
Deciding Bit-Vector Formulas with mcSAT

Aleksandar Zeljić1, Christoph M. Wintersteiger2, and Philipp Rümmer1

1 Uppsala University, Sweden
2 Microsoft Research

Abstract. The Model-Constructing Satisfiability Calculus (mcSAT) is
a recently proposed generalization of propositional DPLL/CDCL for
reasoning modulo theories. In contrast to most DPLL(T)-based SMT
solvers, which carry out conflict-driven learning only on the proposi-
tional level, mcSAT calculi can also synthesise new theory literals during
learning, resulting in a simple yet very flexible framework for designing
efficient decision procedures. We present an mcSAT calculus for the the-
ory of fixed-size bit-vectors, based on tailor-made conflict-driven learning
that exploits both propositional and arithmetic properties of bit-vector
operations. Our procedure avoids unnecessary bit-blasting and performs
well on problems from domains like software verification, and on con-
straints over large bit-vectors.

1 Introduction

Fixed-length bit-vectors are one of the most commonly used datatypes in Satisfi-
ability Modulo Theories (SMT), with applications in hardware and software ver-
ification, synthesis, scheduling, encoding of combinatorial problems, and many
more. Bit-vector solvers are highly efficient, and typically based on some form of
SAT encoding, commonly called bit-blasting, in combination with sophisticated
methods for upfront simplification. Bit-blasting may be implemented with vary-
ing degree of laziness, ranging from eager approaches where the whole formula
is translated to propositional logic in one step, to solvers that only translate
conjunctions of bit-vector literals at a time (for an overview, see [22]). Despite
the huge body of research, aspects of bit-vector solving are still considered chal-
lenging, including the combination of bit-vectors with other theories (e.g., ar-
rays or uninterpreted functions), large bit-vector problems that are primarily
of arithmetic character (in particular when non-linear), and problems involving
very long bit-vectors. A common problem encountered in such cases is excessive
memory consumption of solvers, especially for solvers that bit-blast eagerly.

A contrived yet instructive example with very long bit-vectors is given in
Fig. 1, adapted from a benchmark of the SMT-LIB QF BV ‘pspace’ subset [18].
The benchmark tests the overflow behavior of addition. Its model is simple,
regardless of the size of bit-vectors x and y (x should consist of only 1-bits,
while y should consist of only 0-bits). Finding a model for the formula should
in principle be easy, but proves challenging for bit-blasting procedures. Other
sources of very long bit-vectors are system memory in hardware verification

(set-logic QF_BV)

(declare-fun x () (_ BitVec 29980))

(declare-fun y () (_ BitVec 29980))

(assert (and (bvuge x y) (bvule (bvadd x (_ bv1 29980)) y)))

Fig. 1: Simplified example from the ‘pspace’ subset [18] of SMT-LIB, QF BV

or heap in software verification (e.g., [4]), chemical reaction networks, or gene
regulatory networks (e.g., [35]).

Generally, memory consumption is a limiting factor in the application of
bit-vector solvers. Increasing the size of bit-vectors that can efficiently be rea-
soned about would broaden the range of applications, while also simplifying
system models for further analysis. With that in mind, we introduce a new
model-constructing decision procedure for bit-vectors that is lazier than previ-
ous solvers. The procedure is defined as an instance of the model-constructing
satisfiability calculus (mcSAT [30]), a framework generalizing DPLL and conflict-
driven learning (CDCL) to non-Boolean domains. Like other SMT solvers for
bit-vectors, our procedure is defined on top of well-understood SAT technology;
unlike most existing solvers, we treat bit-vectors as first-class objects, which en-
ables us to design tailor-made propagation and learning schemes for bit-vector
constraints, as well as avoiding bit-blasting of bit-vector operations altogether.

The contributions of this paper are as follows: 1. a novel decision procedure
for the theory of bit-vectors that avoids bit-blasting, 2. an extension of the
mcSAT calculus to support partial model assignments, 3. a new mcSAT heuristic
for generalizing explanations, and 4. an implementation of the procedure and
preliminary experimental evaluation of its performance.

1.1 Motivating Examples

We start by illustrating our approach using two examples: a simple bit-vector
constraint that illustrates the overall strategy followed by our decision procedure,
and a simple family of bit-vector problems on which our procedure outperforms
existing bit-blasting-based methods. Consider bit-vectors x, y, z of length 4, and
let ⊕ denote bit-wise exclusive-or and ≤u, <u be unsigned comparison in

φ ≡ x = y + z ∧ y <u z ∧ (x ≤u y + y ∨ x ⊕ z = 0001) .

The goal is to find an assignment to x, y, z such that formula evaluates to true.
Fig. 2 illustrates an application of our algorithm to φ (after clausification). Start-
ing from an empty trail, we assert the unit clauses, denoted by implications
with empty antecedents (lines 1 and 2 in Fig. 2a). At this point the procedure
chooses between making a model assignment to one of the bit-vector variables,
or Boolean decisions. Here, we choose to make a decision and assume x ≤u y+y
(line 3). Decisions (and model assignments) are denoted with a horizontal line
above them in the trail. The Boolean structure of the formula φ is now satisfied,

2

Trail element
1 ()→ x = y + z
2 ()→ y <u z

3 x ≤u y + y

4 y 7→ 1111
5 z 7→?

(a) Infeasible trail

Trail element
1 ()→ x = y + z
2 ()→ y <u z

3 x ≤u y + y
4 y <u z → ¬(y = 1111)

5 y 7→ 1110
6 z 7→ 1111
7 x 7→ 1101

(b) Conflicted trail

Trail element
1 ()→ x = y + z
2 ()→ y <u z

3 x ≤u y + y
4 y <u z → ¬(y = 1111)
5 (. . .)→ ¬(y ≥u 1000)

6 y 7→ 0111
7 z 7→ 1001
8 x 7→ 0000

(c) Satisfied trail

Fig. 2: Critical trail states during the execution of our algorithm

so we search for satisfying model assignments to the bit-vector variables. Here,
we decide on y 7→ 1111 (line 4 in Fig. 2a). The literal y <u z now gives a lower
bound for z. Our procedure immediately determines that the trail has become
infeasible, since no value of z will be consistent with y = 1111 and y <u z.

We now need an explanation to restore the trail to a state where it is not
infeasible anymore. In mcSAT, an explanation of a conflict is a valid clause with
the property that the trail implies falsity of each of the clause literals. One pos-
sible explanation in our case is ¬(y = 1111) ∨ ¬(y <u z). After resolving the
explanation against the trail (in reverse order, similar to Boolean conflict reso-
lution in SAT solvers), at the first point where at least one literal in the conflict
clause no longer evaluates to false, the conflict clause becomes an implication
and is put on the trail. In this example, as soon as we undo the assignment
y 7→ 1111, the literal ¬(y = 1111) can be assumed (line 4 in Fig. 2b). The pro-
cedure makes the next legal assignment y 7→ 1110 (line 5 in Fig. 2b). Bounds
propagation using y <u z then implies the model assignment z 7→ 1111 (line
6 in Fig. 2b). Values of y and z imply a unique value 1101 for x, however,
the model assignment x 7→ 1101 is not legal because it violates x <u y + y
when y = 1110. By means of bounds propagation we have detected a conflict in
y = 1110 ∧ y <u z ∧ x = z + y ∧ x <u y + y.

Our procedure tries to generalize conflicts, to avoid re-visiting conflicts of
similar shape in the future. Generalization is done by weakening the literals of
y = 1110∧ y <u z ∧ x = z+ y ∧ x <u y+ y, and checking if the conflict persists.
First, y = 1110 is rewritten to y ≤u 1110 ∧ y ≥u 1110; it is then detected that
y ≤u 1110 is redundant, because bounds propagation derives unsatisfiability even
without it. Now we weaken the literal y ≥u 1110 by changing the constant, say to
y ≥u 1000, and verify using bounds propagation that the conflict persists (Exam-
ple 3). Weakening y ≥u 1000 further would lead to satisfiability. By negation we
obtain a valid explanation ¬(y ≥u 1000)∨¬(y <u z)∨¬(x = z+y)∨¬(x <u y+y),
which we use to backtrack the trail to a non-conflicted state (line 5 in Fig. 2c).
From this point on straight-forward propagation yields a satisfying solution.

After presenting the basic ideas behind our procedure, we argue that it is
well suited to problems that stem from model checking applications. Consider

3

Algorithm 1: Factorial

1 uns igned i n t factorial = 1u;

2 uns igned i n t n;

3 f o r (i n t i = n; i > 0u; i--) {

4 factorial = factorial * i;

5 }

6 assert (n <= 1 || f % 2u == 0u)

the simple C program shown in Alg. 1. The program computes the factorial of
some value n by multiplying the factors starting from n and counting down. We
add an assertion at the end, which checks whether factorial is even if the value
of n is greater than one. We use bounded model checking and unwind the loop a
fixed number of iterations, to generate formulas of increasing complexity. Fig. 3
shows the performance of mcBV (our prototype) and state-of-the-art solvers
on these benchmarks (Boolector [10] is the winner of the QF BV track of the
2015 SMT competition; Z3 [29] is our baseline as mcBV uses the Z3 parser and
preprocessor). On this class of benchmarks, mcBV performs significantly better
than Z3 and comparably to Boolector.

1.2 Related Work

The most popular approach to solving bit-vector formulas is to translate them
to propositional logic and further into conjunctive normal form via the Tseitin
translation [33] (bit-blasting), such that an off-the-shelf SAT solver can be used
to determine satisfiability. In contrast, our approach does not bit-blast, and we
attempt to determine satisfiability directly on the word level. Our technique
builds on the Model-Constructing Satisfiability Calculus recently developed by
Jovanović and de Moura [30, 23]. Our approach is similar in spirit to previous
work by Bardin et al. [1], which avoids bit-blasting by encoding bit-vector prob-
lems into integer arithmetic, such that a (customized) CLP solver for finite do-

0.1

1

10

T/O

M/O

0 10 20 30 50 100 150

T
im

e
[s

ec
]

Iterations

mcBV

××
×××× × × ×

× × × ×
× × × × × × × × × × × ×

×
Z3 4.4.2

•••••• • • • •
•
•

•

• • • • • • • • • • • •

•
Boolector 2.2.0

∗∗∗∗∗∗
∗

∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

Fig. 3: Factorial example performance

4

mains can be used. A different angle is taken by Wille et al. [34] in their SWORD
tool, which uses vector-level information to increase the performance of the SAT
solver by abstracting some sub-formulas into ‘modules’ that are handled similar
to custom propagators in a CLP solver.

On the one hand, various decisions problems involving bit-vectors have re-
cently been shown to be of fairly high complexity [24, 19, 25] and on the other
hand, some fragments are known to be decidable in polynomial time; for instance,
Bruttomesso and Sharygina describe an efficient decision procedure for the ‘core’
theory of bit-vectors [11], based on earlier work by Cyrluk et al. [15], who defined
this fragment via syntactic restriction to extraction and concatenation being the
only bit-vector operators that are permitted. There is also a small body of work
on the extension of decision procedures for bit-vectors that do not have a fixed
size. For instance, Bjørner and Pichora [7] describe a unification-based calculus
for (non-)fixed size bit-vectors, while Möller and Ruess [28] describe a procedure
for (non-)fixed size bit-vectors that bit-blasts lazily (‘splitting on demand’).

Most SMT solvers implement lazy and/or eager bit-blasting procedures.
These either directly, eagerly translate to a Boolean CNF and then run a SAT
solver, or, especially when theory combination is required, they use a lazy bit-
blaster that translates relevant parts of formulas on demand. This is the case,
for instance in Boolector [10], MathSAT [13], CVC4 [2], STP [20], Yices [17],
and Z3 [29]. Hadarean et al. [22] present a comparison and evaluation of eager,
lazy, and combined bit-vector solvers in CVC4.

Griggio proposes an efficient procedure for the construction of Craig inter-
polants of bit-vector formulas ([27] via translation to QF LIA, quantifier-free
linear integer arithmetic [21]). Interpolants do have applications in mcBV, e.g.,
for conflict generalization, but we do not currently employ such methods.

Model checkers that do not use SMT solvers sometimes implement their
own bit-blasting procedures and then use SAT solvers, BDD-based, or AIG-
based solvers. This is often done in bounded model checking [5, 6], but more
recently also in IC3 [9], Impact [27], or k-induction [32]. Examples thereof include
CBMC [14], EBMC [26], NuSMV2 [12]. In some cases model-checkers based
on abstract interpretation principles use bit-vector solvers for counter-example
generation when the proof fails; this is the case, for instance, for the separation-
logic based memory analyzer SLAyer [3, 4].

In recent times bit-vector constraints are also used for formal systems anal-
ysis procedures in areas other than verification, for instance in computational
biology [35] where Dunn et al. [16] identify and analyze a bit-vector model for
pluripotent stem-cells via an encoding of the model into bit-vector constraints.
Similarly, bit-vector solvers are used within interactive and automated theorem
provers to construct bit-vector proofs, for instance, in Isabelle/HOL [8].

2 Preliminaries: Bit-Vector Constraints

We consider a logic of quantifier-free fixed-width bit-vector constraints, defined
by the following grammar, in which φ ranges over formulas and t over bit-vector

5

terms:

φ ::= true || false || p || ¬φ || φ ∧ φ || φ ∨ φ || t • t

t ::= 0n || 1n || · · · || (0|1)+ || x || extractnp (t) || ! t || t ◦ t

Here, p ranges over propositional variables; expressions 0n, 1n, . . . are decimal
bit-vector literals of width n; literals (0|1)+ represent bit-vectors in binary; x
ranges over bit-vector variables of size α(x); predicates • ∈ {=,≤s,≤u} repre-
sent equality, signed inequality (2’s complement format), and unsigned inequal-
ity, respectively; the operator extractnp represents extraction of n bits starting
from position p (where the left-most bit has position 0); ! is bit-wise negation;
binary operators ◦ ∈ {+,×,÷, & , | , ⊕ ,�,�,_} represent addition, multipli-
cation, (unsigned) integer division, bit-wise and, bit-wise or, bit-wise exclusive
or, left-shift, right-shift, and concatenation, respectively. We assume typing and
semantics of bit-vector constraints are defined as usual.

An atom is a formula φ that does not contain ¬,∧,∨. An atom is flat if it is
of the form x ≤s y, x ≤u y, or x = t, and t does not contain nested operators.
A literal is an atom or its negation. A clause is a disjunction of literals. When
checking satisfiability of a bit-vector constraint, we generally assume that the
constraint is given in the form of a set of clauses containing only flat atoms.

3 mcSAT with Projections

We now introduce the framework used by our decision procedure for bit-vector
constraints, based on a generalized version of mcSAT [30]. In contrast to previous
formulations of mcSAT, we include the possibility to partially assign values to
variables; this enables assignments that only affect some of the bits in a bit-
vector, which helps us to define more flexible propagation operators. mcSAT
with projections is first defined in general terms, and tailored to the setting of
bit-vector constraints in the subsequent sections, resulting in mcBV.

We define our framework in the form of a transition system, following the
tradition of DPLL(T) [31] and mcSAT [30]. The states of the system have the
form 〈M,C〉, where M is the trail (a finite sequence of trail elements), and C
is a set of clauses. The trail M consists of: (1) decided literals l, (2) propagated
literals e→ l, and (3) model assignments π(x) 7→ α. A literal l (either decided or
propagated) is considered to be true in the current state if it appears in M , which
is denoted by l ∈ M . Model assignments π(x) 7→ α denote a partial assignment
of a value α to a variable x, where π is a projection function.

We consider constraints formulated over a set of types {T1, T2, . . . , Tn} with
fixed domains {T1, T2, . . . , Tn}, and a finite family {πi}i∈I of surjective func-
tions πi : T 7→ T ′ (here called projections) between the domains. Types can for
instance be bit-vector sorts of various lengths. A partial model assignment π(x) 7→
α with projection π : T 7→ T ′ expresses that variable x of type T is assigned
some value β ∈ T such that π(β) = α, where α ∈ T ′. A trail can contain multiple
partial assignments to the same variable x; we define the partial domain of a

6

variable x under a trail M as

Domain(x,M) =
⋂

(π(x)7→α)∈M

{β ∈ T | π(β) = α} .

We call a trail M assignment consistent if the partial assignments to variables
are mutually consistent, i.e., the partial domain Domain(x,M) of each variable x
is non-empty. If the partial domain of a variable x contains exactly one element,
i.e., Domain(x,M) = {β}, then we say that all the partial assignments to x in
M form a full model assignment ; in the original mcSAT calculus, this is denoted
by x 7→ β. Assignment consistency is violated if Domain(x,M) = ∅. We gener-
ally require that projections {πi}i∈I are chosen in such a way that assignment
consistency and full assignments can be detected effectively for any trail M . In
addition, projections are required to be complete in the sense that every full
model assignment x 7→ β can be expressed as some finite combination of partial
assignments {πj(x) 7→ αj}j∈J . More formally, for every β ∈ T there exists a
finite set of partial model assignments S such that Domain(x, S) = {β}. Inclu-
sion of the identity function among projections enables expression of full model
assignments directly.

Given a trail M , an interpretation v[M] = {x1 7→ β1, x2 7→ β2, . . . , xk 7→ βk}
is constructed by collecting all full model assignments xi 7→ βi implied by M .
The value v[M](t) of a term or formula t is its value under the interpretation v,
provided that all variables occurring in t are interpreted by v; or undef otherwise.
We define a trail extension M̄ of a trail M as any trail M̄ = [M,M ′] such that M ′

consists only of (partial) model assignments to variables already appearing in M ,
and furthermore each variable x that appears in M has a unique value assigned
from its partial domain; Domain(x,M) 6= ∅ implies that |Domain(x, M̄)| = 1.
This ensures that assignment consistency is maintained.

Evaluation of literals in respect to the trail M is achieved using a pair of
functions valueB and valueT , defined as

valueB(l,M) =

true l ∈M
false ¬l ∈M
undef otherwise

and valueT (l,M) = v[M](l) .

A trail M is consistent if it is assignment consistent, and for all literals l ∈M
it holds that valueT (l,M) 6= false. A trail M is said to be complete if it is
consistent and every literal l on the trail M can be evaluated in the theory,
i.e. valueT (l,M) = true. A trail which has no complete extensions is called
infeasible. Note that if a trail is inconsistent then it is also infeasible.

The value of a literal in a consistent state (consistent trail) is defined as

value(l,M) =

{
valueB(l,M) valueB(l,M) 6= undef

valueT (l,M) otherwise
,

which is extended to clauses in the obvious way.

7

T-Decide

〈M,C〉 −→ 〈[M,π(x) 7→ α], C〉 if
x is a (theory) variable in C
Domain(x, [M,π(x) 7→ α]) 6= Domain(x,M)
[M,π(x) 7→ α] is consistent

Fig. 4: The modified T-Decide rule.

Evaluation strength. We remark that there is some freedom in the way valueT is
defined: even if v[M](l) = undef for some literal l (because l contains variables
with undefined value), the trail M might still uniquely determine the value of l.
In general, our calculus can use any definition of value∗T that satisfies

(1) v[M](l) 6= undef implies value∗T (l,M) = v[M](l), and
(2) value∗T (l,M) 6= undef implies that for every extension M̄ of M it holds that

valueT (l, M̄) = value∗T (l,M).

These properties leave room for a trade-off between the strength of reasoning
and computational effort invested to discover such implications. For example,
suppose that a bit-vector variable x of length 3, under trail M has the partial
domain Domain(x,M) = {000, 001, 010}. For a literal l = (x < 100), evalua-
tion yields valueT (l,M) = undef . It is easy to see that valueT (l, M̄) = true
in every trail extension M̄ of M , however, so that a lazier mode of evaluation
could determine value∗T (l,M) = true. With a more liberal evaluation strategy,
propagations and conflicts are detected earlier, though perhaps at higher cost.

3.1 A Calculus with Projections

The transitions of our calculus are the same as those of mcSAT [30], with the
exception of the T-Decide rule, which we define in terms of partial assignments
and partial domains (Fig. 4). As in mcSAT, it is assumed that a finite basis B of
literals is given, representing all literals that are taken into account in decisions,
propagations, or when constructing conflict clauses and explanations. B at least
has to contain all atoms, and the negation of atoms occurring in the clause set C.
The function explain is supposed to compute explanations of infeasible trails M
(which correspond to theory lemmas in DPLL(T) terminology). An explanation
of M is a clause e such that 1. e is valid; 2. all literals l ∈ e evaluate to false on
M (i.e., value(l,M) = false); 3. all literals l ∈ e occur in the basis B.

In order to state correctness of the calculus, we need one further assumption
about the well-foundedness of partial assignments: for every sequence of partial
assignments to a variable x, of the form [π1(x) 7→ α1, π2(x) 7→ α2, . . .], we assume
that the sequence of partial prefix domains

Domain(x, [])

Domain(x, [π1(x) 7→ α1])

Domain(x, [π1(x) 7→ α1, π2(x) 7→ α2])

· · ·

8

eventually becomes constant. This ensures that partial assignment of a variable
cannot be refined indefinitely. Correctness of mcSAT with projections is then be
proven in largely the same manner as in mcSAT:

Theorem 1 (Correctness [30]). Any derivation starting from the initial state
〈[], C〉 eventually terminates in state sat, if C is satisfiable, or in state unsat, if
C is unsatisfiable.

4 Searching for Models with mcBV

We now describe how the mcSAT calculus with projections is tailored to the
theory of bit-vectors, leading to our procedure mcBV. The theory of bit-vectors
already contains a natural choice for the projections, namely the extract func-
tions, of which we use a finite subset as projections. To ensure completeness
of this subset (in the sense that every full model assignment has a represen-
tation as a combination of partial model assignments), we include all one-bit
projections πki = extract1i , selecting the i-th bit of a bit-vector of length k.

In practice, our prototype implementation maintains a trail M as part of
its state, and attempts to extend the trail with literals and model assignments
such that the trail stays consistent, every literal on the trail eventually becomes
justified by a model assignment (i.e., valueT (l,M) = true for every literal l in
M), and every clause in C is eventually satisfied. A conflict is detected if either
some clause in C is found to be falsified by the chosen trail elements (which is
due to literals or model assignments), or if infeasibility of the trail is detected.

Since the calculus is model constructing, there is a strong preference to jus-
tify all literals on the trail through model assignments, i.e., to make the trail
complete, before making further Boolean decisions. Partial model assignments
are instrumental for this strategy: they enable flexible implementation of prop-
agation rules that extract as much information from trail literals as possible.
For instance, if the trail contains the equation x = extract32(y) and a model
assignment x 7→ 101, propagation infers and puts a further partial assign-
ment extract32(y) 7→ 101 on the trail, by means of the T-Decide rule. This partial
assignment is subsequently used to derive further information about other vari-
ables. For this, we defined bit-precise propagation rules for all operators; our
solver includes native implementations of those rules and does not have to re-
sort to explicit bit-blasting. Similarly to Boolean Constraint Propagation (BCP),
propagation on the level of bit-vectors is often able to detect inconsistency of
trails (in particular variables with empty partial domain) very efficiently.

Once all possible bit-vector propagations have been carried out, but the
trail M is still not complete, the values of further variables have to be decided
upon through T-Decide. In order to avoid wrong decisions and obvious conflicts,
our implementation also maintains over-approximations of the set of feasible val-
ues of each variable, in the form of bit-patterns and arithmetic intervals. These
sets are updated whenever new elements are pushed on the trail, and refined
using BCP-equivalent propagation and interval constraint propagation (ICP).
Besides indicating values of variables consistent with the trail, these sets offer

9

cheap infeasibility detection (when they become empty), which is crucial for the
T-Propagate and T-Conflict rules. Also, frequently one of these sets becomes
singleton, in which case a unique model assignment for the variable is implied.

4.1 Efficient Representation of Partial Model Assignments

Our procedure efficiently maintains information about the partial domains of
variables by tracking bit-patterns, which are strings over the 3-letter alphabet
{0, 1, u}; the symbol u represents undefined bits (don’t-cares). We say that bit-
vector x matches bit-pattern p (both of length k) iff x is included in the set of
vectors covered in the bit-pattern; formally we define

matches(x, p) =
∧

0≤i<k
pi 6=u

xi = pi ,

where xi and pi denote i-th bit of x and p. The atom matches(x, p) is not a
formula in the sense of our language of bit-vector constraints, but for the sake
of presentation we treat it as such in this section.

For long bit-vectors, representation of partial domains using simple bit-
patterns can be inefficient, since linear space is needed in the length of the
bit-vector variable. To offset this, we use run-length encoding (RLE) to store
bit-patterns. Besides memory compression, RLE speeds up propagation, as it is
not necessary to process every individual bit of a bit-vector separately. The com-
plexity then depends on the number of bit alternations, as shown in the following
example demonstrating exclusive-or evaluation on both representations.

Example 1. Each digit in the output represents one bit operation, in standard
bit-vectors (left) and run-length encoded bit-vectors (right) :

x 0000011111
y 1110000011

x⊕ y 1110011100

x 03 02 13 12

y 13 02 03 12

x⊕ y 13 02 13 02

4.2 Maintaining Partial Domain Over-approximations

To capture arithmetic properties and enable efficient propagation, our implemen-
tation stores bounds x ∈ [xl, xu] for each variable x. The bounds are updated
when new elements occur on the trail, and bounds propagation is used to refine
bounds. Note that bit-patterns and arithmetic bounds abstractions sometimes
also refine each other. For example, lower and upper bounds are derived from a
bit-pattern, by replacing all u bits with 0 and 1 respectively. Conversely, if the
lower and upper bound share a prefix, then they imply a bit-pattern with the
same prefix and the remaining bits set to u.

10

5 Conflicts and Explanations

Explanations are the vehicle used by our calculus to generalize from conflicts.
Given an infeasible trail M , an explanation explain(M) is defined to be a valid
clause E = l1 ∨ · · · ∨ ln over the finite basis B, such that every literal li
evaluates to false under the current trail, i.e., value(li,M) = false for every
i ∈ {1, . . . , n}. Explanations encode contradictory assumptions made on the
trail, and are needed in the T-Consume and T-Conflict rules to control conflict
resolution and backtracking, as well as in T-Propagate to justify literals added
to the trail as the result of theory propagation.

Since the trail M is inconsistent at the beginning of conflict resolution, it is
always possible to find explanations that are simply disjunctions of negated trail
literals; to this end, every propagated literal c→ l is identified with l, and every
model assignment π(x) 7→ α as the formula π(x) = α.

5.1 Greedy generalization

We present a greedy algorithm for creating explanations that abstract from
concrete causes of conflict. To this end, we assume that we have already derived
some correct (but not very general) explanation

e = ¬t1 ∨ ¬t2 ∨ · · · ∨ ¬tn ∨ ¬b1 ∨ ¬b2 ∨ · · · ∨ ¬bm ,

where t1, . . . , tn denote literals with valueT (ti,M) = true, and b1, . . . , bm liter-
als with valueT (ti,M) = undef but valueB(bi,M) = true. The former kind of
literal holds as a result of model assignments, whereas the latter literals occur
on the trail either as decisions or as the result of propagation. The key observa-
tion is that the literals t1, . . . , tn allow over-approximations (replacements with
logically weaker literals), as long as the validity of the overall explanation clause
is maintained, in this way producing a more general explanation.

Our procedure requires the following components as input (apart from e):

– for each literal ti (for i ∈ {1, . . . , n}), a finite lattice (Ti,⇒) of conjunctions
of literals Ti ⊆ {l1 ∧ · · · ∧ lk | l1, . . . , lk ∈ B} ordered by logical implication,
with join ti and meet ui, and the property that ti ∈ Ti. The set Ti provides
constraints that are considered as relaxation of ti.

– a heuristic satisfiability checker hsat to determine the satisfiability of a con-
junction of literals. The checker hsat is required to (1) be be sound (i.e.,
hsat(φ) = false implies that φ is actually unsatisfiable), (2) to correctly
report the validity of e,

hsat(t1 ∧ · · · ∧ tn ∧ b1 ∧ · · · ∧ bm) = false,

and (3) to be monotonic in the following sense: for all elements l, l′ ∈ Ti
with l ⇒ l′ in one of the lattices, and for all conjunctions φ, ψ of literals, if
hsat(φ ∧ l′ ∧ ψ) = false then hsat(φ ∧ l ∧ ψ) = false.

11

Algorithm 2: Explanation relaxation

Input: Raw explanation
∨n

i=1 ¬ti ∨
∨m

i=1 ¬bi;
lattices (Ti,⇒)ni=1; satisfiability checker hsat .

Output: Refined explanation
∨n

i=1 ¬t
a
i ∨

∨m
i=1 ¬bi.

1 φb ← b1 ∧ · · · ∧ bm;
2 for i← 1 to n do
3 tai ← ti;
4 Bi ← ∅;
5 end

6 changed ← true;
7 while changed do
8 changed ← false;
9 for i← 1 to n do

10 if ∃t ∈ Ti \ {tai } with tai ⇒ t and ∀l ∈ Bi. t 6⇒ l then

11 if hsat(
∧i−1

j=1 t
a
j ∧ t ∧

∧n
j=i+1 t

a
j ∧ φb) then

12 Bi ← Bi ∪ {t};
13 else
14 tai ← t;
15 changed ← true;

16 end

17 end

18 end

19 end

20 return ¬ta1 ∨ · · · ∨ ¬tan ∨ ¬b1 ∨ · · · ∨ ¬bm;

The pseudo-code of the procedure is shown in Alg. 2, and consists mainly
of a fixed-point loop in which the literals t1, . . . , tn are iteratively weakened,
until no further changes are possible (lines 6–19). The algorithm keeps blocking
sets Bi of conjunctions of literals (for i ∈ {1, . . . , n}) that have been considered as
relaxation for ti, but were found to be too weak to maintain a valid explanation.

Lemma 1. Provided a correct explanation clause as input, Alg. 2 terminates
and produces a correct refined explanation.

The next two sections describe two instances of our procedure: one targeting
explanations that are primarily of arithmetic character, and one for explanations
that mainly involve bit-wise operations.

5.2 Greedy Bit-wise Generalization

If the literals of an explanation clause are primarily bit-wise in nature, the relax-
ation considered in our method is to weaken the bit-patterns associated with the
variables occurring in the conflict. For every literal ti of the form matches(x, p),

12

¬matches(y, 0000) ∨ ¬matches(x, 10) ∨ ¬extract22(y) = x Valid

¬matches(y, u000) ∨ ¬matches(x, 10) ∨ ¬extract22(y) = x Valid
¬matches(y, uuu0) ∨ ¬matches(x, 10) ∨ ¬extract22(y) = x y = 0010, x = 10
¬matches(y, uu00) ∨ ¬matches(x, 10) ∨ ¬extract22(y) = x Valid
¬matches(y, uu0u) ∨ ¬matches(x, 10) ∨ ¬extract22(y) = x Valid
¬matches(y, uu0u) ∨ ¬matches(x, u0) ∨ ¬extract22(y) = x y = 0000, x = 00
¬matches(y, uu0u) ∨ ¬matches(x, 1u) ∨ ¬extract22(y) = x Valid

Fig. 5: Generalization based on bit-patterns

where x is a bit-vector variable and p a bit-pattern of width k = α(x) implied
by the trail, we choose the lattice (Ti,⇒) with

Ti = {false} ∪ {matches(x, a) | a ∈ {0, 1, u}k} .

This set contains a constraint that is equivalent to true, namely the literal
matches(x, uk). Conflicts involving (partial) assignments allow us to start near
the bottom of the lattice and we weaken the literal as much as possible in order
to cover as many similar assignments as possible. Concretely, the weakening is
performed by replacing occurrences of 1 or 0 in the bit-pattern by u.

Our prototype satisfiability checker hsat for this type of constraints is imple-
mented by propagation (Sect. 4), which is able to show validity of raw explana-
tion clauses, and similarly handles bit-pattern relaxations. Our implementation
covers all operations, but it is imprecise for some arithmetic operations.

Example 2. Consider the trail

M = [. . . , y 7→ 04, x 7→ 1101, extract22(y) = x] .

This trail is inconsistent because literal extract22(y) = x evaluates to false in the
theory. A simple explanation clause is ¬matches(y, 04) ∨ ¬matches(x, 1101) ∨
¬(extract22(y) = x). The generalization procedure now tries to generalize this
naive explanation by weakening the literals. Fig. 5 shows steps of generalizing
the conflict observed in trail M . One by one, bits in the pattern are set to u and
it is checked whether the new clause is valid. If it is valid, the new bit-pattern is
altered further, otherwise we discard it and continue with the last successfully
weakened pattern. Note that we are not restricted to changes to only one bit, or
even only one literal at a time.

5.3 Greedy Arithmetic Generalization

If the literals of an explanation clause are primarily arithmetic, the relaxation
considered in our method is to replace equations (that stem from model assign-
ments on the trail) with inequalities or interval constraints: for every literal ti
of the form x = vk, where x is a bit-vector variable and vk a literal bit-vector
constant of width k = α(x), we choose the lattice (Ti,⇒) with

Ti = {false} ∪ {x = a | a ∈ {0, 1}k} ∪
{a ≤u x ∧ x ≤u b | a, b ∈ {0, 1}k, a < b}

13

¬(y ≤u 14) ∨ ¬(y ≥u 14) ∨ ¬(y <u z) ∨ ¬(x = z + y) ∨ ¬(x <u y + y) Valid

¬(y ≤u 15) ∨ ¬(y ≥u 14) ∨ ¬(y <u z) ∨ ¬(x = z + y) ∨ ¬(x <u y + y) Valid
¬(y ≥u 0) ∨ ¬(y <u z) ∨ ¬(x = z + y) ∨ ¬(x <u y + y) y = 1, . . .
¬(y ≥u 7) ∨ ¬(y <u z) ∨ ¬(x = z + y) ∨ ¬(x <u y + y) y = 7, . . .
¬(y ≥u 10) ∨ ¬(y <u z) ∨ ¬(x = z + y) ∨ ¬(x <u y + y) Valid
¬(y ≥u 8) ∨ ¬(y <u z) ∨ ¬(x = z + y) ∨ ¬(x <u y + y) Valid

Fig. 6: Generalization based on arithmetic and interval bounds propagation

This set contains a constraint that is equivalent to true (0k ≤u x ∧ x ≤u 1k),
and similarly constraints that only impose concrete lower or upper bounds on
x, and equalities (x = vk) ∈ Ti.

Our satisfiability checker hsat for this type of constraints implements interval
constraint propagation, covering all bit-vector operations, although it tends to
yield more precise results for arithmetic than for bit-wise operations. If ICP
shows that an interval becomes empty, then the generalization succeeds because
the conflict persists. Otherwise, generalization fails when ICP reaches a fix point
or exceeds a fixed number of steps (to avoid problems with slow convergence).

Example 3. For readability purposes we switch to numerical notation in this
example. Recall the basic explanation of the trail conflict shown in Fig. 2b in
the motivating example (Sect. 1.1):

¬(y = 14) ∨ ¬(y <u z) ∨ ¬(x = z + y) ∨ (x <u y + y)

We rewrite the first negated equality as a disjunction of negated inequalities.
Then the iterative generalization procedure starts. For each bound literal, the
procedure first attempts to remove it (by weakening it to a true-equivalent in
the lattice Ti). If unsuccessful, it navigates the lattice of literals using binary
search over bounds. Fig. 6 shows the steps in this particular example.

6 Experiments and Evaluation

To evaluate the performance of our mcBV implementation we conducted exper-
iments on the SMT-LIB QF BV benchmark set, using our implementation of
mcBV in F#, on a Windows HPC cluster of Intel Xeon machines. The bench-
mark set contains 49971 files in SMT2 format, each of which contains a set of
assertions and a single (check-sat) command. The timeout for all experiments is
at 1200 sec and the memory limit is 2 GB.

Currently we do not implement any advanced heuristics for clause learning,
clause deletion, or restarts and thus mcBV does not outperform any other solver
consistently. We present a runtime comparison of mcBV with the state-of-the-art
SMT solvers Boolector and Z3 on a selected subset of the QF BV benchmarks see
Fig. 7. On the whole benchmark set, mcBV is not yet competitive with Boolector
or Z3, but it is interesting to note that mcBV performs well on some of the
benchmarks in the ‘sage’, ‘sage2’ and ‘pspace’ sets, as well as the entirety of the

14

0.1

1

10

100

T/O

M/O

0.1 1 10 100 T/O M/O

m
cB

V
[s

ec
]

Boolector 2.2.0 [sec]

Set
Z3 Boolector

mcBV # <
4.4.2 2.2.0

QF BV
SAT 16260 16793 6679 35

UNSAT 30748 31534 17025 58

brummayer- SAT 10 0 10 0
biere4 UNSAT 0 0 0 0

pspace
SAT 0 21 21 21

UNSAT 15 60 0 0

sage
SAT 8077 8077 6069 0

UNSAT 18530 18530 16152 29

Sage2
SAT 5104 5649 16 14

UNSAT 9961 10612 176 29

Fig. 7: Runtime comparison on selected subsets of SMT QF BV. Markers for
‘sage’ and ‘sage2’ are smaller to avoid clutter; #< shows the number of bench-
marks that only mcBV solves or mcBV solves quicker than both Z3 and Boolector.

‘brummayerbiere4’ set. Those sets contain a substantial number of benchmarks
that mcBV could solve, but Z3 and Boolector cannot. The ‘pspace’ benchmarks
are hard for all solvers as they contains very large bit-vectors (in the order
of 20k bits) which will often result in the bit-blaster running out of memory;
this is reflected in the small clusters at the bottom right in Fig. 7. The table
in Fig. 7 gives the number of instances solved by each approach. While our
prototype performs relatively well on selected subsets, it will need improvements
and advanced heuristics to compete with the state-of-the-art on all of QF BV.

7 Conclusion

We presented a new decision procedure of the theory of bit-vectors, which is
based on an extension of the Model-Constructing Satisfiability Calculus (mcSAT).
In contrast to state-of-the-art solvers, our procedure avoids unnecessary bit-
blasting. Although our implementation is prototypical and lacks most of the
more advanced heuristics used in solvers (e.g., variable selection/decision heuris-
tics, lemma learning, restarts, deletion strategies), our approach shows promising
performance, and is comparable with the best available solvers on a number of
benchmarks. This constitutes a proof of concept for instantiation of the mcSAT
framework for a new theory; we expect significantly improved performance as
we further optimise our implementation. Additionally, we improve the flexibility
of the mcSAT framework by introducing projection functions and partial assign-
ments, which we believe to be crucial for the model-constructing approach for
bit-vectors.

15

References

1. Bardin, S., Herrmann, P., Perroud, F.: An alternative to SAT-based approaches
for bit-vectors. In: TACAS. LNCS, vol. 6015. Springer (2010)

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Proc. CAV. LNCS, vol. 6806. Springer (2011)

3. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: Memory safety for systems-level code.
In: CAV. LNCS, vol. 6806. Springer (2011)

4. Berdine, J., Cox, A., Ishtiaq, S., Wintersteiger, C.M.: Diagnosing abstraction fail-
ure for separation logic-based analyses. In: CAV. LNCS, vol. 7358. Springer (2012)

5. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: DAC (1999)

6. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: TACAS. LNCS, vol. 1579. Springer (1999)

7. Bjørner, N., Pichora, M.C.: Deciding fixed and non-fixed size bit-vectors. In:
TACAS. LNCS, vol. 1384. Springer (1998)

8. Böhme, S., Fox, A.C.J., Sewell, T., Weber, T.: Reconstruction of Z3’s bit-vector
proofs in HOL4 and Isabelle/HOL. In: Certified Programs and Proofs (CPP).
LNCS, vol. 7086. Springer (2011)

9. Bradley, A.R.: SAT-based model checking without unrolling. In: VMCAI. LNCS,
vol. 6538. Springer (2011)

10. Brummayer, R., Biere, A.: Boolector: An efficient SMT solver for bit-vectors and
arrays. In: TACAS. LNCS, vol. 5505. Springer (2009)

11. Bruttomesso, R., Sharygina, N.: A scalable decision procedure for fixed-width bit-
vectors. In: ICCAD. ACM (2009)

12. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In: CAV. LNCS, vol. 2404. Springer (2002)

13. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: TACAS. LNCS, vol. 7795. Springer (2013)

14. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS. LNCS, vol. 2988. Springer (2004)

15. Cyrluk, D., Möller, M.O., Rueß, H.: An efficient decision procedure for the theory
of fixed-sized bit-vectors. In: CAV. LNCS, vol. 1254. Springer (1997)

16. Dunn, S.J., Martello, G., Yordanov, B., Emmott, S., Smith, A.: Defining an es-
sential transcriptional factor program for näıve pluripotency. Science 344(6188)
(2014)

17. Dutertre, B.: System description: Yices 1.0.10. In: SMT-COMP’07 (2007)
18. Froehlich, A., Kovasznai, G., Biere, A.: Efficiently solving bit-vector problems using

model checkers. In: SMT Workshop (2013)
19. Fröhlich, A., Kovásznai, G., Biere, A.: More on the complexity of quantifier-free

fixed-size bit-vector logics with binary encoding. In: Symp. Comp. Sci. - Theory
and Applications (CSR). LNCS, vol. 7913. Springer (2013)

20. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: CAV.
LNCS, vol. 4590. Springer (2007)

21. Griggio, A.: Effective word-level interpolation for software verification. In: FM-
CAD. FMCAD Inc. (2011)

22. Hadarean, L., Bansal, K., Jovanovic, D., Barrett, C., Tinelli, C.: A tale of two
solvers: Eager and lazy approaches to bit-vectors. In: CAV. LNCS, vol. 8559.
Springer (2014)

16

23. Jovanovic, D., de Moura, L.M.: Cutting to the chase - solving linear integer arith-
metic. J. Autom. Reasoning 51(1) (2013)

24. Kovásznai, G., Fröhlich, A., Biere, A.: On the complexity of fixed-size bit-vector
logics with binary encoded bit-width. In: SMT. EPiC Series, vol. 20. EasyChair
(2013)

25. Kovásznai, G., Veith, H., Fröhlich, A., Biere, A.: On the complexity of symbolic
verification and decision problems in bit-vector logic. In: Mathematical Founda-
tions of Comp. Sci. MFCS. LNCS, vol. 8635. Springer (2014)

26. Kroening, D.: Computing over-approximations with bounded model checking. In:
BMC Workshop. vol. 144 (January 2006)

27. McMillan, K.L.: Interpolation and SAT-based model checking. In: CAV. LNCS,
vol. 2725. Springer (2003)

28. Möller, M.O., Rueß, H.: Solving bit-vector equations. In: FMCAD. LNCS, vol.
1522. Springer (1998)

29. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS. LNCS, vol.
4963. Springer (2008)

30. de Moura, L., Jovanovic, D.: A model-constructing satisfiability calculus. In: VM-
CAI (2013)

31. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6) (2006)

32. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: FMCAD. LNCS, vol. 1954. Springer (2000)

33. Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic, Part II, Seminars in Math-
ematics (1970), translated from Russian: Zapiski Nauchnykh Seminarov LOMI 8
(1968)

34. Wille, R., Fey, G., Große, D., Eggersglüß, S., Drechsler, R.: SWORD: A SAT like
prover using word level information. In: Intl. Conf. on Very Large Scale Integration
of System-on-Chip (VLSI-SoC 2007). IEEE (2007)

35. Yordanov, B., Wintersteiger, C.M., Hamadi, Y., Kugler, H.: SMT-based analysis
of biological computation. In: NASA Formal Methods NFM. LNCS, vol. 7871.
Springer (2013)

17

