
Systematic Predicate Abstraction
using Variable Roles

Yulia Demyanova1, Philipp Rümmer2, and Florian Zuleger1?

1 Vienna University of Technology
2 Uppsala University

Abstract. Heuristics for discovering predicates for abstraction are an
essential part of software model checkers. Picking the right predicates af-
fects the runtime of a model checker, or determines if a model checker is
able to solve a verification task at all. In this paper we present a method
to systematically specify heuristics for generating program-specific ab-
stractions. The heuristics can be used to generate initial abstractions, and
to guide abstraction refinement through templates provided for Craig in-
terpolation. We describe the heuristics using variable roles, which allow
us to pick domain-specific predicates according to the program under
analysis. Variable roles identify typical variable usage patterns and can
be computed using lightweight static analysis, for instance with the help
of of-the-shelf logical programming engines. We implemented a prototype
tool which extracts initial predicates and templates for C programs and
passes them to the Eldarica model checker in the form of source code
annotations. For evaluation, we defined a set of heuristics, motivated
by Eldarica’s previous built-in heuristics and typical verification bench-
marks from the literature and SV-COMP. We evaluate our approach
on a set of more than 500 programs, and observe an overall increase in
the number of solved tasks by 11.2%, and significant speedup on certain
benchmark families.

1 Introduction

Analysis tools, in particular software model checkers, achieve automation by
mapping systems with infinite state space to finite-state abstractions that can be
explored exhaustively. One of the most important classes of abstraction is predi-
cate abstraction [13], defined through a set of predicates capturing relevant data
or control properties in a program. Picking the right predicates, either upfront or
dynamically during analysis [5], is essential in this setting to ensure rapid conver-
gence of a model checker, and is in practice achieved through a combination of
“systematic” methods (for CEGAR, in particular through Craig interpolation)
and heuristics. For instance, SLAM extracts refinement predicates from coun-
terexamples using domain-specific heuristics [16]; YOGI uses machine learning
to choose the default set of heuristics for picking predicates [19]; CPAchecker

? The first and third author were supported by the Austrian National Research Net-
work S11403-N23 (RiSE) of the Austrian Science Fund (FWF).

2 Yulia Demyanova, Philipp Rümmer, and Florian Zuleger

uses domain types to decide whether to represent variables explicitly or using
BDDs [2], and to choose refinement predicates [4]; and Eldarica uses heuris-
tics to guide the process of Craig interpolation [18]. Similar heuristics can be
identified in tools based on abstract interpretation, among others.

The goal of the present paper is to systematise the definition of abstraction
heuristics, and this way enable easier and more effective adaptation of analysis
tools to specific domains. In order to effectively construct program abstractions,
it is essential for an analysis tool to have (semantic) information about vari-
ables and data-structures used in the program. We propose a methodology in
which heuristics are defined with the help of variable roles [9], which are features
capturing typical variable usage patterns and which can be computed through
lightweight static analysis. Knowledge about roles of variables can be used to
generate problem-specific parameters for model checkers, or other analysis tools,
and thus optimise the actual later analysis process.

As a case study, we describe how variable roles can be used to infer code anno-
tations for the CEGAR-based model checker Eldarica [20]. Eldarica has two
main parameters controlling the analysis process: initial predicates for predicate
abstraction, and templates guiding Craig interpolation during counterexample-
based refinement [18]. Both parameters can be provided in the form of source-
code annotations. We focus on the analysis of C programs defined purely over
integer scalar variables, i.e., not containing arrays, pointers, heap-based data
structures and bitvectors. By manually inspecting a (small) sample of such pro-
grams from SV-COMP [3], we were able to identify a compact set of relevant
variable roles, and of heuristics for choosing predicates and templates based on
those roles. To evaluate the effectiveness of the heuristics, we compared the per-
formance of Eldarica (with and without the heuristics), and of other model
checkers on a set of over 500 programs taken from the literature and SV-COMP.
We observe an increase in the number of solved tasks by 11.2% when using our
heuristics, and speedups on certain benchmark families.

Contributions of the paper are: 1. We introduce a methodology for defining
abstraction heuristics using variable roles; 2. we define 8 roles and correspond-
ing heuristics for efficiently analysing C programs with scalar variables; 3. we
implement our approach and perform an extensive experimental evaluation.

Related Work Patterns of variable usage were studied in multiple disciplines,
e.g. in teaching programming languages [21] (where the patterns were called
variable roles), in type systems for inferring equivalence relations for types [22],
and others. In [9] a set of patterns, also called variable roles, was defined using
data-flow analysis, based on a set of C benchmarks3. In [7, 8] variable roles were
used to build a portfolio solver for software verification. Similarly to variable
roles, code patterns recognised with light-weight static analyses are used in the
bug-finding tool Coverity [11] to devise heuristics for ranking possible bugs.
Domain types in CPAChecker [4] can be viewed as a restricted class of variable
roles. Differently from this work, where variable roles guide the generation of
interpolants, the domain types are used in [4] to choose the ”best” interpolant

3 http://ctuning.org/wiki/index.php/CTools:CBench

Systematic Predicate Abstraction using Variable Roles 3

1 extern char nondet_char();

2 void main() {

3 int id1 = nondet_char();

4 int id2 = nondet_char();

5 int id3 = nondet_char();

6 int max1=id1, max2=id2, max3=id3;

7 int i=0, cnt=0;

8

9 assume(id1!=id2 && id1!=id3 &&

10 id2!=id3);

11

12 while (1) {

13 if (max3 > max1) max1 = max3;

14 if (max1 > max2) max2 = max1;

15 if (max2 > max3) max3 = max2;

16

17 if (i == 1) {

18 if (max1 == id1) cnt++;

19 if (max2 == id2) cnt++;

20 if (max3 == id3) cnt++;

21 }

22 if (i>=1) assert(cnt==1);

23 i++;

24 }

25 }

(1) Roles input, dynamic enumeration
and extremum

1 extern int nondet_int();

2 int main() {

3 int n = nondet_int();

4 int k, i, j;

5

6 for (k=0,i=0; i<n; i++,k++);

7 for (j=n; j>0; j--,k--) {

8 assert(k > 0);

9 }

10 return 0;

11 }

(2) Role local counter

Fig. 1: Motivation examples illustrating variable roles.

from a set of generated interpolants. In addition, our method generates role-
based initial predicates, while the method of [4] does not.

There has been extensive research on tuning abstraction refinement tech-
niques, in such a way that convergence of model checkers is ensured or improved.
This research in particular considers various methods of Craig interpolation,
and controls features such as interpolant strength, interpolant size, the number
of distinct symbols in interpolants, or syntactic features like the magnitude of
coefficients; for a detailed survey we refer the reader to our previous work [18].

1.1 Introductory Examples of Domain-Specific Abstraction

We introduce our approach on two examples. These and all further examples
in this paper are taken from the benchmarks of the software competition SV-
COMP’16 [3]. We simplified some of the examples for demonstration purposes.

Motivation example 1. The code in Fig. 1.1 initializes variables max1,
max2 and max3 to id1, id2 and id3 respectively, which are in turn initial-
ized non-deterministically. The assume statement at lines 9-10 is an Eldar-
ica-specific directive, which puts a restriction that control reaches line 12 only if
id1!=id2 && id1!=id3 && id2!=id3 evaluates to true. In the loop the value
max{id1,id2,id3}, which is the maximum of id1, id2 and id3 is calculated: At
the first iteration, max1 is assigned the value max{id1,id3}, and max2 and max3

are assigned the value max{id1,id2,id3}. After the second iteration max1, max2
and max3 all store the value max{id1,id2,id3}. Since id1, id2 and id3 have

4 Yulia Demyanova, Philipp Rümmer, and Florian Zuleger

distinct values, only one of the conditions in lines 19-21 evaluates to true. The
assertion checks that the value of exactly one of variables max1, max2 and max3

remains unchanged after two iterations, namely maxi, where i=arg max
j
{idj}.

It takes Eldarica 27 CEGAR iterations and 19 sec to prove the program
safe. However, for 88 out of 108 original programs from SV-COMP with this
pattern in category ”Integers and Control Flow”, of which the code in Fig.
1.1 is a simplified form4, Eldarica does not give an answer within the time
limit of 15 minutes. Predicate abstraction needs to generate for these programs
from 116 to 996 predicates, depending on the number of values, for which the
maximum is calculated. Since predicates are added step-wise in the CEGAR
loop, checking these benchmarks is time consuming. We therefore suggest a
method of generating the predicates upfront.

In order to prove that exactly one condition in lines 18-20 evaluates to true

and cnt is incremented by one, predicate abstraction needs to track the val-
ues assigned to variables max1, max2 and max3 with 9 predicates: max1==id1,
max1==id2, max1==id3, etc. Additionally, in order to precisely evaluate condi-
tions in lines 13-15, abstraction needs to track the ordering of variables id1, id2
and id3 with 6 predicates which compare variables id1, id2 and id3 pairwise:
id1<id2, id1>id2, and so on.

To generate the above mentioned 15 predicates our algorithm uses the fol-
lowing variable roles. Variable is input if it is assigned a return value of an
external function call. This pattern is often used in SV-COMP to initialize vari-
ables non-deterministically, e.g. id1=nondet char(), where variables id1, id2,
id3 are inputs. Variables which are assigned only inputs are run-time analogues
of compile-time enumerations. A variable is dynamic enumeration if it is as-
signed only constant values or input variables, i.e. variables max1, max2 and max3

are dynamic enumerations. For each dynamic enumeration x which takes values
v1,. . .,vn, our algorithm generates n equality predicates: x==v1, . . ., x==vn.

Variable x is extremum if it is used in the pattern if(comp expr)x = y,
where comp expr is a comparison operator > or < applied to y and some expres-
sion expr, e.g. y>expr. For every variable x which is both dynamic enumeration
and extremum, our algorithm generates pairwise comparisons for all pairs of
input values v1,. . .,vn assigned to x, e.g. v1<v2, v1>v2, and so on.

Eldarica proves the program in Fig. 1.1 annotated with the 15 predicates
in 8 sec and 0 CEGAR iterations, and it takes Eldarica from 21 to 858 sec
(and from 0 to 4 CEGAR iterations) to prove 53 programs from SV-COMP with
this pattern annotated analogously. For the remaining 55 benchmarks with this
pattern from SV-COMP the number of abstract states becomes too large for
Eldarica to be checked within the time limit.

Motivation example 2. The code in Fig. 1.2 increments variables i and
k in the loop at line 6 until i reaches n, and decrements variables j and k in
the loop at lines 7–9 until j reaches 0. The assertion checking that the value
of variable k remains positive in the loop can be proven using the predicates

4 e.g. seq-mthreaded/pals opt-floodmax.3 true-unreach-call.ufo.BOUNDED-6.pals.c

Systematic Predicate Abstraction using Variable Roles 5

k>=i and k>=j. These predicates are difficult to find, e.g., the baseline version of
Eldarica [20] keeps generating a sequence of pairs of predicates (i<=1,k<=1),
(i<=2,k<=2), etc. As demonstrated by this example, heuristics are needed to
guide interpolation towards finding suitable refinement predicates. The com-
munity has suggested various heuristics for the above example, e.g., the most
recent version of Eldarica [18] proves the program safe in 5 sec and 6 CEGAR
iterations.

We suggest to generate predicate templates demand-driven from the code
under analysis. For the above example, we propose a heuristic which tracks the
dependencies between loop counters: The heuristic searches for variables x as-
signed in a loop in a statement matching the pattern x=x+expr, where expr is
an arbitrary expression. For each pair x1 and x2 of such variables the heuristic
generates a predicate template x1-x2. This template restricts the search space of
the interpolation solver to predicates of the form x1-x2>=n, n∈ N. To formalise
the heuristic we introduce the following role: local counter is a variable assigned
in a loop in a statement x=x+expr, where expr is an arbitrary expression. Note
that we do not restrict expr to be a constant, in contrast to induction vari-
ables [1], since the heuristic is a trade-off between generality and computational
cost and performs well in practice.

Methodology for choosing roles. To choose roles and role-based predi-
cates and templates, we investigated benchmarks of the competition SV-COMP’16
from categories ”Integers and Control Flow” and ”Loops” and loop invariant gen-
eration benchmarks (appr. 30 benchmarks altogether) on which Eldarica did
not give an answer within the time limit of 15 minutes. We manually inspected
the code of these benchmarks and annotated the benchmarks with a minimum
set of predicates and templates so that Eldarica checks the benchmarks within
the time limit. We then derived new variable roles which captured specific code
patterns in which the annotated variables were used.

2 Predicate Abstraction and Refinement

We outline the algorithm implemented by predicate abstraction-based software
model checkers, in particular the Eldarica tool [20] used as test-bed. As the core
procedure, Eldarica applies predicate abstraction [13] and counterexample-
guided abstraction refinement [5] to check the satisfiability of Horn constraints
expressing safety properties of a software program [14, 20, 15]. The procedure
has two main parameters that can be used to tune the abstraction process:

– initial predicates Π0 for predicate abstraction (see Sect. 2.1);

– interpolation templates T that guide Craig interpolation towards mean-
ingful predicates during abstraction refinement (see Sect. 2.2).

The pair (Π0, T) can be computed with the help of variable roles, as outlined
in the previous section. It is important to note that neither parameter has any
effect on soundness of a model checker, only termination is affected.

6 Yulia Demyanova, Philipp Rümmer, and Florian Zuleger

2.1 Solving Horn Clauses with Predicate Abstraction

A Horn clause is a formula of the form ϕ∧B1∧· · ·∧Bn → H, with constraint ϕ,
body literals B1 ∧ · · · ∧Bn containing uninterpreted relation symbols, and head
literal H. Eldarica has a C/C++ front-end that translates software programs
to sets HC of Horn clauses. In this setting, relation symbols represent state in-
variants Inv c associated with a control location c of a program, and Horn clauses
express 1. pre-conditions Pre(s̄)→ Inv c(s̄) for program entry points c; 2. Floyd-
style inductiveness conditions T (s̄, s̄′) ∧ Inv c(s̄) → Inv c′(s̄

′), for transitions be-
tween control locations c, c′; and 3. safety assertions ¬P (s̄)∧ Inv c(s̄)→ false for
control locations c. The translation from software programs to Horn clauses HC
is defined such that the program is safe if and only if the clauses HC are sat-
isfiable, i.e., if and only if the predicates Inv c can be interpreted in such a way
that all clauses become valid.

Model checkers like HSF [14] or Eldarica [20] construct solutions of Horn
clauses in disjunctive normal form by building an abstract reachability graph
(ARG) over a set of given predicates. For this, a Horn solver maintains a mapping
Π : R → Pfin(For) from relation symbols p ∈ R to finite sets of predicates. The
solver starts from some initial mapping Π = Π0; for instance, mapping every
relation symbol to an empty set of predicates. The solver will then attempt to
construct a closed ARG by means of fixed-point computation, which can either
succeed (in which case a solution of the Horn clauses has been derived), or
fail because some assertion clause ϕ ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n) → false is violated
during the construction. In the latter case, a connected acyclic ARG fragment
can be extracted that leads from entry clauses (clauses ϕ→ H without relation
symbols in the body) to the violated assertion clause. A theorem prover is then
used to verify that the counterexample is genuine; spurious counterexamples are
eliminated by generating additional predicates by means of Craig interpolation,
leading to an extended mapping Π = Π1 and refined abstraction.

2.2 Craig Interpolation with Templates

Predicate abstraction-based model checkers rely on theorem provers to find suit-
able interpolants, or interpolants containing the right predicates, in a generally
infinite lattice of interpolants for every extracted counterexample (represented
as acyclic ARG fragments). Eldarica uses interpolation abstraction [18] as a se-
mantic way to guide the interpolation procedure towards “good” interpolants; in
this method, interpolation queries are instrumented to restrict the symbols that
can occur in interpolants, ranking the interpolants with the help of templates.
It has previously been shown that interpolation abstraction can significantly
improve the performance of Horn solvers [18].

In the scope of this paper, we focus on templates in the form of terms. As an
example, consider the binary interpolation query A∧B with A = (x = 1∧y = 2)
and B = (x > y). The interpolation problem has multiple solutions I (with the
property that A⇒ I and B ⇒ ¬I), including I1 = (x = 1∧y = 2) and I2 = (y =
x + 1). In a software model checker, clearly I2 is preferable, since it abstracts

Systematic Predicate Abstraction using Variable Roles 7

from concrete values of the variables. Interpolation abstraction can be used to
distinguish between I1 and I2, by preventing theorem provers, e.g., to compute I1
as an interpolant. For this, template terms are used to capture the expressions
that an interpolant might contain. In the example, given templates {x, y}, a
theorem prover could compute either of I1, I2; with the template {x − y}, a
theorem prover could return (x− y = −1) ≡ I2, but no longer I1.

In Eldarica, software programs can be annotated to express preference of
certain interpolants. For instance, line 4 of the code in Fig. 1.2 can be annotated
to express that the differences i-k and j-k are preferred templates:

4 int k, /*@ terms_tpl {i-k} @*/ i, /*@ term_tpl{j-k} @*/ j;

Annotations are attached to variable declarations, and are then applied when
computing interpolants at control points in the scope of the variable. If no inter-
polant can be constructed using this template, a conventional interpolant will be
used. Besides manual annotation, Eldarica also has a set of inbuilt heuristics
to choose meaningful templates automatically [18].

3 Role-based Predicates and Templates

Specification language for roles. In this section we describe a framework for
the specification and computation of role-based initial predicates and predicate
templates. Roles are usage patterns of variables, we introduce and formalize
them as data-flow analyses in our previous work [9]. Here we re-formulate roles
as logic queries on the control-flow graph (CFG) of a program. We choose logic
programming as a formalism for two reasons: first, its notation is well known,
and second, we can use of-the-shelf logic engines for the computation of roles.
Specifically, we use the syntax and standard fixed point semantics of Datalog.

Preliminaries on Datalog. A rule in Datalog is of the form A0:-L1, . . . ,Ln.
The head of a rule A0 is an atom. The body of a rule {Li} is a set of literals,
and each literal Li is of the form A or not A for an atom A, where the connective
not corresponds to default negation. An atom takes boolean values and is of
the form 1. p(t1, . . . , tm), or 2. t0=f(t1, . . . , tk), or 3. t1 op t2, where p

is a predicate symbol, f is a function symbol, tj are term symbols and op is a
comparison operator (e.g. >, !=, etc.). Atom t0=f(t1, . . . , tk) always evaluates
to true and assigns to term t0 the result of function f(t1, . . . , tk). Each term
tj is a constant symbol (i.e. a function symbol with arity 0), a variable, or an
integer. Predicate and function symbols start with a small letter, and variables
start with a capital letter. A rule is evaluated as follows: if every literal Li in the
body evaluates to true, then the atom A0 in the head evaluates to true. A rule
with empty body is called a fact.

Translation of C code to a logic program. We assume a C program to
be given as a logic program, where each node and edge in the control-flow graph
is translated to one or more facts in the logic program. For example, the code
in Fig. 2a is translated to a logic program in Fig.2b (see the CFG in Fig. 2c).
In particular, the loop condition i<n is represented with nodes 6, 3 and 7 in the

8 Yulia Demyanova, Philipp Rümmer, and Florian Zuleger

1 for(i=0; i<n; i++);

(a) Source code

1 sequence_stmt(1).
2 stmt1(1,2).
3 stmt2(1,5).
4 assign_stmt(2).
5 lhs_expr(2,3).
6 rhs_expr(2,4).
7 var(3).
8 name(3,"i").
9 const_literal(4).

10 text(4,"0").
11 while_stmt(5).
12 cond(5,6).
13 body(5,8).
14 bop(6).

15 opcode(6,"<").
16 lhs_expr(6,3).
17 rhs_expr(6,7).
18 var(7).
19 name(7,"n").
20 assign_stmt(8).
21 lhs_expr(8,3).
22 rhs_expr(8,9).
23 bop(9).
24 opcode(9,"+").
25 lhs_expr(9,3).
26 rhs_expr(9,10).
27 const_literal(10).
28 text(15,"1").

(b) Logic program (c) Control flow graph

Fig. 2: Translation of C code to a logic program

CFG and lines 7-8 and 15-19 in the logic program. Below we will denote a node
corresponding to variable x in the control-flow graph with nodex.

We define roles local counter, extremum, input and dynamic enumeration
in Fig. 3. Specifically, in Fig. 3a we define role local counter which is used to
generate templates, and in Fig. 3b we define roles which are used to generate
initial predicates. Due to the lack of space we introduce the remaining roles and
the generated predicates and templates informally in Table 1. We explain the
definitions of roles in Section 3.1, and the generation of predicates and templates
for these roles in Section 3.2.

3.1 Definition of Roles

Role local counter. Role local counter (line 2-4 in Fig. 3) is defined in the
scope of one loop. The set of variables to which this role is ascribed is encoded
with a binary relation local cnt with a parameter corresponding to the resp.
loop statement WhileStmt. The parameter is needed, because we later define
a template for pairs of local counters, such that the counters have the same
parameter. A variable X is ascribed role local counter if X is there is a loop
statement WhileStmt, in the body of which X is assigned the sum of X and some
other expression. Term sub stmt(Stmt,SubStmt) encodes that in the control
flow graph SubStmt is a descendant of Stmt. Term assigned(X,Expr,AsgnStmt)

encodes that variable X is assigned expression Expr in statement AsgnStmt. Term
operand(Expr,Bop) encodes that Expr is an operand of binary operator Bop.
For example, for code in Fig. 2a the evaluation of the rule derives the fact
local cnt(3) for node nodei=3. For clarity we omit rules for terms sub stmt,
assigned, operand and a rule for the case when the counter is decremented.

Role extremum. Role extremum (lines 9-11) is ascribed to variable X, de-
noted with term extremum(X), if there is an if statement IfStmt, the condition
Cond of which is a binary operator greater-than or less-than (encoded with term
rel opcode(Opcode)), s.t. Cond contains a variable Y which is assigned to X in

Systematic Predicate Abstraction using Variable Roles 9

1 % local counter

2 local_cnt(X,WhileStmt):- while_stmt(WhileStmt),

3 sub_stmt(WhileStmt,AsgnStmt), assigned(X,SumExpr,AsgnStmt),

4 bop(SumExpr), opcode(SumExpr,"+"), operand(SumExpr,X).

5

6 % difference templates for local counters

7 tpl(TplStr):-local_cnt(X,WhileStmt),local_cnt(Y,WhileStmt),

8 X!=Y, name(X,Xname), name(Y,Yname), TplStr=@concat(Xname,"-",Yname).

(a) Role local counter and templates.

1 % extremum

2 extremum(X):- if_stmt(IfStmt), condition(IfStmt,Cond), bop(Cond),

3 opcode(Cond,Opcode), strict_rel_opcode(Opcode), operand(Cond,Y),

4 var(Y), assigned(X,Y,AsgnStmt), then(IfStmt,AsgnStmt).

5

6 % input

7 input(X):- assigned(X,CallExpr,AsgnStmt), call_expr(CallExpr),

8 function(CallExpr,Func), not body(Func).

9

10 % dynamic enumerations

11 dyn_enum(X):- var(X), not not_dyn_enum(X).

12 % the complement of dyn_enum

13 not_dyn_enum(X):- assigned(X,Y,AsgnStmt), var(Y), not_dyn_enum(Y).

14 not_dyn_enum(X):- assigned(X,Expr,AsgnStmt), not var(Expr),

15 not dyn_enum_expr(Expr).

16 % cases for dynamic enumerations

17 dyn_enum_expr(Expr):- const_literal(Expr).

18 dyn_enum_expr(Expr):- input(Expr).

19

20 % predicates for dynamic enumerations

21 pred(PredStr):- dyn_enum(X), assigned(X,Y), var(Y),

22 name(X,Xname), name(Y,Yname), PredStr=@concat(Xname,"==",Yname).

23

24 % ordering predicates for dynamic enumerations

25 pred(PredStr):- extremum(X), dyn_enum(X), assigned(X,Y),

26 var(Y), assigned(X,Z), var(Z), Y!=Z, name(Y,Yname),

27 name(Z,Zname), PredStr=@concat(Yname,"<",Zname).

(b) Roles dynamic enumeration, input and extremum, and initial predicates.

Fig. 3: Simplified specification of roles and role-based templates and initial predicates.

the body of IfStmt. For example, for code if (max3>max1) max1=max3 (line 13
in Fig. 1.1), the result of evaluating the rule is extremum(nodemax1). Relation
rel opcode encodes that its parameter is a greater-than or less-than operator.

Role input. Role input (lines 14-15) is ascribed to variable X if X is assigned
the result of a call CallExpr to a function Func, the body of which is not
defined (encoded with atom not body(Func)). For example, for the C code

10 Yulia Demyanova, Philipp Rümmer, and Florian Zuleger

Table 1: Informal description of remaining roles with examples.

Role
name

#
Description of role Π/ T

Example

Code

Generated
predicates Π
/templates T

Asser-
tion
condi-
tion

1 Variable is used in pat-
tern assert(expr)

Π = {expr} assert(

cnt==1)

Π ={cnt==1}

2 Statement assert(expr)
is nested in an if state-
ment with condition cond

Π = {cond} if(x<1)

assert(0)

Π ={x<1}

Parity
vari-
able

3 Variable x is used in re-
mainder operator x%c

T = {x%c} x%2 T ={x%2}

4 Variable x is incremented
in a loop by constant c,
s.t. c!=1

T = {x%c} for(i=0;i<n;

i+=2)

T ={x%2}

Loop
itera-
tor

5 Variable x is modified in
a loop and is used in the
loop condition cond

Π = {cond} while(i<n)

i++

Π ={i<n}

6 In addition to 5),
cond matches pattern
expr1!=expr2

Π =
{expr1<expr2,
expr1>expr2}

for(i=0;

i!=n;i++)

Π ={i<n, i>n}

7 In addition to 5),
cond matches pattern
expr1<expr2 (resp.
expr1>expr2) and loop
iterator is changed by 1
in the loop

Π =
{expr1<=expr2}
(resp.
{expr1>=expr2}).

for(i=0;i<n;

i++)

Π ={i<=n}

Loop
bound

8 Variable bnd is compared
to loop iterator it in loop
condition: it◦bnd, where
◦ ∈{<,<=,>,>=,!=,==};
and bnd is assigned in
statement bnd=expr

Π =
{bnd<=expr,
bnd>=expr}

n=k-2;

for(i;i<n;

i++);

Π ={n<=k-2,
n>=k-2}

id11=nondet char() where nondet char() is defined as an external function
(lines 1 and 3 in Fig. 1.1), evaluation of the rule derives fact input(nodeid1).

Role dynamic enumeration. Role dynamic enumeration (lines 18-22) is
defined via its complement not dyn enum (line 18). Fact not dyn enum(X) is gen-
erated if variable X is assigned an expression Expr which does not belong to re-
lation dyn enum expr (line 19). The unary relation dyn enum expr includes con-
stant literals and input and dynamic enumeration variables (lines 20-22). For ex-
ample, for code in Fig.1.1 evaluation of rules derives facts dyn enum(nodemax1),
dyn enum(nodemax2) and dyn enum(nodemax3).

3.2 Role-based Predicates and Templates

Our algorithm generates initial predicates Πroles = {p | pred(p)} and templates
Troles = {t | tpl(t)}, where pred(p) and tpl(t) are the facts derived by the

Systematic Predicate Abstraction using Variable Roles 11

Table 2: Characteristics of the benchmarks

Name
Number of files Size,

KLOCTotal Safe Unsafe

1 SV-COMP CFI 234 91 143 226.4
2 SV-COMP Loops 95 68 27 6.5
3 VeriMAP 153 133 20 13.2
4 Llreve 21 16 5 0.6
5 HOLA 46 46 0 1.4

Total 549 354 195 248.0

Table 3: Eldarica configura-
tions. TEld denotes the tem-
plates generated by built-in
heuristics of Eldarica.

Name Π0 T

Eld ∅ ∅
Eld+B ∅ TEld

Eld+R Πroles Troles

Eld+BR Πroles Troles∪TEld

logic program (see line 7 in Fig. 3a and lines 21-22 and 25-27 in Fig. 3b). We
now describe the role-based initial predicates and templates in detail.

Local counter. For every pair of local counters X and Y s,t. X and Y are
modified in loop WhileStmt, a template X-Y is derived (lines 5-6). For example,
for code in Fig. 1.2 the evaluation of the rule derives templates i-k and j-k.

Dynamic enumeration. For every pair of a dynamic enumeration X and
input Y, s.t. Y is assigned to X, predicate X==Y is derived (lines 23-24). Term
@concat encodes a call to a function which concatenates its parameters. For ex-
ample, for code in Fig. 1.1 the evaluation of the rule derives predicates max1==id1,
max2==id2 and max3==id3.

Input variables. For every pair of input variables Y and Z, s.t. both Y and Z

are assigned to dynamic enumeration and extremum X, predicate Y<Z is derived
(lines 25-27). For example, for code in Fig.1.1 the evaluation of rules derives
predicates id1<id2, id1>id2, id1<id3, id1>id3, id2<id3 and id2>id3.

4 Evaluation

We implemented our approach in a prototype tool and evaluated the tool on
altogether 549 C benchmarks5.

Benchmarks. Table 2 lists the benchmarks and gives their characteristics.
Specifically, the benchmarks contain (listed in the same order as in Table 2):

1. Benchmarks of the competition SV-COMP’16 from the ”Integers and Con-
trol Flow” category. We excluded the Recursive sub-category and 75 bench-
marks which contain C structures and arrays;

2. Benchmarks from the Loops category of SV-COMP’16 (we excluded 50
benchmarks for same reasons);

3. Benchmarks of the verification tool VeriMAP6. We excluded 234 duplicate
benchmarks contained in SV-COMP CFI, and 2 benchmarks, for which the
transition relations cannot be expressed with Presburger arithmetic;

5 The tool, the set of used benchmarks and the results of our evaluation are available
at http://forsyte.at/software/demy/nfm17.tar.gz

6 http://map.uniroma2.it/vcgen/benchmark320.tar.gz

12 Yulia Demyanova, Philipp Rümmer, and Florian Zuleger

4. Simplified versions7 of the benchmarks of tool llrêve for automated program
equivalence checking [12];

5. Loop invariant generation benchmarks of the verication tool HOLA [10].

Tools for comparison. We evaluate the following configurations of Eldar-
ica: without interpolation abstraction (to which we refer by Eld), with templates
(Eld+B), with roles (Eld+R), and with a combination of templates and roles
(Eld+BR). Table 3 lists different choices for the parameters Π0 and T described
in Section 2. As a baseline we also compare Eldarica to SMT solvers Z3 [6]
and Spacer [17]. We could not compare to the duality engine of Z3 because of
a bug in duality, which was not fixed by the time of paper submission. Finally,
we compare Eldarica to the model checker CPAchecker, which is not based
on Horn clauses. CPAchecker has very successfully participated in the soft-
ware competition in the recent years and thus provides an interesting choice for
comparison.

Experimental setup. We performed our experiments on 2.0GHz AMD
Opteron PC (31GB RAM, 64KB L1 cache, 512KB L2 cache). We did not re-
strict the number of cores on which the tasks were performed. We report the
wall-clock time measured using the date shell utility. For evaluation we set the
value of timeout for all tools to 15 minutes, which is the value of the timeout in
the SV-COMP competition. We put no memory limit on the tools.

Overall improvement of Eldarica. The results of our evaluation are rep-
resented in Fig. 4, which shows the number of solved and unsolved tasks, with
safe and unsafe tasks counted separately. Specifically, Fig. 4a gives a summary
for all benchmarks, and Figures 4b-4f show detailed results for each benchmark.
In the bar plots on top of each bar is the mean runtime of the respective tool,
calculated without timeouts. The times for Eld+R include the times for comput-
ing roles: the mean and median time of annotating a program for all benchmarks
amount to 3.8 sec and 0.8 sec resp. We observe that the best configuration of
Eldarica is Eld+R, which solves the highest number of tasks for every bench-
mark separately and for all benchmarks. The second best configuration for most
benchmarks is Eld+B. Overall Eld+R solves 11.2% more tasks than Eld+B:
4.6% more safe and 6.6% more unsafe tasks. We conclude that the configuration
Eld+R improves on the previous configurations of Eldarica (Eld and Eld+B).

Comparison of runtimes. Overall, the runtime of Eld+R is comparable
to the runtime of other Eldarica’s configurations, but for the benchmarks SV-
COMP CFI we observe a significant speedup of Eld+R, as shown in Fig. 5.
SV-COMP CFI is a specific family of benchmarks because of their big size and
a large number of enumeration variables, see e.g. the code in Fig. 1.1. Note that
in Fig. 5 we compare Eld+R to Eld, which is the second best configuration,
because for these benchmarks no heuristics are needed. The speedup of Eld+R
for SV-COMP CFI is caused by a considerable decrease in the number of CEGAR
iterations. To demonstrate this, we evaluate the configuration Eld+B with the
timeout value of one hour (denoted as Eld+BH in Fig. 4c). We observe that

7 Original benchmarks are accessible at http://formal.iti.kit.edu/projects/improve/reve
and https://www.matul.de/reve

Systematic Predicate Abstraction using Variable Roles 13

Proved
UNSAFE

Proved
SAFE

TO
UNSAFE

TO
SAFE

Not
Supported

CPAch
eck

er Z3

Space
r

Eld

Eld+B

Eld+R

Eld+BR
0 %

20 %

40 %

60 %

80 %

100 %
47.7s51.1s 52.0s54.1s17.1s 38.1s23.9s

14 7
71

118 98 82 58 27 27

16

122
115

103
93

62 65

277

203
230

257 293

325 325

185

92 99 107 105 135 132

(a) Summary for all benchmarks
CPAch

eck
er Z3

Space
r

Eld

Eld+B

Eld+R

Eld+BR
0 %

20 %

40 %

60 %

80 %

100 %
10.9s10.4s 10.2s11.2s12.7s 20.4s3.5s

7 4

22

32
26

21
12

1 1

6

5

5

6

6

6 6

46

32
40

47
56

67 67

21 19 20 21 21 21 21

(b) SV-COMP Loops benchmark

CPAch
eck

er Z3

Space
r

Eld

Eld+B

Eld+R

Eld+BR

Eld+BH
0 %

20 %

40 %

60 %

80 %

100 %
456s124s133s 169s160s17.8s 136s90s

37
65 62

40 44
23 24 34

2

95 89

82 84

54 57
6854

26 29
51 47

68 67
57

141

48 54 61 59
89 86 75

(c) SV-COMP CFI benchmark
CPAch

eck
er Z3

Space
r

Eld

Eld+B

Eld+R

Eld+BR
0 %

20 %

40 %

60 %

80 %

100 %
6.1s5.5s 6.0s4.5s17.2s 0.3s0.3s

6 13 7 14
2 2 2

2

127 120 126 119
131 131 131

18 20 20 20 20 20 20

(d) VeriMAP benchmark

CPAch
eck

er Z3

Space
r

Eld

Eld+B

Eld+R

Eld+BR
0 %

20 %

40 %

60 %

80 %

100 %
15.0s9.7s 11.6s6.5s19.3s 0.4s0.5s

6
8

3

7

1

10
8

13

9

16 15 16

5 5 5 5 5 5 5

(e) Llreve benchmark
CPAch

eck
er Z3

Space
r

Eld

Eld+B

Eld+R

Eld+BR
0 %

20 %

40 %

60 %

80 %

100 %
15.3s14.8s 21.1s10.8s19.6s 0.3s11.4s

7
3

6

22

21

15

3 2 2

40

17
22

31

43 44 44

(f) HOLA benchmark

Fig. 4: Bar plots comparing the percentage of proved tasks for Z3 and different Eldarica
configurations. Inside each bar is the percentage of the resp. answers. On top of each
bar is the mean runtime computed without timeouts (for solved tasks).

14 Yulia Demyanova, Philipp Rümmer, and Florian Zuleger

1 10 100 1,000

1

10

100

1,000

Eld+R (CEGAR iterations)

E
ld

(C
E

G
A

R
it

e
ra

ti
o
n
s)

SAFE

UNSAFE

10 100 1,000

10

100

1,000

Eld+R (sec)

E
ld

(s
e
c
)

SAFE

UNSAFE

Fig. 5: Scatter plots comparing the number of CEGAR iterations and runtime, both
in logarithmic scale, of configurations Eld+R and Eld for benchmark SV-COMP CFI.
The mean runtime of Eld+R is 1.5 times smaller than that of Eld, and the average
number of CEGAR iterations of Eld+R is 19.0 times smaller than that of Eld, the four
values calculated on the tasks solved by both Eld and Eld+R.

Eld+BH solves 12.8% more unsafe and 9.0% more safe tasks than Eld+B. To
conclude, Eld+R does not increase the runtime on all benchmarks, and even
shows a significant speedup for the family of benchmarks from SV-COMP CFI.

Comparison of roles with Eldarica’s previous heuristics. A compari-
son of Eld+R to Eld+B shows that all but one benchmarks solved by old con-
figurations of Eldarica can also be solved by Eld+R. The one benchmark not
solved by Eld+R requires a predicate relating three variables in an equality,
which according to our experience does not fall into frequently used patterns.
Moreover, as Fig. 4 shows, the configuration Eld+BR, which combines roles and
old heuristics of Eldarica, solves 3% less tasks than Eld+R. One possible reason
for the slowdown (and consequently the lower number of solved benchmarks) of
Eld+BR are redundant predicates generated by built-in heuristics of Eldarica.
These results confirm that our framework not only describes new heuristics but
also captures all previous heuristics of Eldarica.

Improvement on unsafe benchmarks. Surprisingly, the initial predicates
also help to solve more unsafe benchmarks, as Fig. 4c shows. In principle, these
predicates can be found by Eld+B with a higher value of runtime, as demon-
strated by the configuration Eld+BH. We conclude that when variable roles are
used, the number of solved unsafe tasks does not decrease in general and even
increases for SV-COMP CFI benchmarks.

Comparison of Eldarica to SMT solvers. We compare Eldarica to
SMT solvers Z3 and Spacer8. We note that a small number of tasks in bench-
marks SV-COMP Loops and HOLA cannot be processed by Z3 and Spacer

8 We evaluate the default configuration of Z3 without command-line options. To exe-
cute Spacer, we use the command-line option fixedpoint.xform.slice=false.

Systematic Predicate Abstraction using Variable Roles 15

because of existential quantifiers in the SMT translation, which is not in the
fragment handled by the PDR engine of Z3. We denote these benchmarks as
”Not Supported” in Fig. 4. We observe that, on one hand, all configurations
of Eldarica outperform both Z3 and Spacer in the number of solved tasks, in
particalar Eld+R solves 30% more tasks than Z3. We note, however, that our
method for guiding predicate abstraction uses the structure of a program, which
is not preserved on the level of SMT formulae. On the other hand, the mean
runtime of Z3 is 2.0 times lower than the mean runtime of Eld+R. To conclude,
Eldarica outperforms Z3 and Spacer in the number of solved tasks, but loses in
speed.

Comparison of Eldarica to CPAChecker. Finally, we compare Eldar-
ica to the model checker CPAchecker. We observe that on safe and unsafe
tasks the tools show complementary strengths. In particular, CPAchecker
proves more tasks unsafe than Eldarica on CFI benchmarks, and on other
benchmark sets shows comparable to Eldarica results. For safe benchmarks,
however, on all benchmark sets CPAchecker can prove fewer programs safe
than the Eldarica configurations Eld+B, Eld+R and Eld+BR. To conclude,
Eldarica with interpolation abstraction outperforms CPAchecker on safe
benchmarks, while CPAchecker performs better on a family of unsafe bench-
marks.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, Principles, Techniques. Addison
wesley (1986)

2. Apel, S., Beyer, D., Friedberger, K., Raimondi, F., von Rhein, A.: Domain types:
Abstract-domain selection based on variable usage. In: Haifa Verification Confer-
ence. vol. 8244, pp. 262–278. Springer (2013)

3. Beyer, D.: Reliable and reproducible competition results with benchexec and wit-
nesses (report on sv-comp 2016). In: Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). vol. 9636, pp. 887–904. Springer (2016)

4. Beyer, D., Löwe, S., Wendler, P.: Refinement selection. In: Model Checking Soft-
ware, vol. 9232, pp. 20–38. Springer (2015)

5. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

6. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Tools and Algorithms for
the Construction and Analysis of Systems. vol. 4963, pp. 337–340. Springer (2008)

7. Demyanova, Y., Pani, T., Veith, H., Zuleger, F.: Empirical software metrics for
benchmarking of verification tools. In: Computer Aided Verification (CAV). vol.
9206, pp. 561–579. Springer (2015)

8. Demyanova, Y., Pani, T., Veith, H., Zuleger, F.: Empirical software metrics for
benchmarking of verification tools. Int. J. Form. Methods Syst. Des. pp. 1–28
(2017)

9. Demyanova, Y., Veith, H., Zuleger, F.: On the concept of variable roles and its use
in software analysis. In: Formal Methods in Computer-Aided Design (FMCAD).
pp. 226–230. IEEE (2013)

10. Dillig, I., Dillig, T., Li, B., McMillan, K.: Inductive invariant generation via ab-
ductive inference. In: ACM SIGPLAN Notices. vol. 48, pp. 443–456. ACM (2013)

16 Yulia Demyanova, Philipp Rümmer, and Florian Zuleger

11. Engler, D., Chen, D.Y., Hallem, S., Chou, A., Chelf, B.: Bugs as deviant behavior:
A general approach to inferring errors in systems code. In: Operating systems
principles (SOSP). vol. 35. ACM (2001)

12. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
regression verification. In: Automated software engineering (ASE). pp. 349–360.
ACM (2014)

13. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Computer
Aided Verification (CAV). vol. 1254, pp. 72–83. Springer (1997)

14. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: Programming Language Design and Implemen-
tation (PLDI). pp. 405–416. ACM (2012)

15. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Theory and
Applications of Satisfiability Testing (SAT). vol. 7317, pp. 157–171. Springer (2012)

16. Jhala, R., Majumdar, R.: Software model checking. ACM Computing Surveys
(CSUR) 41(4), 21 (2009)

17. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction in
smt-based unbounded software model checking. In: Computer Aided Verification
(CAV). vol. 8044, pp. 846–862. Springer (2013)

18. Leroux, J., Rümmer, P., Subotić, P.: Guiding craig interpolation with domain-
specific abstractions. Acta Informatica 53, 1–38 (2016)

19. Nori, A.V., Rajamani, S.K.: An empirical study of optimizations in YOGI. In:
Software Engineering (ICSE). vol. 1, pp. 355–364. ACM (2010)

20. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for Horn-clause ver-
ification. In: Computer Aided Verification. vol. 8044, pp. 347–363. Springer (2013)

21. Sajaniemi, J.: An empirical analysis of roles of variables in novice-level procedural
programs. In: Human-Centric Computing Languages and Environments (HCC).
pp. 37–39. IEEE (2002)

22. Van Deursen, A., Moonen, L.: Type inference for cobol systems. In: Reverse Engi-
neering (RE). pp. 220–230. IEEE (1998)

