. As an extension, Cimatti et al. [5] present an interpolation procedure for the
unit two variable per inequality (UTVPI) fragment of linear integer arithmetic. Both
fragments allow efficient reasoning and interpolation, but are not sufficient to express
many typical program constructs, such as integer division. In [7], interpolation proce-
dures for QFPA restricted to conjunctions of integer linear (dis)equalities, and for QFPA
restricted to conjunctions of divisibility constraints are given. The combination of both
fragments with integer linear inequalities is not supported, however. Our work closes
this gap, as it permits predicates involving all types of constraints.

Lynch et al. [9] define an interpolation procedure for linear rational arithmetic, and
extend it to integer arithmetic by means of Gomory cuts. For integer arithmetic, how-
ever, interpolation in [9] can produce formulas that violate the vocabulary condition
(i.e., can contain variables that are not common to φA and φB), and are therefore not
true interpolants. The problem is that Gomory cuts used in [9] do not prevent mixed
cuts, for which no efficient interpolation is possible in QFPA.

Brillout et al. [2] define a complete interpolating sequent calculus for QFPA. The
calculus contains a rule strengthen that is general enough to simulate arbitrary (pos-
sibly mixed) Gomory cuts, but in general causes exponential complexity of interpolant

2

extraction from proofs. In contrast, our cut rule (which is embedded in an effective
decision procedure) enables extraction with polynomial complexity.

The recent SMT-solver SmtInterpol decides and interpolates problems in linear inte-
ger arithmetic, apparently using an architecture similar to the one in [11]. To the best of
our knowledge, the precise design and calculus of SmtInterpol has not been documented
in publications yet (see Sect. 9 for an empirical comparison with our approach).

Interpolation for rational arithmetic is a well-explored field. McMillan presents an
interpolating theorem prover for linear rational arithmetic and uninterpreted functions
[11]; an interpolating SMT-solver for the same logic has been developed by Beyer et
al. [1]. Rybalchenko et al. introduce an algorithm for interpolating rational arithmetic
with uninterpreted functions without the need for explicit proofs [15].

2 Interpolation For Quantifier-Free Presburger Formulas

Naturally, if there exists an interpolant ψ for (φA, φB) then φA ∧ φB is unsatisfiable.
Conversely, if φA ∧ φB is unsatisfiable, interpolants for (φA, φB) can be obtained by
introducing the sets XA, XB of free variables of respectively φA and φB , and the fol-
lowing Presburger formulas:

ψ⊥ = (∃x)x∈XA\XB
φA

ψ> = ¬ (∃x)x∈XB\XA
φB

Since φA ∧ φB is unsatisfiable we observe that ψ⊥ and ψ> are two interpolants for
(φA, φB). The formulas ψ⊥ and ψ> are respectively called the strongest interpolant
and the weakest interpolant since ψ⊥ entails ψ and ψ entails ψ> for any interpolant ψ.

We are interested in computing quantifier-free Presburger interpolants for pairs of
quantifier-free Presburger formulas. Formulas in this logic are defined by fixing a count-
able set X of variables. Quantifier-free Presburger formulas are formulas in the follow-
ing grammar where x ∈ X , α ∈ Z, β ∈ Z and m ∈ N≥2:

φ ::= p | ¬φ | φ ∧ φ | φ ∨ φ
p ::= l 6= β | l = β | l ≤ β | l ∈ β +mZ
l ::= 0 | αx | l + l

The category l denotes linear terms. The category p denotes predicates of linear
arithmetic. For simplicity reason, we only allow constants β as right-hand side of the
predicates. Predicates l 6= β, l = β and l ≤ β are respectively disequality predi-
cates, equality predicates, and inequality predicates. Predicates l ∈ β + mZ are di-
visibility predicates, which are short-hand notation for ∃x l − mx = β. These pred-
icates are included to allow quantifier-free interpolation. In fact, let us consider the
pair (x− 2y = 0, x− 2z = 1) of quantifier-free Presburger formulas. Note that x is
the unique free variable that occurs in both formulas. The even divisibility predicate
x ∈ 2Z is an interpolant; any interpolant requires at least one divisibility predicate.

The semantics of Presburger formulas is defined as is common over the domain Z
of integers. We write φ |= ψ to express that φ entails ψ, i.e., ψ holds whenever φ holds.

3

Since Presburger formulas are effectively equivalent to quantifier-free Presburger
formulas, we can compute two quantifier-free Presburger formulas ψ′⊥ and ψ′> equiv-
alent to ψ⊥ and ψ> respectively. In particular if φA ∧ φB is unsatisfiable, we deduce
that ψ′⊥ and ψ′> are two quantifier-free interpolants for (φA, φB). However, the com-
putation of ψ′⊥ or ψ′> requires a lot of useless computational efforts. For instance if φA
is a formula of the form (x = 0) ∧ φ′A and φB is a formula of the form (x = 1) ∧ φ′B
where φ′A and φ′B are very complex Presburger formulas, it is sufficient to consider
ψ = (x = 0) to obtain an interpolant for (φA, φB); eliminating variables for com-
puting ψ′⊥ and ψ′> can be very difficult. From a theoretical point of view, up to our
knowledge the best known upper-bound complexity for eliminating blocks of existen-
tial quantifiers is double-exponential [17].

In this paper we provide an algorithm computing interpolants for the QFPA frag-
ment in exponential time in the worst case. We first show that this result is tight. For
this purpose, consider the following families of formulas (where n ∈ N>1):

φnA = −n < y + 2nx ≤ 0, φnB = 0 < y + 2nz ≤ n .

We can observe that φnA and φnB are inconsistent, and that the only interpolant for the
interpolation problem (φnA, φ

n
B) is the following formula ψ (up to equivalence):

ψ =
(
y ∈ −n+ 1 + 2nN

)
∨
(
y ∈ −n+ 2 + 2nN

)
∨ · · · ∨

(
y ∈ 2nN

)
The size of ψ is linear in n, and therefore exponential in the size of (φnA, φ

n
B); the same

holds for all equivalent quantifier-free formulas in Presburger arithmetic.

Using a SAT approach [11] we reduce the interpolation computation problem to
conjunctions of literals (predicates or negation of predicates) extracted from φA and
φB . In particular, w.l.o.g. we can assume that φA, φB are conjunctions of literals. By
introducing fresh variables, we can assume that explicit divisibility predicates do not
appear. In fact, let us consider the formulas φ′A and φ′B obtained from φA and φB
by replacing l ∈ β + mZ and ¬(l ∈ β + mZ) by respectively l − mx = β and
l −mx − y = β ∧ −y ≤ −1 ∧ y ≤ m − 1 where x, y are two fresh variables distinct
for each replaced predicate. Since introduced variables are local to either φ′A or φ′B we
deduce that any formula is an interpolant for (φA, φB) if and only if it is an interpolant
for (φ′A, φ

′
B). Thus, we can assume without loss of generality that φA and φB do not

contain divisibility predicates.

Finally, since the negations of the predicates l 6= β, l = β, l ≤ β are equivalent to
the predicates l = β, l 6= β, −l ≤ −β − 1, we can assume that the literals of φA and
φB are predicates (without negation). We have reduced our problem to the computation
of interpolants for formulas φA, φB that are conjunctions of disequality, equality and
inequality predicates.

3 Overview of the Interpolation Procedure

We assume the vocabularyX = {x1, . . . , xn}, using an arbitrary but fixed enumeration
of the variables, and denote the vector of all variables by x = (x1, . . . , xn)t. We identify

4

a linear term l with the matrix product l = utx where u = (α1, . . . , αn)t ∈ Zn denotes
coefficients of x in l, i.e. l = α1x1+· · ·+αnxn. We associate to a predicate p the vector
up ∈ Zn, the relation #p ∈ {6=,=,≤}, and the integer βp ∈ Z such that p is denoted
by utpx#pβp. Valuations of X are identified with vectors v = (v1, . . . , vn)t ∈ Zn such
that v satisfies a predicate p if utpv#pβp holds. We introduce the ith elementary vector
ei,n of Zn (simply denoted by ei when n is unambiguous) defined by:

ei,n = (0, . . . , 0︸ ︷︷ ︸
i−1 zeroes

, 1, 0, . . . , 0)t ∈ Zn

Predicates are strengthened with interval labels. The ordered set (Z,≤) is extended
into (Z∞,≤) where Z∞ = Z ∪ {−∞,∞} and ≤ satisfies −∞ ≤ δ ≤ ∞ for every
δ ∈ Z∞. An (integral) interval is a a set of the form Jδ−, δ+K = {δ ∈ Z | δ− ≤ δ ≤
δ+} where δ−, δ+ ∈ Z∞. The interval Jδ, δK where δ ∈ Z is simply denoted by {δ}.
In the sequel, a predicate p labelled with an interval I is denoted by (p)I . Semantically,
a labelled predicate (p)I is satisfied by a valuation v if v satisfies p and utpv ∈ I . In
order to simplify the presentation, we assume that I ⊆ {βp} if p is an equality and
I ⊆ J−∞, βpK if p is an inequality. The label of a disequality can be any interval.
Observe that any unlabeled formula φ is equivalent to a labelled one satisfying the
previous labeling conventions. Given a conjunction φ of labelled predicates, we denote
by φ̄ the formula obtained from φ by unlabeling the predicates.

We first show on the following example how the unsatisfiability of a conjunction
φ = φA ∧ φB can be discovered by analyzing systems of inequalities over the ra-
tional numbers and systems of equalities over the integers. We consider the following
formulas:

φA = (x− 2y ≤ 0)J−∞,0K ∧
(2y − x ≤ 0)J−∞,0K

φB = (x− 2z ≤ 1)J−∞,1K ∧
(2z − x ≤ −1)J−∞,−1K

The label of (2z − x ≤ −1)J−∞,−1K is first partitioned into J1 ∪ J2 where J1 =
J−∞,−2K and J2 = {−1}. We observe that φ is unsatisfiable if and only if both
the formulas φ1 = φA,1 ∧ φB,1 and φ2 = φA,2 ∧ φB,2 are unsatisfiable, where
φA,1 = φA, φA,2 = φA, and:

φB,1 = (x− 2z ≤ 1)J−∞,1K ∧
(2z − x ≤ −1)J1

φB,2 = (x− 2z ≤ 1)J−∞,1K ∧
(2z − x ≤ −1)J2

We introduce the system of interval predicates extracted from φ1 labels, i.e. −∞ ≤
x − 2y ≤ 0 ∧ −∞ ≤ 2y − x ≤ 0 ∧ −∞ ≤ x − 2z ≤ 1 ∧ −∞ ≤ 2z − x ≤ −2.
An LP-solver decides in polynomial time its unsatisfiability over the rational numbers.
In particular we deduce that φ1 is unsatisfiable over the integers. The unsatisfiability
of φ2 is obtained by partitioning the label of (x − 2y ≤ 0)J−∞,0K into J3 ∪ J4 where
J3 = J−∞,−1K and J4 = {0}. We observe that φ2 is unsatisfiable if and only if both
the following formulas φ3 = φA,3 ∧ φB,3 and φ4 = φA,4 ∧ φB,4 are unsatisfiable,
where φB,3 = φB,2, φB,4 = φB,2, and:

φA,3 = (x− 2y ≤ 0)J3 ∧
(2y − x ≤ 0)J−∞,0K

φA,4 = (x− 2y ≤ 0)J4 ∧
(2y − x ≤ 0)J−∞,0K

5

From the system of interval predicates extracted from φ3 labels, an LP-solver shows
that φ3 is unsatisfiable. Finally, let us consider the system of equalities extracted from
the φ4 labels, i.e. x− 2y = 0∧ 2z−x = −1. Since this system is unsatisfiable over the
integers, we deduce that φ4 is unsatisfiable. We have proved that φ is unsatisfiable by
strengthening predicates until either a system of inequalities becomes unsatisfiable over
the rational numbers, or a system of equalities becomes unsatisfiable over the integers.

Now, we exhibit a way for computing an interpolant ψ for (φA, φB). From the
system of inequalities proving that φ1 is unsatisfiable over the rational numbers, we
deduce in Sect. 5 that ψ1 = (true) is an interpolant for (φA,1, φB,1). The same
approach shows that ψ3 = (false) is an interpolant for (φA,3, φB,3). From the system
of equalities proving that φ4 is unsatisfiable, we deduce in Sect. 4 that ψ4 = (x ∈ 2Z)
is an interpolant for (φA,4, φB,4). Finally, we show in Sect. 7 that an interpolant for
(φA, φB) can be obtained from ψ1, ψ3 and ψ4 by considering the following tree where
the leaves φ1, φ3 and φ4 are respectively labelled by the interpolants ψ1, ψ3 and ψ4,
where the node φ is labelled by ∧ since the partitioned label of φ comes from itsB part,
and where the node φ2 is labelled by ∨ since the partitioned label of φ2 comes from
its A part. This tree provides the interpolant ψ = true ∧ (false ∨ x ∈ 2Z) for
(φA, φB):

φ ∧

φ1true φ2 ∨

φ3false φ4 x ∈ 2Z

Our general algorithm follows this approach. Now, let us assume that φA and φB
are any conjunctions of labelled predicates. Interpolants for (φA, φB) or valuations w
satisfying φ̄A ∧ φ̄B are computed using algorithm interpolant(φA , φB).

1 interpolant (φA , φB)
2 if check_equality(φA , φB) returns a formula ψ return ψ
3 if check_inequality(φA , φB) returns a formula ψ return ψ
4 if check_unsatpred(φA , φB) returns a formula ψ return ψ
5 return strengthening(φA , φB)

This algorithm first executes three sub-algorithms check_equality, check_inequality
and check_unsatpred respectively presented in Sect. 4, Sect. 5 and Sect. 6:

– check_equality returns in polynomial time an interpolant if a system of equalities
extracted from φA and φB labels is unsatisfiable over the integers.

– check_inequality returns in polynomial time an interpolant if a system of inequal-
ities extracted from φA and φB labels is unsatisfiable over the rational numbers.

– check_unsatpred returns in linear time an interpolant if an unsatisfiable labelled
predicate occurs in φA or φB . This sub-algorithm is required for the termination
when disequalities occur in φA or φB .

6

When these sub-algorithms fail in computing an interpolant, the sub-algorithm strength-
ening is executed. It tries to compute a valuation satisfying φ̄A∧ φ̄B . If it fails, the label
of a predicate is partitioned and algorithm interpolant is recursively called on each el-
ement of the partition. This last sub-algorithm is presented in Sect. 7.

4 Unsatisfiable Equalities Over The Integers

This section describes interpolation in the case that the inconsistency of φA ∧ φB is
caused by equations. To this end, we extract a system UAx = dA of equations from
φA, where UA ∈ Zm×n is an integer matrix and dA ∈ Zm is an integer vector. The
system UAx = dA consists of all equations utpx = δ such that φA contains a predicate p
labelled with a singleton J = {δ}. The same is done for φB by introducing UB ∈ Zl×n
and dB ∈ Zl. We also introduce the formulas φ′A and φ′B obtained from φA and φB
by keeping the other labelled predicates (p)I with I not reduced to a singleton. The
conjunctions φA, φB can then be represented in the form

φA = UAx = dA ∧ φ′A, φB = UBx = dB ∧ φ′B

In order to examine the satisfiability of the two systems UAx = dA, UBx = dB of
equations, we combine them to

Ux = d, U =

(
UA
UB

)
∈ Z(l+m)×n, d =

(
dA
dB

)
∈ Zl+m

and solve them by transforming the matrix U into Smith Normal Form (SNF):

Lemma 4.1 (Smith Normal Form of integer matrices). Suppose U ∈ Zk×n is an
integer matrix. U can be represented as U = LSR, such that L ∈ Zk×k andR ∈ Zn×n
are invertible (in the respective rings of integer matrices), and S ∈ Zk×n is in Smith
Normal Form:

S =


α1 0 · · · · · · 0

0 α2
. . .

......
. . .

. . .
. . .

. . . αr 0... 0 0
...

0 · · · · · · 0


where r ≤ min{k, n} and α1, . . . , αr are positive integers such that αi+1 ∈ αiZ for
all i ∈ {1, . . . , r − 1}. The matrices L, S,R can effectively be computed from U in
polynomial time [8].

Given the decomposition U = LSR, the satisfiability of the system Ux = d ⇔
SRx = L−1d can directly be determined: a solution to the equations exists if and
only if (i) each element αi of S divides the ith component of L−1d, and (ii) for each
r < i ≤ k the ith component of L−1d is zero.

We first consider the case that the system Ux = d is unsatisfiable (satisfiable sys-
tems are discussed in Sect. 7). In this case, an interpolant can be computed from the

7

equations without involving the inequalities or disequalities in φ′A, φ′B . An interpola-
tion procedure for equations has been described in [7] (using transformation of matrices
to Hermite Normal Form) and can easily be carried over to our context of matrices in
SNF.

If Ux = d is unsatisfiable, then the equivalent system S(Rx) = L−1d contains an
unsatisfiable equation

etiS(Rx) = etiL
−1d

such that the right-hand side etiL
−1d cannot be represented as an integral linear com-

bination of the left-hand side coefficients etiS. This equation can be obtained as a lin-
ear combination of the equations in Ux = d by left-multiplying with the row vec-
tor st = etiL

−1. Restricting this linear combination to the equations from φA and elim-
inating variables that only occur in φA (the variables XA\XB) yields an interpolant:

ψ = (∃xj)xj∈XA\XB
st
(
UA
0

)
x = st

(
dA
0

)
Note that a quantifier-free interpolant can trivially be obtained by rewriting the exis-
tential quantifiers to a divisibility constraint: a formula like ∃y1, . . . , yu. β1y1 + · · · +
βuyu + l = β is equivalent to the constraint l ∈ β + gcd(β1, . . . , βu)Z.

To see that ψ is indeed an interpolant for (φA, φB), we can first observe that the
following entailments hold:

φA |= UAx = dA |= st
(
UA
0

)
x = st

(
dA
0

)
|= ψ

Vice versa, because stUx = std is unsatisfiable and the variablesXA\XB do not occur
in φB , it is also the case that φB and ψ are inconsistent:

φB |= st
(

0

UB

)
x = st

(
0

dB

)
|= ¬ψ

The following algorithm summarizes the equality interpolation procedure:

1 check_equality(φA , φB)
2 extract equality systems UAx = dA and UBx = dB from φA and φB
3 let L, S,R be the Smith Normal Form decomposition of U
4 if there exists i such that etiSRx = etiL

−1d is unsatisfiable
5 let st = etiL

−1

6 return a divisibility predicate equivalent to:
7 (∃x)x∈XA\XB

st
(
UA

0

)
x = st

(
dA
0

)
Proposition 4.2. Algorithm check_equality(φA , φB) returns in polynomial time an
interpolant for (φA, φB) if the system of equalities Ux = d is not satisfiable over the
integers.

8

5 Unsatisfiable Inequalities Over The Rationals

Interpolation procedures for linear inequalities over the rationals have been described in
[13, 11], and are in the following paragraphs adapted to our setting. In order to examine
the satisfiability of φA∧φB over the rationals, we extract systems of inequalitiesCAx ≤
cA andCBx ≤ cB (withCA ∈ Zm′×n, CB ∈ Zl′×n, cA ∈ Zm′

, and cB ∈ Zl′) from the
labelled predicates in φA, φB . More precisely, whenever φA contains a predicate (p)I
such that I = Jδ−, δ+K then CAx ≤ cA contains the inequalities −utpx ≤ −δ− and
utpx ≤ δ+ if δ−, δ+ ∈ Z. Predicates labelled with an interval I such that δ− = −∞ or
δ+ =∞ are in the same way translated to single inequalities.

The system CBx ≤ cB is constructed in the same manner from φB . As in Sect. 4,
we then combine both systems into one:

Cx ≤ c, C =

(
CA
CB

)
∈ Z(l′+m′)×n, c =

(
cA
cB

)
∈ Zl

′+m′

A complete criterion for the solvability of Cx ≤ c is given by Farkas’ lemma [16]:

Lemma 5.1 (Farkas). Suppose C ∈ Qk×n is a rational matrix and c ∈ Qk is a vector.
Exactly one of the following statements is true:

– The system Cx ≤ c is satisfiable: there is a vector v ∈ Qn such that Cv ≤ c.
– There is a non-negative vector w ∈ Qk such that wtC = 0 and wtc < 0.

We can decide in polynomial time which case holds, and simultaneously compute the
corresponding vector v or w.

For the rest of this section, let us assume that the second case holds, and that we
have computed a non-negative vector w ∈ Ql′+m′

as in the lemma (the first case is
discussed in the next section). Without loss of generality, we assume that w is integral,
because w can be multiplied with any possibly occurring denominators. The following
inequality is an interpolant for (φA, φB):

ψ = wt
(
CA
0

)
x ≤ wt

(
cA
0

)
To see that ψ is an interpolant, first recall that wtC = 0, which implies that the
term wt

(
CA

0

)
x only contains variables that also occur in wt

(
0
CB

)
x. This means that

all free variables in ψ occur both in φA and φB .
Furthermore, the entailment φA |= ψ holds:

φA |= CAx ≤ cA |=
(
CA
0

)
x ≤

(
cA
0

)
|= ψ

We can, vice versa, derive a formula from φB that contradicts ψ, because the combined
inequality wtCx ≤ wtc is unsatisfiable by construction:

φB |= CBx ≤ cB |=
(

0

CB

)
x ≤

(
0

cB

)
|= wt

(
0

CB

)
x ≤ wt

(
0

cB

)
|= ¬ψ

Altogether, we have proved that ψ is an interpolant for (φA, φB). The following algo-
rithm summarizes the inequality interpolation procedure:

9

1 check_inequality(φA , φB)
2 extract inequality systems CAx ≤ cA and CBx ≤ cB from φA and φB
3 if there exists w ∈ Zk such that wtC = 0 and wtc < 0
4 return the inequality predicate:
5 wt

(
CA

0

)
x ≤ wt

(
cA
0

)
Proposition 5.2. Algorithm check_inequality(φA , φB) returns in polynomial time
an interpolant for (φA, φB) if the system of inequalities Cx ≤ c is not satisfiable over
the rationals.

6 Unsatisfiable Predicates

We observe that false or true are trivial interpolants for (φA, φB) if an unsatisfiable
predicate (p)I occurs in φA or φB . Algorithm check_unsatpred implements this idea.
This algorithm is important for the termination of algorithm interpolant. In fact, an al-
ternative version of algorithm interpolant without check_unsatpred never terminates
on (φA, φB) with φA = (x = 0){0} and φB = (x 6= 0)Z.

1 check_unsatpred(φA , φB)
2 if an unsatisfiable predicate (p)I occurs in φA return false
3 if an unsatisfiable predicate (p)I occurs in φB return true

Proposition 6.1. Algorithm check_unsatpred(φA , φB) returns in linear time an
interpolant for (φA, φB) if an unsatisfiable predicate (p)I occurs in φA or φB .

7 When Strengthening is Necessary

We assume that (i) the system of equalities Ux = d introduced in Sect. 4 admits an
integral solution, and (ii) the system of inequalitiesCx ≤ c introduced in Sect. 5 admits
a rational solution.

Farkas’ lemma provides in polynomial time a vector v ∈ Qn such thatCv ≤ c. This
vector is rounded up to a vector w ∈ Zn satisfying the system of equalities Ux = d by
using the Smith Normal Form decomposition LSR of U (see Sect. 4):

w = R−1[Rv]

where [Rv] is the integral part of Rv, i.e. the unique vector in Zn such that there exists
a vector ε ∈ Qn satisfying Rv = [Rv] + ε and − 1

2 < εi ≤ 1
2 for every i.

Lemma 7.1. Vector w satisfies the system of equalities Ux = d.

Intuitively w is “not so far” from v since v = w + R−1ε, and since v satisfies
the system of inequalities Cx ≤ c it is quite possible that w also satisfies this system.
Hence this vector is a good candidate for a valuation satisfying φA ∧ φB . Note that if

10

w does not satisfy this conjunction but it satisfies the more relaxed formula φ̄A ∧ φ̄B
obtained from φA ∧ φB by removing the labels, we have discovered a solution to our
original problem (labels are just used to prove the unsatisfiability). So let us assume
that w is not a solution of φ̄A ∧ φ̄B . In this case, there exists a labelled predicate (p)I
that occurs in φA ∧ φB such that w does not satisfy p. We introduce the pivot value
µ = utpv for partitioning I into the following three disjoint intervals I<µ , I=µ , and I>µ
where I#µ = {δ ∈ I | δ#µ}. We select the rational value µ for partitioning I since
µ ∈ I (recall that v satisfies the system Cx ≤ c). Note that the integral value utpw is
not a good choice for partitioning I since in general this value is not in I . In particular
w is just used to select a predicate p and its value is no longer used in the sequel.

The decomposition of I into (I<µ , I
=
µ , I

>
µ) should not be replaced by the partitions

(I<µ , I
≥
µ) or (I≤µ , I

>
µ) since the termination of the algorithm is no longer guaranteed

with these partitions. In fact the partition (I<µ , I
≥
µ) degenerates to (∅, I) if µ is the lower

bound of I and the partition (I≤µ , I
>
µ) degenerates to (I, ∅) if µ is the upper bound of I .

Intuitively in these two cases the predicate (p)I is not really strengthened.

An interpolant ψ for (φA, φB) is deduced from interpolants ψ# of (φ#A , φ
#
B) for

each # ∈ {<,=, >} by introducing the following formula:

ψ =

{
ψ< ∨ ψ= ∨ ψ> if (p)I occurs in φA
ψ< ∧ ψ= ∧ ψ> if (p)I occurs in φB

1 strengthening(φA , φB)
2 let v ∈ Qn such that Cv ≤ c
3 let w = R−1[Rv]
4 if w satisfies φ̄A ∧ φ̄B return w
5 let (p)I be a labelled predicate of φA ∧ φB such that w does not satisfy p
6 let µ = utpv
7 foreach # ∈ {<,=, >}
8 let (φ#A , φ

#
B) obtained from (φA, φB) by replacing I by I#µ

9 let ψ#=interpolant(φ#A , φ#B)
10 if the previous function returns a valuation w return w

11 return

{
ψ< ∨ ψ= ∨ ψ> if (p)I occurs in φA
ψ< ∧ ψ= ∧ ψ> if (p)I occurs in φB

Proposition 7.2. When algorithm interpolant(φA , φB) terminates, it returns either
an interpolant for (φA, φB) or a valuation w ∈ Zn satisfying φ̄A ∧ φ̄B .

8 Termination And Complexity

The exponential worst case execution time of interpolant is proved using a rooted tree
that logs the algorithm execution. As expected a node N denotes a recursive sub-call of
interpolant with input (φNA , φ

N
B). Internal nodes N have three children denoted by N#

with # ∈ {<,=, >}.

11

We first examine sub-algorithm strengthening(φA , φB) when the computed vec-
tor v ∈ Qn is rounded up into an integer vectorw ∈ Zn that is not a solution of φ̄A∧φ̄B .
We denote by (p)I a labelled predicate that occurs in φA or φB such that w does not
satisfy p.

Lemma 8.1. The set I contains at least two distinct integers.

Recall that p is a predicate of the form utpx#pβp. The distance of the pivot value µ
to βp is bounded by the following lemma where ||z||1 = |z1|+ · · ·+ |zn| for any vector
z = (z1, . . . , zn)t ∈ Zn.

Lemma 8.2. We have |µ− βp| ≤ 1
2

∣∣∣∣utpR−1∣∣∣∣1.

We introduce an integer s denoting the size of the input problem, i.e. the number of
bits to denote (φA, φB) with integral coefficients encoded in binary. Since the lines of
the computed matrices U are vectors up for some predicates p, we deduce that the size
of the matrix U is bounded by s. As the Smith Normal Form of a matrix U is obtained
with a polynomial time algorithm, we deduce that there exists a polynomial P such that
1
2

∣∣∣∣utpR−1∣∣∣∣1 < 2P (s) at any step of the computation. From the previous Lemma 8.2
we deduce that every pivot value µ satisfies |µ − βp| < 2P (s). Let us recall that the
pivot value µ is used by sub-algorithm strengthening to partition I into three intervals
I<µ , I=µ and I>µ . An immediate induction shows that every predicate p is labelled by
an interval with integral bounds in Jβp − 2P (s), βp + 2P (s)K. In particular the number
of possible intervals I that label a predicate p is bounded by (2 + 2P (s)+1)2. Let k
denote the number of predicates. We have proved that the number of possible labelings
is bounded by (2 + 2P (s)+1)2k.

Lemma 8.3. Intervals I<µ , I=µ and I>µ are strictly included in I .

Lemma 8.4. Two distinct internal nodes have distinct labels.

From the previous lemma we deduce that the number of internal nodesN is bounded
by (2 + 2P (s)+1)2k. As an internal node has at most three leaf children, we deduce that
the number of nodes is bounded by 4(2 + 2P (s)+1)2k = O(4Q(s)) where Q is the
polynomial Q(s) = 2s(P (s) + 1). We have proved the following theorem.

Theorem 8.5. In exponential time in the worst case, algorithm interpolant(φA , φB)
returns either a valuation satisfying φ̄A ∧ φ̄B or an interpolant for (φA, φB).

9 Experimental Evaluation

We have created a prototypical implementation of our interpolating decision procedure
and integrated it as a theory solver into the SMT-solver OpenSMT [3], with the long-
term goal of creating an interpolating SMT-solver to be used in model checkers. The
prototype was developed on top of a recent development version of OpenSMT that
already provided an interpolation procedure for propositional logic. In order to imple-
ment the algorithm check_inequality, we internally invoke the LP solver present in
OpenSMT, which realizes the algorithm from [6].

To the best of our knowledge, the following tools and algorithms are the only ones
available for comparison (also see Sect. 1):

12

OpenSMT SmtInterpol iPrincess Omega QE
Averest 10/9 10/1/31.75/ 8/4/97.02/ 0/0/–/ –/–/203.89/

90/221 72/149 –/– 8/132639
CIRC/multiplier 16/1 5/1/48.94/ 5/1/24.40/ 6/1/130.46/ –/–/108.71/

45/2357 45/48827 35/12764 125/15392
CIRC/simplebitadder 17/0 7/0/102.81/ 5/0/8.58/ 6/0/412.82/ –/–/97.83/

63/23362 45/41077 49/47218 129/93181
check 4/1 4/1/0.77/ 2/1/0.17/ 4/1/36.65/ –/–/0.26/

36/1.7 18/2.3 33/485 30/0.67
nec-smt/small 17/18 1/0/251.95/ 7/0/259.86/ 0/0/–/ –/–/134.88/

9/36 63/1728 –/– 66/15867
mathsat 100/21 74/15/52.96/ 65/13/45.74/ 11/11/61.78/ –/–/168.81/

666/2020 585/126705 99/13745 612/101088
rings 294/0 9/0/59.93/ 0/0/–/ 54/0/108.01/ –/–/227.25/

81/4611 –/– 62/3470 1474/55307
wisa 2/3 0/0/–/ 1/2/394.22/ 0/0/–/ –/–/67.01/

–/– 9/1039 –/– 14/23709
unsat/sat unsat / sat / average time / #interpolants / average int. size

Table 1. Results of applying the four compared tools to SMT-LIB benchmarks (times in seconds).
Experiments were done on an Intel Xeon X5667 4-core machine with 3.07GHz, heap-space lim-
ited to 12GB, running Linux, with a timeout of 900s.

– the theorem prover iPrincess [2], which implements an interpolating decision pro-
cedure for QFPA based on a sequent calculus,

– the SMT-solver SmtInterpol,3 a recently released interpolating decision procedure
for linear integer arithmetic that uses an architecture similar to the one in Foci [11],

– quantifier elimination (QE) procedures, which can be used to generate interpolants
as illustrated in Sect. 2; for our experiments, we use the implementation of the
Omega test [14] available in iPrincess.

The benchmarks for our experiments are derived from different families of the SMT-
LIB category QF-LIA. Some of the selected families (e.g., rings) are specifically de-
signed to test integer reasoning capabilities, and contain problems satisfiable over ra-
tionals. Because SMT-LIB benchmarks are usually conjunctions at the outermost level,
we partitioned them into A∧B by choosing the first k

10 ·n of the benchmark conjuncts
as A, the rest as B (where n is the total number of conjuncts, and k ∈ {1, . . . , 9}). This
yields 9 interpolation problems for each SMT-LIB benchmark.

Our experimental results are summarized in Table 1:4

– the number unsatisfiable/satisfiable problems tested, and the number of unsat/sat
results that the tools were able to derive; in the remaining cases, either a timeout

3 http://swt.informatik.uni-freiburg.de/research/tools/smtinterpol
4 http://www.philipp.ruemmer.org/interpolating-opensmt.shtml

13

or a memory-out occurred. No figures are given for QE, which does not decide
satisfiability of interpolation problems.

– the average time (in seconds) required to solve each benchmark, including the time
for computing the 9 interpolants for a benchmarks. For QE, this is simply the aver-
age time to compute 9 interpolants.

– the total number of interpolants that could be computed. For OpenSMT and Smt-
Interpol, which compute interpolants on-the-fly while solving a problem, this is
always 9× the number of unsat results. iPrincess first constructs a proof for a prob-
lem, and afterwards extracts interpolants, which means that sometimes fewer than 9
interpolants can be computed (interpolant extraction has exponential complexity).

– the average size of generated interpolants, in terms of the number of equations,
inequalities, and occurrences of propositional variables in the interpolant.5

Discussion. The experimental results show that our implementation in OpenSMT is
competitive with all compared interpolation procedures: in 4 of the 8 families, it is
able to prove the largest of problems unsatisfiable (and to compute interpolants for
them); in all families but CIRC/simplebitadder, the runtime is smaller or comparable
with the other tools; in 4 families, the generated interpolants are significantly smaller
(on average) than the interpolants computed by the other tools.

QE is able to generate a large number of interpolants in the families CIRC/multi-
plier, CIRC/simplebitadder, and rings, albeit the generation is slow (on average) and
the interpolants are large. It can be observed that our construction of interpolation prob-
lems by choosing arbitrary partitionings of SMT-LIB problems tends to generate many
trivial interpolation problems, in the sense that the partition φA does not contain any
local variables (or only few). On such interpolation problems, QE naturally performs
very well; with an increasing number of local symbols, the performance of QE quickly
degrades (also see [2] for a discussion of this phenomenon).

The complexity of interpolant extraction in iPrincess (which can be exponential
due to mixed cuts) becomes visible in rings, where the prover can solve many more
problems than the other systems, but can only produce a small number of interpolants.

Conclusion. We have presented an algorithm computing interpolants in the quantifier-
free fragment of Presburger arithmetic in exponential time in the worst case. This al-
gorithm combines the one presented in [7] that computes interpolants in polynomial
time for systems of equalities over the integers and the one presented in [11] that com-
putes interpolant in polynomial time for systems of inequalities over the rational num-
bers, without any overhead. In fact, sub-algorithm strengthening is called only if sub-
algorithms check_equality and check_inequality fail in computing an interpolant.

Even though we limit the presentation to conjunctions of literals, following [11]
the algorithm can be applied to any formula of the QFPA fragment. In the worst case
this extended algorithm calls the presented algorithm for each conjunction of literals

5 OpenSMT generates interpolants that use the SMT-LIB flet operator to achieve a more
compact representation, as a result of how propositional interpolants are computed. Eliminat-
ing flets can sometimes significantly increase the size of interpolants, but is practically not
necessary for further processing, which is why flets have been kept for our comparison.

14

extracted from φA and φB . In particular the worst case complexity is still exponential
(we call an exponential number of times an exponential algorithm and 2n2n = 4n). In
particular our algorithm matches the exponential lower bound complexity.

We have created a prototypical implementation of our interpolating decision pro-
cedure. The experimental results show that our implementation is competitive with all
compared interpolation procedures; work on further optimizations and further bench-
marks is in progress. We are interested in applying interpolation to the verification of
safety properties for counter-systems, a class of automata equipped with a finite set of
counters (applications of these automata are given in [4]). More precisely, we plan to
implement the combination of the lazy-interpolation framework [12] with the acceler-
ation framework presented in [4] that requires an efficient interpolator for QFPA.

Acknowledgements. We would like to thank the OpenSMT team and Gérald Point for
help with the implementation, Thomas Wahl for discussions, and the anonymous refer-
ees for helpful comments.

References
[1] Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: Interpolation for LA+EUF. In: CAV. LNCS,

vol. 5123, pp. 304–308. Springer (2008)
[2] Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An interpolating sequent calculus for

quantifier-free Presburger arithmetic. In: IJCAR. LNCS, vol. 6173. Springer (2010)
[3] Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT solver. In: Esparza,

J., Majumdar, R. (eds.) TACAS. LNCS, vol. 6015, pp. 150–153. Springer (2010)
[4] Caniart, N., Fleury, E., Leroux, J., Zeitoun, M.: Accelerating interpolation-based model-

checking. In: TACAS. LNCS, vol. 4963, pp. 428–442. Springer (2008)
[5] Cimatti, A., Griggio, A., Sebastiani, R.: Interpolant generation for UTVPI. In: Schmidt,

R.A. (ed.) CADE, LNCS, vol. 5663, pp. 167–182. Springer (2009)
[6] Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: CAV. LNCS,

vol. 4144, pp. 81–94. Springer (2006)
[7] Jain, H., Clarke, E.M., Grumberg, O.: Efficient Craig interpolation for linear diophantine

(dis)equations and linear modular equations. In: CAV. LNCS, Springer (2008)
[8] Kannan, R., Bachem, A.: Polynomial algorithms for computing the Smith and Hermite

normal forms of an integer matrix. SIAM J. Comput. 8(4), 499–507 (1979)
[9] Lynch, C., Tang, Y.: Interpolants for linear arithmetic in SMT. In: ATVA. LNCS, Springer

(2008)
[10] McMillan, K.L.: Applications of Craig interpolants in model checking. In: TACAS. LNCS,

vol. 3440, pp. 1–12. Springer (2005)
[11] McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1) (2005)
[12] McMillan, K.L.: Lazy abstraction with interpolants. In: CAV. LNCS, Springer (2006)
[13] Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computa-

tions. J. Symb. Log. 62(3), 981–998 (1997)
[14] Pugh, W.: The Omega test: a fast and practical integer programming algorithm for depen-

dence analysis. Communications of the ACM 8, 102–114 (1992)
[15] Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation. In: VM-

CAI. LNCS, vol. 4349, pp. 346–362. Springer (2007)
[16] Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)
[17] Weispfenning, V.: Complexity and uniformity of elimination in Presburger arithmetic. In:

ISSAC. pp. 48–53 (1997)

15

