
Theoretical Computer Science 402 (2008) 172–189

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Integration of a security type system into a program logicI

Reiner Hähnle a,∗, Jing Pan b, Philipp Rümmer a, Dennis Walter c
a Department of Computer Science and Engineering, Chalmers University of Technology and Göteborg University, Sweden
b Department of Mathematics and Computer Science, Eindhoven University of Technology, Netherlands
c Deutsches Forschungszentrum für Künstliche Intelligenz, Bremen, Germany

a r t i c l e i n f o

Keywords:
Language-based security
Information-flow analysis
Dynamic logic
Security type system
Formal verification

a b s t r a c t

Type systems and program logics are often thought to be at opposing ends of the
spectrum of formal software analyses. In this paper we show that a flow-sensitive type
system ensuring non-interference in a simple while-language can be expressed through
specialised rules of a program logic. In our framework, the structure of non-interference
proofs resembles the corresponding derivations in a state-of-the-art security type system,
meaning that the algorithmic version of the type system can be used as a proof procedure
for the logic. We argue that this is important for obtaining uniform proof certificates
in a proof-carrying code framework. We discuss in which cases the interleaving of
approximative and precise reasoning allows us to deal with delimited information release.
Finally, we present ideas on how our results can be extended to encompass features of
realistic programming languages such as Java.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Formal verification of software properties has recently attracted a lot of interest. An important factor in this trend is the
enormously increased need for secure applications, particularly in mobile environments. Confidentiality policies can often
be expressed in terms of information flow properties. Existing approaches to verification of such properties mainly fall into
two categories: the first are type-based security analyses ([1] gives an overview), whereas the second are deduction-based
and employ program logics (e.g., [2–4]).

It is often noted that type-based analyses have a very logic-like character: a language for judgements is provided, a
semantics that determines the set of valid judgments, and, finally, typing rules that approximate the semanticsmechanically.
Type systems typically trade off a precise model of the underlying programming language semantics in the judgments for
automation and efficiency: many valid judgments are rejected. For program logics, the situation is complementary: calculi
try to capture the semantics as precisely as possible and therefore have significantly higher complexity than type systems.
Furthermore, due to the richer syntax of program logics (as compared to type-based judgments) the framework is more
general and the same program logic can be used to express and reason about several different kinds of program properties.

The main contributions of this paper are as follows: we construct a calculus for a program logic that naturally simulates
the rules of a flow-sensitive type system for secure information flow.We prove soundness of the program logic calculuswith
respect to the type system. The so obtained interpretation of the type system in dynamic logic yields increased precision

I This work was funded in part by a STINT institutional grant and by the Information Society Technologies programme of the European Commission,
Future and Emerging Technologies under the IST-2005-015905 MOBIUS project. This article reflects only the authors’ views and the Community is not
liable for any use that may be made of the information contained therein.
∗ Corresponding author.

E-mail address: reiner@cs.chalmers.se (R. Hähnle).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.04.033

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:reiner@cs.chalmers.se
http://dx.doi.org/10.1016/j.tcs.2008.04.033

R. Hähnle et al. / Theoretical Computer Science 402 (2008) 172–189 173

and opens up ways of expressing properties beyond pure non-interference. Concretely, we are able to prove the absence of
exceptions in certain cases, and we can express delimited information release. Therefore, we can speak of the integration of
a security type system into program logic.

A crucial benefit of the integration is thatwe obtain an automatic proof procedure for non-interference formulae: because
of the similarity between the program logic calculus and the type rules, it is possible to uniformly translate type derivations
to deduction proofs in the program logic. At the same time, certain advantages over the type system in terms of precision
(Section 6) come for free without sacrificing automation.

The paper is organised as follows. In Section 2 we argue that a formal connection between type systems and program
logics fits nicely into a verification strategy for advanced security policies of mobile Java programs based on proof-carrying-
code (PCC). Section 3 introduces the terminology used in the rest of the paper. In Section 4wedefine and discuss our program
logic tailored to non-interference analysis. Section 5 describes an optimisation of the calculus that leads to significantly
smaller proofs. Our ideas for increasing the precision of the calculus and for covering delimited information release are given
in Section 6. Proofs of non-trivial lemmas and theorems are given in the Appendix; fully worked out proofs are contained
in [5].

2. Integrating type systems and program logics

We claim that the integration of type systems and program logics is an important ingredient to make security policy
checks scale up to mobile code written in modern industrial programming languages such as Java Card. One reason is that
there are very few implementations of type-based security analyses for such languages. The system Jif [6] is the only system
we are aware of. On the other hand, there are several verification systems that cover large parts of Java with expressive
program logics that allow to formulate awide range of security properties [7–9]. Examples of suchproperties include absence
of uncaught exceptions, well-formedness of atomic transactions, unwanted arithmetic overflow, and information leakage.
The first three of these have beenmodelled in dynamic logic in [10].We look at the last property in detail in the present paper.
In addition, an integration of type systems and program logic as suggested here creates the possibility to design uniform
logic-based certificates for proof-carrying code and it allows to exploit synergies between type-based and deduction-based
reasoning. We elaborate the last two points in more detail.

Certificates for proof-carrying code. For the security infrastructure of mobile, ubiquitous computing it is essential that
security policies can be enforced locally on the end-user device without requiring a secure internet connection to a trusted
authentication authority. In the EU projectMobius1 this infrastructure is based on the proof-carrying code (PCC) technology
[11]. The basic idea of PCC is to provide a formal proof that a security policy holds for a given application, and then to hand
down to the code consumer (end user) not only the application code, but also a certificate that allows to reconstruct the
security proof locally with low overhead. Therefore, the end user device must run a proof checker, and, in a standard PCC
architecture [11], also a verification condition generator, because certificates do not contain aspects of programs. The latter
makes the approach unpractical for devices with limited resources. In addition, the security policies considered in Mobius
[12] are substantially more complex than the safety policies originally envisioned in PCC. In foundational PCC [13] this is
dispensed with at the price of including the formal semantics of the target language in the proof checker. The size of the
resulting proof certificates makes this approach impractical so far.

In the case of an independently checked axiomatic semantics as used in the verification system employed in the present
paper [9], it seems possible to arrive at a trusted code base that is small enough. This idea is pursued under the name of
logic-based PCC (because the resulting certificates are logic-based) in Mobius. In the type-based version of PCC the trusted
code base consists of a type checker instead of a proof checker. The integration of a type system for secure information flow
into a program logic makes it possible to construct uniformly logic-based certificates, and no hybrid certificates need to be
maintained. As a consequence, the PCC architecture is simplified and the trusted code base is significantly reduced. Efforts
that go into similar directions in the sense that the expressivity of certificates is extended include Configurable PCC [14] and
Temporal Logic PCC [15].

The design of efficient logic-based proof certificates is beyond the scope of this paper. It is a substantial task to which a
whole Work Package withinMobius is devoted.

Synergies from combining type-based and deduction-based verification. The possibility to combine type-based and deduction-
based reasoning in one framework leads to a number of synergies. In an integrated type- and deduction-based framework
it is possible to increase the precision of the analysis dynamically on demand. Type systems ignore the values of variables.
In a deduction framework, however, one can, e.g., prove that in the program “if (b) y = x ; if (¬b) z = y ”; the variables z
and x are independent, because the value of b always excludes the path through one of the conditionals. Note that it is not
necessary to track the values of all variables to determine this: only the value of b matters in the example. More realistic
examples are in Section 6.

1 mobius.inria.fr/twiki/bin/view/Mobius.

mobius.inria.fr/twiki/bin/view/Mobius
mobius.inria.fr/twiki/bin/view/Mobius
mobius.inria.fr/twiki/bin/view/Mobius
mobius.inria.fr/twiki/bin/view/Mobius
mobius.inria.fr/twiki/bin/view/Mobius
mobius.inria.fr/twiki/bin/view/Mobius
mobius.inria.fr/twiki/bin/view/Mobius

174 R. Hähnle et al. / Theoretical Computer Science 402 (2008) 172–189

p `
HS

∇ { } ∇
SkipHS

∇ ` E : t

p `
HS

∇ { v = E } ∇[v 7→ p t t]
AssignHS

p `
HS

∇ { α1 } ∇
′ p `

HS
∇

′
{ α2 } ∇

′′

p `
HS

∇ { α1 ; α2 } ∇
′′

SeqHS

∇ ` b : t p t t `
HS

∇ { αi } ∇
′ (i = 1, 2)

p `
HS

∇ { if b α1 α2 } ∇
′ IfHS

∇ ` b : t p t t `
HS

∇ { α } ∇

p `
HS

∇ { while b α } ∇
WhileHS

p1 `
HS

∇1 { α } ∇
′

1

p2 `
HS

∇2 { α } ∇
′

2
SubHS p2 v p1,

∇2 v ∇1, ∇
′

1 v ∇
′

2

Fig. 1. Hunt and Sands’ flow-sensitive type system for information flow analysis.

A further opportunity offered by the integration of type-based analysis into an expressive logical framework is the
formulation of additional security properties without the need for substantial changes in the underlying rule system or the
deduction engine. To illustrate this point we show in Section 6 that it is possible to express delimited information release
in our program logic.

3. Background and terminology

3.1. Non-interference analysis

Roughly speaking, a program has secure information flow if no knowledge about secret input data can be gained by
observing the behaviour on public data of this program. Whether or not a program has secure information flow can hence
only be decided according to a given security policy discriminating secret from public data. In our considerations we adopt
the commonmodelwhere all input and output channels are taken to be programvariables. The semantic concept underlying
secure information flow is then that of non-interference: nothing can be learned about a secret initially stored in variable
h (“high”), by observing variable l (“low”) after program execution, if the initial value of h does not interfere with the final
value of l. Put differently, the final value of l must be independent of the initial value of h.

This non-interference property is commonly established via security type systems [1,16–18], where a program is deemed
secure if it is typable according to some given policy. Type systems are used to perform flow-sensitive as well as flow-
insensitive analyses. Flow-insensitive approaches (e.g. [17]) require every subprogram to be well-typed according to the
same policy. Recent flow-sensitive analyses [16,18] allow the types of variables to change along the execution path, thereby
providing more flexibility for the programmer. The program logic developed in this paper will be termination-insensitive,
meaning that a security guarantee is only made about terminating runs of the program under consideration. The decision to
make the program logic termination-insensitive comes from the fact that we wanted to model the type system of Hunt and
Sands [16], which is termination-insensitive as well. It would be possible to design a termination-sensitive program logic
along the lines stated in [4] using a total correctness modality.

Our starting point is the flow-sensitive type system of Hunt and Sands [16] which is depicted in Fig. 1. The type p
represents the security level of the program counter and serves to eliminate indirect information flow. The remaining
components of typing judgements are a program α and two typing functions ∇,∇

′
: PVar → L mapping program variables

to their respective pre- and post-types. The type system is parametric with respect to the choice of security types; it only
requires them to form a (complete) lattice L. In this paper, we will only consider the most general2 lattice P (PVar). One
may thus think of the type ∇(v) of a variable v as the set of all variables that v’s value may depend on at a given point in
the program. A judgement p `

HS
∇ { α } ∇

′ states that in context p the program α transforms the typing (or dependency
approximation) ∇ into ∇

′. We note that rule AssignHS gives the system its flow-sensitive character, stating that variable v’s
type is changed by an assignment v = E to E’s type as given by the pre-typing ∇ joined with the context type p. The type
t of an expression E in a typing ∇ can simply be taken to be the join of the types ∇(v) of all free variables v occurring in
E, which we denote by ∇ ` E : t. Joining with the context p is required to accommodate for leakage through the program
context, as in the program “if (h) {l = 1} {l = 0)}”, where the initial value of h is revealed in the final value of l. Amodification
of the context p can be observed, e.g., in rule IfHS, where the subderivation of the two branches of an if statement must be
conducted in a context lifted by the type of the conditional.

2 In the sense that any other type lattice is subsumed by it, see [16, Lemma6.8].

R. Hähnle et al. / Theoretical Computer Science 402 (2008) 172–189 175

3.2. Dynamic logic with updates

Following [4], the program logic that we investigate is a simplified version of dynamic logic (DL) for JavaCard [19]. The
most notable difference to standard first-order dynamic logic for the simplewhile-language [20] is the presence of an explicit
operator for simultaneous substitutions called (state) updates [21]. Updates are particularly useful when more complex
programming languages (with arrays or object-oriented features) are considered. For our present purposes they serve to
allow a direct relation between program logic and type systems.

A signature of DL is a tuple (Σ, PVar, LVar) consisting of a set Σ of function symbols with fixed, non-negative arity, a
set PVar of program variables and of a countably infinite set LVar of logical variables. Σ , PVar, LVar are pairwise disjoint.
Because some of our rules need to introduce fresh function symbols, we assume that Σ contains infinitely many symbols
for each arity n. Further, we require that a distinguished nullary symbol TRUE ∈ Σ exists. Rigid terms tr, ground terms tg,
terms t,3 programsα,updatesU and formulaeφ are thendefinedby the following grammar,where f ∈ Σ ranges over functions,
x ∈ LVar over logical variables and v ∈ PVar over program variables:

tr ::= x | f (tr, . . . , tr) tg ::= v | f (tg, . . . , tg)
t ::= tr | tg | f (t, . . . , t) | {U } t U ::= ε | v := t, U
φ ::= φ ∧ φ | φ ∨ φ | φ → φ | ∀x. φ | ∃x. φ | ¬φ | t = t | [α]φ | {U } φ
α ::= α ; . . . ; α | v = tg | if tg α α | while tg α.

For the whole paper, we assume a fixed signature (Σ, PVar, LVar) in which the set PVar = {v1, . . . , vn} is finite, containing
exactly those variables occurring in the program under investigation.

A structure is a pair S = (D, I) consisting of a non-empty universe D and an interpretation I of function symbols, where
I(f) : Dn

→ D if f ∈ Σ has arity n. Program variable assignments and variable assignments are mappings δ : PVar → D and
β : LVar → D. The space of all program variable assignments over the universe D is denoted by PAD

= PVar → D, and the
corresponding flat domain by PAD

⊥
= PAD

∪ {⊥}, where δ v δ′ iff δ = ⊥ or δ = δ′.
While-programs α are evaluated in structures and operate on program variable assignments. We use a standard

denotational semantics for such programs

[[α]]
S
: PAD

→ PAD
⊥

and define, for instance, the meaning of a loop “while b α” through

[[while b α]]
S

=def
⊔
i

wi, wi : PAD
→ PAD

⊥

w0(δ) =def ⊥, wi+1(δ) =def

{
(wi)⊥([[α]]

S(δ)) for valS,δ(b) = valS(TRUE)
δ otherwise

where wemake use of a ‘bottom lifting’: (f)⊥(x) = if (x = ⊥) then⊥ else f (x). Evaluation val of terms and formulae is defined
below.

Likewise, updates are given a denotation as total operations on program variable assignments. The statements of an
update are executed in parallel, where conflicting assignments to the same program variable are resolved in such a way that
statements occurring syntactically later will override the effect of earlier statements:

[[U]]
S,β

: PAD
→ PAD

[[w1 := t1, . . . ,wk := tk]]
S,β(δ) =def (· · · ((δ[w1 7→ valS,β,δ(t1)])[w2 7→ valS,β,δ(t2)]) · · ·)[wk 7→ valS,β,δ(tk)]

where (δ[w 7→ a])(v) = if (v = w) then a else δ(v) are function updates.
Evaluation valS,β,δ of terms and formulae is mostly defined as it is common for first-order predicate logic. Formulae are

mapped into a Boolean domain, where tt stands for semantic truth. The cases for programs and updates are

valS,β,δ([α]φ) =def

{
valS,β,[[α]]S(δ)(φ) for [[α]]

S(δ) 6= ⊥

tt otherwise

valS,β,δ({U } φ) =def valS,β,[[U]]S,β(δ)(φ).

We interpret free logical variables x ∈ LVar existentially: a formulaφ is valid iff for each structure S = (D, I) and each program
variable assignment δ ∈ PAD there is a variable assignment β : LVar → D such that valS,β,δ(φ) = tt. A sequent Γ `

dl ∆ is
called valid iff

∧
Γ →

∨
∆ is valid. The valuation function valS,β,δ is canonically extended from formulae to sequents. If the

argument of valS,β,δ does not depend on β or δ (for example, if no program or logical variables occur), then these indices can
be dropped.

The set of unbound variables occurring in a term or a formula t is denoted by vars(t) ⊆ PVar ∪ LVar. For program
variables v ∈ PVar, thismeans that v ∈ vars(t) iff v turns up anywhere in t. For logical variables x ∈ LVar, we define x ∈ vars(t)
iff x occurs in t and is not in the scope of ∀x or ∃x.

3 Both rigid terms and ground terms are terms.

176 R. Hähnle et al. / Theoretical Computer Science 402 (2008) 172–189

We note that the semantic notion of non-interference can easily be expressed in the formalism of dynamic logic: One
possibility [4] is to express the variable independence property introduced above as follows. Assuming the set of program
variables is PVar = {v1, . . . , vn}, then vj only depends on v1, . . . , vi if variation of vi+1, . . . , vn does not affect the final value
of vj:

∀u1, . . . , ui. ∃r. ∀ui+1, . . . , un. { vi := ui }1≤i≤n [α] (vj = r). (1)

The particular use of updates in this formula is a standard trick to quantify over program variables which is not allowed
directly: in order to quantify over all values that a program variable v occurring in a formula φ can assume, we introduce
a fresh logical variable u and quantify over the latter. In the following we use quantification over program variables as a
shorthand, writing ∀̇v. φ for ∀u. { v := u } φ. One central result of this paper is that simple, easily automated proofs of
formulae such as (1) are viable in at least those cases where a corresponding derivation in the type system of Hunt and
Sands exists.

4. Interpreting the type system in dynamic logic

Wenowpresent a calculus for dynamic logic inwhich the rules involving program statements employ abstraction instead
of precise evaluation. The calculus facilitates automatic proofs of secure information flow. In particular, when proving loops
the burden of finding invariants is reduced to the task of providing a dependency approximation between programvariables.
There is a close correspondence to the type system of [16] (Fig. 1). Intuitively, state updates in the DL calculus resemble
security typings in the type system: updates arising during a proof will essentially take the form {v := f (. . . vars . . .)}, where
the vars form the type of v in a corresponding derivation in the type system. To put our observation on a formal basis, we
prove the soundness of the calculus and show that every derivation in the type system has a corresponding proof in our
calculus.

4.1. The Abstraction-based calculus

We introduce extended type environments as pairs (∇, I) consisting of a typing function ∇ : PVar → P (PVar) and an
invariance set I ⊆ PVar. The latter is used to indicate those variables whose values do not change after execution of the
program. We write ∇v for the syntactic sequence of variables w1, . . . ,wk with arbitrary ordering when ∇(v) = {w1, . . . ,wk}

and ∇
C
v for a sequence of all variables not in ∇(v). Ultimately, we want to prove non-interference properties of the form

{ α } ⇓ (∇, I) ≡def
∧

v∈PVar

{
∀̇v1 · · · vn. ∀u. { v := u }[α] v = u, v ∈ I

∀̇∇v. ∃r. ∀̇∇
C
v . [α] v = r, v 6∈ I

(2)

where we assume PVar = {v1, . . . , vn}. Validity of a judgment { α } ⇓ (∇, I) ensures that all variables in the invariance set I
remain unchanged after execution of the program α (upper part), and that any non-invariant variable v depends at most on
variables in ∇(v) (lower part).

The invariance set I corresponds to the context p that turns up in judgments p `
HS

∇ { α } ∇
′: while the type system

ensures that p is a lower bound of the post-type∇
′(v) of variables v assigned inα, the set I can be used to ensure that variables

with low post-type are not assigned (or, more precisely, not changed). The equivalence is formally stated in Lemma 2.
During the proof that the type system is faithfully interpreted in the program logic we are going to abstract program

statements “while b α” and “if b α1 α2” into updates that model the effect of these statements. In this way we avoid having
to split the proof in the program logic for the two branches of an if-statement, or having to find an invariant for a while-loop.
Extended type environments capture the essence of updates that model the effect of complex statements, i.e. the arguments
of the abstraction functions and the unmodified variables. We require the following extended type environments which are
translated into updates:

upd(∇, I) =def {v := fv(∇v)}v∈PVar\I

ifUpd(b,∇, I) =def {v := fv(b,∇v)}v∈PVar\I.

The above updates assign to each v not in the invariance set I a fresh function symbol fv whose arguments are exactly the
variables given by the type ∇(v). In a program “if b α1 α2” the final state may depend on the branch condition b, so the
translation ifUpd ‘injects’ the condition into the update. This is the analogue of the context lifting present in IfHS. For the
while-rule, we transform the loop body into a conditional, so that we must handle the context lifting only in the if-rule.

Figs. 2 and 3 contain the rules for a sequent calculus.We have only included those propositional and first-order rules (the
first rules of Fig. 2) that are necessary for proving the results in this section; more rules are required to make the calculus
usable in practice (see, for instance, [22,9]). Some of the rules introduce fresh symbols, by which wemean symbols that have
not yet occurred in the proof. The calculus uses free logical variables X ∈ LVar (ex-rightdl) and unification (close-eqdl) for
handling existential quantification. The notation [s ≡ t] in the latter rule expresses that the most general unifier of the
terms s and t is applied to the whole proof tree. Because free variables can also occur in the scope of updates or the boxmodal
operator, this is only correct if the unifier is rigid and maps all variables to rigid terms (not containing program variables).
Skolemisation (all-rightdl) has to collect the free variables that occur in a quantified formula to ensure soundness. By

R. Hähnle et al. / Theoretical Computer Science 402 (2008) 172–189 177

Γ `
dl φ,∆ Γ `

dl ψ,∆

Γ `
dl φ ∧ψ,∆

and-rightdl
Γ `

dl φ,ψ,∆

Γ `
dl φ ∨ψ,∆

or-rightdl

Γ ,φ `
dl ψ,∆

Γ `
dl φ → ψ,∆

imp-rightdl
Γ ,φ `

dl ∆

Γ `
dl

¬φ,∆
not-rightdl

∗

Γ ,φ `
dl φ,∆

closedl

Analogous: and-leftdl, or-leftdl, imp-leftdl, not-leftdl

Γ `
dl φ[x/f (X1, . . . , Xn)],∆

Γ `
dl

∀x. φ,∆
all-rightdl

{X1, . . . , Xn} =

vars(φ) ∩ LVar\{x},

f fresh

Γ `
dl φ[x/X], ∃x. φ,∆

Γ `
dl

∃x. φ,∆
ex-rightdl

X fresh

Analogous: all-leftdl, ex-leftdl

∗
[s ≡ t]

Γ `
dl s = t,∆

close-eqdl s, t unifiable
(with rigid unifier)

(Γ `
dl ∆)[x/f (vars(t))]

(Γ `
dl ∆)[x/t]

abstractdl
f fresh

Γ `
dl

{U }φ,∆

Γ `
dl

{U } []φ,∆
Skipdl

Γ `
dl

{U } { v := E } [. . .]φ,∆

Γ `
dl

{U } [v = E ; . . .]φ,∆
Assigndl

`
dl

{ αi } ⇓ (∇, I) (i = 1, 2)
Γ `

dl
{U } { ifUpd(b,∇, I) } [. . .]φ,∆

Γ `
dl

{U } [if b α1 α2 ; . . .]φ,∆
Ifdl

`
dl

{ if b α {} } ⇓ (γ∗

∇
(∇), I)

Γ `
dl

{U } {upd(∇, I) } [. . .]φ,∆

Γ `
dl

{U } [while b α ; . . .]φ,∆
Whiledl

v ∈ ∇(v) for all v ∈ PVar

Fig. 2. A dynamic logic calculus for information flow security. In the last four rules the update {U } can also be empty and disappear.

{w1 := t1, . . . ,wk := tk } wi →
dl ti if wj 6= wi for i < j ≤ k

{w1 := t1, . . . ,wk := tk } t →
dl t if w1, . . . ,wk 6∈ vars(t)

{U } f (t1, . . . , tn) →
dl f ({U } t1, . . . , {U } tn)

{U } (t1 = t2) →
dl

{U } t1 = {U } t2

{U } ¬φ →
dl

¬{U } φ

{U } (φ1 ∗ φ2) →
dl

{U } φ1 ∗ {U } φ2 for ∗ ∈ {∨,∧}

{U } {w1 := t1, . . . ,wk := tk } φ

→
dl

{U, w1 := {U } t1, . . . ,wk := {U } tk } φ

s
∗

→
dl t Γ ,φ[t] `

dl ∆

Γ ,φ[s] `
dl ∆

∗
→

dl
s

∗
→

dl t Γ `
dl φ[t],∆

Γ `
dl φ[s],∆

∗
→

dl

Fig. 3. Application rules for updates in dynamic logic, as far as they are required for Lemma 6. Further application and simplification rules are necessary in
general.

178 R. Hähnle et al. / Theoretical Computer Science 402 (2008) 172–189

definition of the non-interference properties (2) and by the design of the rules of the dynamic logic calculus it is sufficient
to define update rules for terms, quantifier-free formulae, and other updates. Such rules can be used at any point in a proof
to simplify expressions containing updates.

Rule Abstractdl can be used to normalise terms occurring in updates to the form f (. . . vars . . .). In rules Ifdl andWhiledl

the second premiss represents the actual abstraction of the program statement for a suitably chosen typing∇ and invariance
set I. This abstraction is justified through the first premiss in terms of another non-interference proof obligation. The
concretisation operator γ∗ (cf. [16]) of ruleWhiledl is generally defined as

γ∗

∇1
(∇2)(x) =def {y ∈ PVar | ∇1(y) ⊆ ∇2(x)} (x ∈ PVar). (3)

Together with the side condition that for all v we require v ∈ ∇(v), a closure property on dependencies is ensured;
w ∈ γ∗

∇
(∇)(v) implies γ∗

∇
(∇)(w) ⊆ γ∗

∇
(∇)(v); if a variable depends on another, the latter’s dependencies are included in the

former’s. This accounts for the fact that the loop body can be executed more than once, which in general causes transitive
dependencies.

Function arguments ensure soundness. A recurring proof obligation in a non-interference proof is a statement of the form
∀̇∇v. ∃r. ∀̇∇

C
v . [α] v = r, see (2). To prove this statement without abstraction requires to find a function of the variables ∇v

that yields the value of v under α for every given pre-state. In other words, one must find the strongest post-condition w.r.t.
v’s value. In a logic-based view this function corresponds to a term substituted for the existentially quantified variable r in
which the ∇

C
v do not occur. In a unification-based calculus the occurs check will let all those proofs fail where an actual

information flow from∇
C
v to v takes place. The purpose of the arguments in the abstraction functions fv that model the effect

of complex statements is exactly to retain this crucial property in the abstract version of the calculus. We must make sure
that an abstraction function fv that approximates the effect of α on v has at least those variables as arguments that occur in
the term representing the final value of v after execution of α.

Theorem 1 (Soundness). The rules of the DL calculus given in Figs. 2 and 3 are sound: the root of a closed proof tree is a valid
sequent.

4.2. Simulating type derivations in the DL calculus

In order to show faithful interpretation of the type system in the program logic, we first put the connection between
invariance sets and contexts on solid ground. It suffices to approximate the invariance of variables v with the requirement
that v must not occur as left-hand side of assignments (Lhs(α) is the set of all left-hand sides of assignments in α).

Lemma 2. In the type system of [16] (Fig. 1) the following equivalence holds:

p `
HS

∇ { α } ∇
′ iff ⊥ `

HS
∇ { α } ∇

′ and f.a. v ∈ Lhs(α) : p v ∇
′(v).

Furthermore, we can normalise type derivations thanks to the Canonical Derivations Lemma of [16]. The crucial ingredient
is the concretisation operator γ∗ defined in (3).

Lemma 3 (Canonical Derivations).

⊥ `
HS

∇ { α } ∇
′ iff ⊥ `

HS ∆0 { α } γ∗

∇
(∇ ′) where ∆0 = λx. {x}.

For brevity, we must refer to Hunt and Sands’ paper for details, but in the setting at hand one can intuitively take Lemma 3
as stating that any typing judgment can also be understood as a dependency judgment: the typing on the left-hand side is
equivalent to the statement that the final value of xmay depend on the initial value of y only if y appears in the post-type, or
dependence set, γ∗

∇
(∇ ′)(x).

The type system of Fig. 4 only mentions judgments with a pre-type ∆0 as depicted on the right-hand side of the
equivalence in Lemma 3. Further, the context p has been replaced by equivalent side conditions (Lemma 2), and rule SeqHS

is built into the other rules, i.e., the rules always work on the initial statement of a program. Likewise, rule SubHS has been
integrated in Skipcf andWhilecf . The type system is equivalent to Hunt and Sands’ system (Fig. 1):

Lemma 4.

⊥ `
HS ∆0 { α } ∇ if and only if `

cf ∆0 { α } ∇.

The proof proceeds in multiple steps by devising intermediate type systems, each of which adds a modification towards the
system in Fig. 4 and which is equivalent to Hunt and Sands’ system. (The step from `

cf to `
dl is done in Lemma 6.)

Obviously, due to the approximative character of Ifdl and Whiledl (and the lack of arithmetic), our DL calculus is not
(relatively) complete in the sense of [20]. For the particular judgements { α } ⇓ (∇, I) the calculus is, however, not more
incomplete than the type system of Fig. 1 — every typable program can also be proven secure using the DL calculus.4

4 The converse of Theorem 5 does not hold. In the basic version of the calculus of Fig. 2, untypable programs like “if (h) {h = l; l = h} {l = l}” can be
proven secure. Section 6 discusses how the precision of the DL calculus can be further augmented.

R. Hähnle et al. / Theoretical Computer Science 402 (2008) 172–189 179

`
cf ∆0 { } ∇

Skipcf
v ∈ ∇(v) for all v ∈ PVar

∆0 ` E : t `
cf ∆0 { . . . } γ∗

∆0[v 7→t](∇)

`
cf ∆0 { v = E ; . . . } ∇

Assigncf

∆0 ` b : t `
cf ∆0 { . . . } γ∗

∇
(∇ ′)

`
cf ∆0 { αi } ∇ (i = 1, 2)

`
cf ∆0 { if b α1 α2 ; . . . } ∇

′
Ifcf f.a. v ∈ Lhs(α1). t v ∇(v)

f.a. v ∈ Lhs(α2). t v ∇(v)

∆0 ` b : t `
cf ∆0 { . . . } γ∗

∇
(∇ ′)

`
cf ∆0 { α } γ∗

∇
(∇)

`
cf ∆0 { while b α ; . . . } ∇

′
Whilecf

v ∈ ∇(v) for all v ∈ PVar
f.a. v ∈ Lhs(α).

t v γ∗

∇
(∇)(v)

Fig. 4. Intermediate flow-sensitive type system for information flow analysis.

Theorem 5.

⊥ `
HS ∆0 { α } ∇ implies `

dl
{ α } ⇓ (∇,∅).

The proof of the theorem is constructive: a method for translating type derivations into DL proofs is given. The existence
of this translation mapping shows that proving in the DL calculus is, in principle, not more difficult than typing programs
using the system of Fig. 1.

The first part of the translation is accomplished by Lemma4which covers structural differences between type derivations
and DL proofs. Applications of the rules of Fig. 4 can then almost directly be replaced with the corresponding rules of the DL
calculus:

Lemma 6.

`
cf ∆0 { α } ∇ implies `

dl
{ α } ⇓ (∇,∅).

5. Reducing the size of proofs

Type derivations in the system cf of Fig. 4 grow linearly with the program size: there is always a one-to-one
correspondence between the statements of a verified program α and the nodes labelled with Assigncf , Ifcf , or Whilecf in
a type derivation for α. This is a property that is lost in the DL calculus from Fig. 2, in which the size of a proof tree can
grow exponentially in the number of if- and while-statements of a program. The reason lies in the rules Ifdl and Whiledl,
which split over the complete set PVar of program variables: recall from (2) that a non-interference statement { α } ⇓ (∇, I)
contains a conjunct for each program variable.

This complexity is not inherent to our calculus, butmerely a consequence of the naive encoding (2) of type environments
in formulae. Instead of inspecting the variables of a program one by one for independence according to their post-type,
they can also be checked all at once, as it is done by the type system. Such an optimised encoding that avoids exponential
blow-up is achieved by factoring out the common parts in the conjuncts of (2), expressing the differing parts with the
help of conditional terms if φ then s else t. The resulting formulae can be proven in such a way that each statement of a
program is handled by exactly one application of the rules Assigndl, Ifdl, or Whiledl (provided that the formula is provable
at all). However, proofs still grow quadratically in the number of program variables, which is natural considering that a type
environment ∇ in our case is a mapping PVar → P (PVar).

As the selection of the program variable to be checked for independence is in the optimised encoding done on the object
level, a suitable discrete datatype is needed. For simplicity, we use integer arithmetic for this purpose, although it would
also be possible to introduce a finite datatype with sufficiently many individuals. The only integer reasoning that has to be
done by the calculus is the decision whether two integer literals are equal or different.

5.1. Non-Interference properties

We assume a fixed extended type environment (∇, I) and an arbitrary, but fixed enumeration {v1, . . . , vn} of the program
variables PVar. The optimised non-interference formula has the form

{ α } ⇓C (∇, I) ≡def ∀k. ∃r. {CUpd(k, r) }[α]CPost(k, r) (4)

in which k is an integer variable and r denotes a list r1, . . . , rn of distinct logical variables. As before, r represents the post-
values of the program variables v1, . . . , vn. The value of k determines the variable vk whose independence is supposed to be
verified.

180 R. Hähnle et al. / Theoretical Computer Science 402 (2008) 172–189

Γ ,φ `
dl ∆

Γ `
dl ∆

arithdl (φ is a theorem of first-
order arithmetic)

(Γ ,φ `
dl ∆)[x/s]

(Γ `
dl φ,∆)[x/t]

(Γ `
dl ∆)[x/(if φ then s else t)]

split-ifdl
(x 6∈ vars(φ), x not in the
scope of quantifiers,
modalities or updates)

(if φ then s1 else t1) ∗ (if φ then s2 else t2)
→

dl if φ then (s1 ∗ s2) else (t1 ∗ t2) (∗ ∈ {+,−, . . .})

Fig. 5. Additional DL rules to handle optimised non-interference formulae.

The update CUpd(k, r) combines the updates for the different cases in the formula { α } ⇓ (∇, I) (after eliminating the
quantifiers):

CUpd(k, r) =def v1 := V1(k, r), . . . , vn := Vn(k, r)

Vi(k, r) =def if k = 1 then Vi,1(r1)

else if k = 2 then Vi,2(r2)

...

else Vi,n(rn)

Vi,j(rj) =def

{
ci,j for vj ∈ I or vi ∈ ∇(vj)

fi,j(rj) otherwise

where ci,j and fi,j (for 1 ≤ i, j ≤ n) are fresh constant and function symbols. Likewise, the formula CPost(k, r) performs a local
case analysis for checking the different post-conditions of { α } ⇓ (∇, I):

CPost(k, r) ≡def
∧

1≤j≤n

{
k = j → vj = cj,j for vj ∈ I

k = j → vj = rj otherwise.

For each k ∈ {1, . . . , n}, the formula ∃r. {CUpd(k, r) }[α]CPost(k, r) represents one of the conjuncts of { α } ⇓ (∇, I).
More formally, we can observe that the optimised non-interference formulae are equivalent to the original formulae, which
means that { α } ⇓C (∇, I) can be used in the rules Ifdl andWhiledl as we please:

Lemma 7.

{ α } ⇓C (∇, I) is valid if and only if { α } ⇓ (∇, I) is valid.

Instead of the list r of variables,we could, in principle, also use a single variable r in (4). Thiswould require to apply ex-rightdl
multiple times to the same formula in a proof, however, and ultimately lead to proofs of exponential size. As a further
optimisation, it is possible to combine the different cases for showing the invariance of program variables I into a single
case.

5.2. Proofs with the optimised encoding

Proving programs secure using non-interference formulae (4) requires somewhat more sophisticated first-order
reasoning than before. Fig. 5 shows three further rules that are necessary:

• We assume that an oracle – a background reasoner – is available that handles arithmetic for us (rule arithdl).
• The rule split-ifdl handles conditional terms by proof splitting. We only need to apply split-ifdl when the program has

disappeared in a proof goal and the post-condition is verified.
• The last rule is an example for a rule that normalises conditional expressions,which can help to keep updates small during

a proof. Similar rules are necessary for function application or other operators. Normalisation can also be required before
applying the rule abstractdl, because the result of abstractdl might otherwise be too imprecise (e.g., when applying the
rule to a whole expression Vi(k, r)).

With the additional rules from Fig. 5, the DL calculus is also complete on non-interference formulae { α } ⇓C (∇, I) (in the
sense of Theorem 5). This can be seen when examining the proof of Lemma 6, which essentially works by constructing the
same proof tree for each conjunct of the old non-interference formulae { α } ⇓ (∇, I). The proofs only differ in the updates
in front of programs. A formula { α } ⇓C (∇, I) can be proven in the same way, only that more complex first-order reasoning
is necessary in the leaves of the proof for handling the case distinctions in CUpd(k, r) and CPost(k, r):

R. Hähnle et al. / Theoretical Computer Science 402 (2008) 172–189 181

∗
[fv(c3,1, c1,1) ≡ R1]

kc = 1 `
dl fv(c3,1, c1,1) = R1

....
kc = 1 `

dl fv(V3, V1) = R1

∗
[c1,2 ≡ R2]

kc = 2 `
dl c1,2 = R2
....

kc = 2 `
dl V1 = R2

∗

kc = 3 `
dl c3,3 = c3,3
....

kc = 3 `
dl V3 = c3,3

....

`
dl

(kc = 1 → fv(V3, V1) = R1)
∧ (kc = 2 → V1 = R2)
∧ (kc = 3 → V3 = c3,3)

`
dl

{ v := fv(V3, V1),w := V1, b := V3 }CPost(kc,R)
(Def), ∗

→
dl

`
dl

{ v := fv(V3, V1),w := V1, b := V3 }[]CPost(kc,R)
Skipdl

`
dl

{ v := V1,w := V1, b := V3 }{ v := fv(b, v) }[]CPost(kc,R)

∗
→

dl

D

∗

`
dl

{ v = v + 1 } ⇓C (∆0, {w, b})

∗

`
dl

{ v = 0 } ⇓C (∆0, {w, b}) D

`
dl

{ v := V1,w := V1, b := V3 }[if b {v = v + 1} {v = 0}]CPost(kc,R)
Ifdl

`
dl

{ v := V1,w := V1, b := V3 }[β]CPost(kc,R)
(Def)

`
dl

{ v := V1,w := V2, b := V3 }{w := v }[β]CPost(kc,R)

∗
→

dl

`
dl

{ v := V1,w := V2, b := V3 }[w = v ; β]CPost(kc,R)
Assigndl

`
dl

{CUpd(kc,R) }[α ; β]CPost(kc,R)
(Def)

`
dl

∀k. ∃r. {CUpd(k, r) }[α ; β]CPost(k, r)
all-rightdl, . . .

`
dl

{ α ; β } ⇓C (∇, I)
(Def)

Fig. 6. Example proof using the optimised non-interference formulae. We write α for the program w = v and β for the program if b {v = v+ 1} {v = 0}. The
right-hand sides of the update CUpd(kc,R) are abbreviated with V1 , V2 , V3 .

Theorem 8.

⊥ `
HS ∆0 { α } ∇ implies `

dl
{ α } ⇓C (∇,∅).

Example 9. We illustrate the optimized non-interference formulae by verifying that the program “w = v ; if b {v =

v + 1} {v = 0}” adheres to the post-typing (∇, I) with ∇(v) = {v, b}, ∇(w) = {v}, ∇(b) = {b}, I = {b}. For the enumeration
{v,w, b} of the program variables, the update and the post-condition of the proof obligation are:

CUpd(k, r) =def



v := if k = 1 then c1,1
else if k = 2 then c1,2
else c1,3,

w := if k = 1 then f2,1(r1)
else if k = 2 then f2,2(r2)
else c2,3,

b := if k = 1 then c3,1
else if k = 2 then f3,2(r2)
else c3,3


(k = 1 → v = r1)

CPost(k, r) =def ∧ (k = 2 → w = r2)

∧ (k = 3 → b = c3,3).

The proof is outlined in Fig. 6 and starts with the non-interference formula { α ; β } ⇓C (∇, I) (the two statements of the
program are denoted by α and β). As first step, the quantifiers of this formula are eliminated and the assignment w = v is
executed, whichmodifies the update in front of the program. To execute the conditional statement, the typing (∆0, {w, b}) is
used: the variablesw and b are not changed in any of the branches, and for both branches the post-value of v only depends on
the pre-value of v.We skip the subproofs for the if-branches and only show the branchD , inwhich themain post-condition is
discharged. InD , the effect of the conditional statement is summarisedwith the update ifUpd(b,∆0, {w, b}) = (v := fv(b, v))
(for a fresh function symbol fv). After simplifying the update and eliminating the now empty modal operator, the post-
condition CPost(kc,R) can be expanded and leads to three further branches, one for each program variable. At this point, the
conditional terms V1, V2, V3 can be eliminated by repeatedly applying the rules split-ifdl, arithdl and doing propositional

182 R. Hähnle et al. / Theoretical Computer Science 402 (2008) 172–189

reasoning (note, that arithdl only has to introduce formulae like kc = 1 → kc 6= 2, etc.). Finally, all goals can be closed with
the help of close-eqdl.

6. Higher precision and delimited information release

Many realistic languages feature exceptions as a means to indicate failure. The occurrence of an exception can also lead
to information leakage. Therefore, an information flow analysis for such a language must, at each point where an exception
might possibly occur, either ensure that this will indeed not happen at runtime or verify that the induced information flow is
benign. The Jif system [6] which implements a security type system for a large subset of the Java language employs a simple
data flow analysis to retain a practically acceptable precision w.r.t. exceptions. The data flow analysis can verify the absence
of null pointer exceptions and class cast exceptions in certain cases. However, to enhance the precision of this analysis to
an acceptable level one is forced to apply a somewhat cumbersome programming style.

The occurrence of exception statements is one example, where we gain something from the fact that our analysis is
embedded in amore general program logic: there is no need to stack one analysis on top of another to scale the approach up
to bigger languages. Instead, we can uniformly deal with added features, in this case exceptions, within one and the same
calculus. In the precise version of the calculus for JavaCard, as implemented in the KeY system [9], exceptions are similar
to conditional statements by branching on the condition under which an exception would occur. An uncaught exception is
treated as non-termination. As an example, the division v1/v2 would have the condition that v2 is zero:

v2 6= 0 `
dl

{w := v1/v2 } [.. ...]φ v2 = 0 `
dl

[.. throw E ...]φ

`
dl

[.. w = v1/v2 ...]φ

(“.. ...” denotes a context possibly containing exception handlers). If we knew v2 6= 0 at this point of the proof, implying that
the division does in fact not raise an exception, the right branch could be closed immediately. Because our DL calculus stores
the values of variables (instead of only their type), as long as no abstraction occurs, the value is usually available:

• rule Assigndl does not involve abstraction, which means that sequential programs can be executed without loss of
information, and

• invariance sets I in non-interference judgments allow us to retain information about unchanged variables across
conditional statements and loops.

This can be seen for a program like “v = 2 ; while b α ; w = w/v” in which α does not assign to v. By including v in the
invariance set for “while b α” we can deduce that v = 2 still holds after the loop, and thus be sure that the division will
succeed. This is a typical example for a program containing an initialisation part that establishes invariants, and a use part
that relies on the invariants. The pattern recurs in many flavours: examples are the initialisation and use of libraries and
the well-definedness of references after object creation. We are optimistic to gather further empirical evidence of our claim
that increased precision is useful in practice.

6.1. Increasing precision

While our DL calculus is able to maintain state information across statements, the rules Ifdl and Whiledl lose this
information in their first premiss that involves a non-interference proof for the statement body. It cannot be deduced,
for example, that no exceptions occur in “v = 2 ; while b {w = w/v}”. As another shortcoming, the branch predicate (the
formula that represents the guard of a conditional or loop) is not taken into account, so that absence of exceptions cannot
be shown, for example, in the program “if (v 6= 0) {w = 1/v} ”.

Oneway to remedy this problem is to relax the first premisses in Ifdl andWhiledl. The idea is to relativize non-interference
judgments and introduce preconditions φ under which the program must satisfy non-interference.

{ α } ⇓ (∇, I,φ) ≡def
∧

v∈PVar

{
∀̇v1 · · · vn. (φ → [α] v = u), v ∈ I

∀̇∇v. ∃r. ∀̇∇
C
v . (φ → [α] v = r), v 6∈ I.

In a relativized rule for if-statements, for instance, such a precondition could be used to “pass through” side formulae and
state information contained in the update U, as well as to exploit branch predicates: we may use arbitrary preconditions
φ1,φ2 in the branches provided that we can show that they hold already before the if-statement is executed:

`
dl

{ α1 } ⇓ (∇, I,φ1) `
dl

{ α2 } ⇓ (∇, I,φ2)

Γ , {U } b = TRUE `
dl

{U }φ1,∆ Γ , {U } b 6= TRUE `
dl

{U }φ2,∆

Γ `
dl

{U } { ifUpd(b,∇, I) } [. . .]φ,∆

Γ `
dl

{U } [if b α1 α2 ; . . .]φ,∆ .

An even more interesting usage of relativized non-interference statements is to handle delimited information release
in the style of Darvas et al. [4], i.e., situations in which non-interference does not strictly hold and some well-defined
information about secret values may be released. The general approach of [4] is to define a partition of the program state

R. Hähnle et al. / Theoretical Computer Science 402 (2008) 172–189 183

∗

[f ′l (TRUE) ≡ R]

odd(fh(R)) `
dl f ′l (TRUE) = R

close-eqdl

odd(fh(R)) `
dl f ′l (odd(fh(R))) = R

apply-eqdl

odd(fh(R)) `
dl

{ l := fl(R), h := fh(R) } { l := f ′l (odd(h)) } l = R
∗

→
dl

D

· · ·

∗

`
dl

{ l = 0 } ⇓ (∇, {h})

∗

`
dl

{ l = 1 } ⇓ (∇, {h}) D

odd(fh(R)) `
dl

{ l := fl(R), h := fh(R) } [α] l = R
Ifdl

`
dl

{ l := fl(R), h := fh(R) } (odd(h) → [α] l = R)

∗
→

dl , imp-rightdl

`
dl

∃r. ∀̇l. ∀̇h. (odd(h) → [α] l = r)
ex-rightdl, all-rightdl

`
dl

{ α } ⇓ (∇, {h}, odd(h))
(Def), and-rightdl

Fig. 7. Non-interference proof with delimited information release: the precondition odd(h) entails that (only) the parity of h is allowed to leak into l. A
similar proof is required for ¬odd(h). For sake of brevity, we use odd both as function and predicate, and only in one step (apply-eqdl) make use of the fact
that odd(fh(R)) actually represents the equation odd(fh(R)) = TRUE.

· · ·

∗

[cl + cs ≡ R]

cs = fx(R) + fy(R) `
dl cl + cs = R

close-eqdl

cs = fx(R) + fy(R) `
dl cl + fy(R) + fx(R) = R

apply-eqdl, arithdl

cs = fx(R) + fy(R) `
dl

{ l := cl + fy(R) + fx(R), U } [] l = R
Skipdl

cs = fx(R) + fy(R) `
dl

{ l := cl, U } [l = l + y + x] l = R
Assigndl

`
dl

{ l := cl, U } (s = x + y → [α] l = R)
imp-rightdl

`
dl

∀̇l. ∀̇s. ∃r. ∀̇x. ∀̇y. (s = x + y → [α] l = r)
all-rightdl, . . .

`
dl

{ α } ⇓ (∇, {x, y, s}, s = x + y)
(Def), and-rightdl

Fig. 8. Non-interference proof in which the sum x+ y is declassified by specifying that the value of the variable smay flow into l: ∇(l) = {l, s}. Applications
of the rule ∗

→
dl are not shown explicitly, and U is written as abbreviation for the update s := cs, x := fx(R), y := fy(R).

space and to prove the security of a program separately for each partition. This means that information about the partition
membership may freely flow into all variables.

We can use the same method in our DL calculus. As an example, Fig. 7 shows in parts a non-interference proof with
delimited information release for the program “α = if (odd(h)) {l = 0} {l = 1}”. The two partitions that are considered are
defined by the formulae odd(h) and ¬odd(h), i.e., the parity of the secret variable h is declassified. The typing ∇ is given by
∇(l) = ∅,∇(h) = {h}, indicating that only declassified information flows into l.

6.2. Declassification of expressions

The approach that is sketched in the previous paragraph has the disadvantage that a separate proof is necessary for
each partition, multiplying the verification effort. A formulation that is more direct and closer to implementations like in Jif
[6] would allow to downgrade the security level of the initial values of certain expressions, which henceforth can be used
more liberally in the program than the individual variables that the expressions consist of. Non-interference judgmentswith
preconditions can specify such information release quite naturally: in order to describe that the expressions e1, . . . , ek are
declassified during the execution of a program α, we assume that k fresh variables w1, . . . ,wk ∈ PVar are available that do
not occur in α. The security of α is then simply expressed by:

{ α } ⇓ (∇, I,w1 = e1 ∧ · · · ∧ wk = ek).

In addition to the normal independence specification, the type environment ∇ can now also allow that the value of an
expression ei may flow into a variable v by including wi in its type: wi ∈ ∇(v).

We illustrate the approach by verifying the program “α = (l = l + y + x)” under the assumption that the sum x + y
is declassified and may flow into l, while the values of the variables x and y stay confidential. Therefore, we choose the
precondition s = x + y, a type environment ∇ with ∇(l) = {l, s} and the invariance set I = {x, y, s}. Parts of the proof are
shown in Fig. 8. The most important step in the proof is the reasoning about arithmetic equations, which allows to simplify
the post-value cl + fy(R) + fx(R) of l to the expression cl + cs that is trivially unifiable with R. As always, the fact that R can be
eliminated from the symbolic post-value embodies the independence from confidential information.

184 R. Hähnle et al. / Theoretical Computer Science 402 (2008) 172–189

7. Conclusion, related and future work

In this paperwemade a formal connection between type-based and logic-based approaches to information flow analysis.
We showed that every program that is typable in Hunt and Sands’ type system [16] has a corresponding proof in an
abstract version of dynamic logic. We argued that an integrated logic-based approach fits well into a proof-carrying code
framework for establishing security policies of mobile software. In order to support this claim we showed how to increase
the precision of the program logic, for example, to express declassification. We also showed that in many cases the program
logic formulation is even value-sensitive. This allows us to retain concrete values of program variables as long as the usage
of the variable does not require its abstraction. This can improve the quality of the analyses (in the sense that fewer secure
programs are rejected) considerably.

7.1. Related work

The background for our work is provided by a number of recent type-based and logic-based approaches to information
flow analysis [1,18,4,16]. Our concrete starting points were the flow-sensitive type system of Hunt and Sands [16] and the
characterisation of non-interference of Darvas et al. [4]. Amtoft and Banerjee [18] devised an analysis with a very logic-like
structure that is, however, notmore precise than the type system of Hunt and Sands. In an early paper Andrews and Reitman
[23] developed a flow logic – one may also consider it a security type system – for proving information flow properties of
concurrent Pascal programs. They outline a combination of their flow logic with regular Hoare logic, but keep the formulae
for both logics separated. Joshi and Leino [2] give logical characterisations of the semantic notion of information flow, and
their presentation in terms of Hoare triples is similar in spirit to our basic formulation. Their results do, however, not provide
means to aid automated proofs of these triples. Beringer et al. [24] presented a logic for resource consumption whose proof
rules and judgements are derived from a more general program logic; both logics are formalised in the Isabelle/HOL proof
assistant. Their approach is similar in spirit to the one presented here, since the preciseness of their derived logic is compared
to an extant type system for resource consumption.

More recently, Beringer and Hofmann [25] suggested an alternative approach for a VDM-style logic based on self-
composition. The introduction of a predicate operator Sec allows to avoid double execution of the program to be proven
secure. Therefore, it is sufficient to show that Sec(φ) holds for some formula φ. Ameta-result allows to conclude the security
of the target program utilising Sec(φ) twice in its proof. The construction of the formula φ and of a suitable judgement in
the logic is obtained automatically from a type derivation. This idea is related to the work of Pan [26, Chapter 2], where a
suitable first-order security predicate is synthesised from the verification conditions obtained from symbolic execution of
the target program. Beringer and Hofmann embed the type-based secure information flow systems of Volpano-Smith and
of Hunt and Sands using different “instantiations” of Sec. They have an extension of their program logic for heap structures,
albeit only for a flow-insensitive security type system. On the other hand, they do not cover delimited information release
as outlined in Section 6. The size of the constructed formula φ relative to the length of the type derivation is open.

Thiswork is concernedwith connecting type-based anddeduction-based systems for non-interference in a flow-sensitive
setting. There is a large body of work on non-interference outside of this particular setting, for example, process algebras
such as CCS (e.g., [27]), CSP (see [28] for an overview),π-calculus, the spi calculus, and other event-based systems (e.g., [29]).
Of these, the closest approach to ours is that of Bossi et al. [30,31] who model non-interference with unwinding conditions
over a security process algebra language. These can then be decided by general methods for universal first-order formulas
over the reals. In [31] a concurrent language and different notion of non-interference from the present paper is used. It is
open whether general decision procedures for fragments of first-order logic are efficient enough in practice.

The literature on flow-insensitive systems (such as Jif and FlowCaml) is vast, therefore, we refer to the survey of Myers
and Sabelfeld [1].

None of the cited work combines abstract and precise reasoning as we propose in Section 6, although it would probably
be possible in the framework of Beringer and Hofmann.

7.2. Future work

We have not formally investigated the precise complexity of the translation of HS type derivations to DL proofs
(Theorems 5 and 8) and the size of resulting proofs. It appears that the usage of the optimised proof obligations { α } ⇓C (∇, I)
(Section 5) leads to proofs that grow at most quadratically in the number of program variables, and that grow linearly in the
program size for a fixed number of program variables.

The present work is a basic framework for the integration of type-based and logic-based information-flow analysis.
It demonstrates that a uniform logical treatment of type-based and logic-based analysis is feasible and advantageous. In
addition to non-interference and declassification, more complex security policies need to be looked at. It has to be seen how
well the notion of abstraction presented in this paper is suited to express these. We also want to extend the program logic
to cover at least JavaCard, based on the axiomatisation in [9] and the implementation in the program verifier KeY [32]. Ideas
towards this goal have been worked out in [26], parts of which are also presented in [5]. Finally, a suitable notion of proof
certificate and proof checking for proof-carrying code must be derived for dynamic logic proofs of security policies. This is
a major undertaking and beyond the scope of this paper.

R. Hähnle et al. / Theoretical Computer Science 402 (2008) 172–189 185

Acknowledgments

Wewould like to thank Dave Sands for inspiring discussions. Andrei Sabelfeld reminded us of declassification and helped
with the literature on information flow. Thanks to Tarmo Uustalu for pointing out [23]. Richard Bubel provided many
valuable remarks. The comments of the anonymous reviewers helped to improve the paper in several respects.

Appendix

The following sections contain shortened proofs to most lemmas and theorems of the paper. Complete versions of the
proofs can be found in [5].

A.1. Proof of Theorem 1 (Soundness)

Substitution – as used in rule Abstractdl – must be handled with care in dynamic logic, due to the presence of modal
operators. Therefore, one only gets a restricted version of a substitution theorem:

Lemma 10 (Substitution in Dynamic Logic). Let S = (D, I) be a structure and t1, t2 terms. Suppose that for all program variable
assignments δ, δ′, and all variable assignments β, it is the case that valS,β,δ(t1) = valS,β,δ′(t2). Then for all formulae φ of dynamic
logic and all (program) variable assignments β, δ one has valS,β,δ(φ[x/t1]) = valS,β,δ(φ[x/t2]).

Proof (Theorem 1). The proofs for the rules relating to predicate logic are standard and therefore omitted. For a description
of update application rules and soundness proofs see [21]. The interesting cases are Abstractdl, Whiledl and Ifdl, of which
we present the first two.

Abstractdl. We apply Lemma 10. Therefore, given a structure S = (D, I) and program variable assignment δ invalidating
the conclusion of Abstractdl we construct a structure Sf = (D, If) such that (i) If coincides with I apart from the
interpretation If (f), and (ii) valSf ,β,δ(t) = valSf ,β,δ(f (vars(t))) for all variable assignmentsβ, δ. Obviously, Sf is uniquely defined
by these two conditions. By Lemma 10 and the fact that f is fresh we then obtain the following identities, implying that Sf , δ
invalidate the premiss of Abstractdl for all β:

valS,β,δ((Γ `
dl ∆)[x/t]) = valSf ,β,δ((Γ `

dl ∆)[x/t])

= valSf ,β,δ((Γ `
dl ∆)[x/f (vars(t))]).

Whiledl. We ignore any possible update {U } that might occur in front of the formulae in the second premiss and the
conclusion as this does not add any interesting detail. We assume the first premisses of Whiledl and that the conclusion
is invalidated by some δ for all β: valS,δ,β([while b α]φ) = ff , so that [[while b α]]

Sδ = δ′(6= ⊥) and valS,δ′,β(φ) = ff . We
need to show that there exists S′ agreeing with S apart from the interpretation of the fresh fv s. t. valS′,δ,β(fv(γ∗

∇
(∇))) =

([[while b α]]
Sδ)(v), which would invalidate the second premiss of the rule. From the first set of premisses we obtain, for all

v and all δ, δ′ that agree on all u ∈ γ∗

∇
(∇)(v), that ([[if b α]]

Sδ)(v) = ([[if b α]]
Sδ′)(v).

Importantly, γ∗

∇
(∇) has a closure property that is ensured by the side condition v ∈ ∇(v) for all v. Namely, w ∈ γ∗

∇
(∇)(v)

implies γ∗

∇
(∇)(w) ⊆ γ∗

∇
(∇)(v): if a variable depends on another, the latter’s dependencies are included in the former’s. This

yields the equality for all dependencies of v:

([[if b α]]
Sδ)(u) = ([[if b α]]

Sδ′)(u), f.a. u ∈ γ∗

∇
(∇)(v). (A.1)

The interpretations of the fv are definable as least fixed-points of an ascending chain of functions.5 We show the construction
of fv for a given variable v. Therefore, it is convenient to workwith a semantic function for loops that is restricted to the value
of a single variable.

w0
v (δ) = ⊥, wn+1

v (δ) =

{
(wn

v)⊥([[α]]
Sδ) for valS,δ(b) = valS(TRUE)

δ(v) otherwise.

Now let |∇(v)| = k and inductively assume there is a function f nv : Dk
→ D⊥ s. t. wn

v(δ) v f nv (d1, . . . , dk) f. a. δ with
δ(∇v[j]) = dj, 1 ≤ j ≤ k (in particular, this states that wn

v yields the same results (or ⊥) for all such δ); then we construct
appropriate f n+1

v w f nv . The essential point to show is that wn+1
v (δ) = wn+1

v (δ′) for all δ, δ′ that agree on ∇(v) and where
wn+1

v (δ) 6= ⊥ 6= wn+1
v (δ′) . Then we know that for all d1, . . . , dk and all assignments δ with δ(∇v[j]) = dj there is a value r

such that wn+1
v (δ) = r or wn+1

v (δ) = ⊥, meaning there is at most one final value of v if one fixes the initial values of the ∇v to
d1, . . . , dk. We let f n+1

v (d1, . . . , dk) yield that value, or ⊥ if there is no such value.
Let δ, δ′ agree on ∇(v) and, crucially, thereby also on γ∗

∇
(∇)(v), since the latter set is a subset of the former by virtue of

the side condition onWhiledl. To show wn+1
v (δ) = wn+1

v (δ′) we consider the three possible cases:

5 The so obtained function fv : D|∇(v)|
→ D⊥ can easily be converted to a function of the right type D|∇(v)|

→ D by remapping all elements on which fv
yields bottom to some arbitrary value in D, since we consider a terminating execution.

186 R. Hähnle et al. / Theoretical Computer Science 402 (2008) 172–189

• valS,δ(b) = valS,δ′(b) 6= valS(TRUE): since v ∈ γ∗

∇
(∇)(v), we have wn+1

v (δ) = δ(v) = δ′(v) = wn+1
v (δ′).

• valS,δ(b) = valS,δ′(b) = valS(TRUE): we obtain wn+1
v (δ) = [[α]]

Sδ = δ1 and wn+1
v (δ) = [[α]]

Sδ′ = δ′1 where, by (A.1), δ1, δ′1
again agree on γ∗

∇
(∇), hence δ1(v) = δ′1(v). The slightly more involved case.

• has valS,δ(b) 6= valS(TRUE) = valS,δ′(b), so that for δ the terminating case is chosen (wn+1
v (δ) = δ(v)), and for δ′ the

evaluation continues recursively. The assumptionwn+1
v (δ′) 6= ⊥ ensures there is anm ≤ n s. t. ([[α]]

S)m δ′ (v) = wn
v([[α]]

Sδ′),
i.e. to obtain the result of wn+1

v (δ′) we ‘run α on δ′ m times’. But by (A.1) we know that running α on an assignment that
agrees with δ on γ∗

∇
(∇) (as δ′ does) yields an assignment that again agrees with δ on these variables. By an easy induction

we finally see that ([[α]]
S)m δ′ agrees with δ on the desired domain, too. �

A.2. Auxiliary results about the type system of Hunt and Sands

In order to show Lemma 2 (that allows to eliminate context types) and Lemma 4 (equivalence of the systems HS and cf),
we first need a number of further results about Hunt and Sands’ type system.

Lemma 11. It is possible to increase the type of variables in a typing judgement by joining its type with the context p: we write
∇x↑p for the typing ∇[x 7→ p t ∇(x)]. Then the following holds:

p′
`

HS
∇ { α } ∇

′ and p v p′ implies p′
`

HS
∇x↑p { α } ∇

′

x↑p.

Proof. By induction on the structure of type derivations. We can observe that by simply lifting all typings ∇ to ∇x↑p in a
given derivation for a judgement p′

`
HS

∇
′
{ α } ∇

′′, we obtain a derivation for p′
`

HS
∇

′

x↑p { α } ∇
′′

x↑p. �

Lemma 12. Given a valid typing judgement and type p, one retains a valid judgement when lifting the context and the post-type
of assigned variables by p:

t `
HS

∇ { α } ∇
′ implies t t p `

HS
∇ { α } ∇

′

α↑p

where

∇
′

α↑p(x) =

{
∇

′(x) t p for x ∈ Lhs(α)
∇

′(x) otherwise.

Proof. By induction on the structure of derivations. All cases except for Seqcfree and Whilecfree are immediate, and the
latter ones basically follow from Lemma 11. For the Whilecfree case, we are given a derivation of the judgement t `

HS

∇ { while E α } ∇ , where ∇ ` E : t′, and we need to show t t p `
HS

∇ { while E α } ∇α↑p. By the induction hypothesis we
know t′ t t t p `

HS
∇ { α } ∇α↑p which we can extend to a derivation of t′ t t t p `

HS
∇α↑p { α } ∇α↑p by Lemma 11. Two rule

applications ofWhileHS and SubHS respectively yield the required derivation. �

Lemma 13. Variables that are not assigned in a program are not declassified:

p `
HS

∇ { α } ∇
′ and v 6∈ Lhs(α) implies ∇(v) v ∇

′(v).

Proof. (Lemma 2) “=⇒” The first conjunct on the right-hand side can obviously be obtained from the derivation on the left
by a single application of SubHS. To conclude, one shows the following implication by induction on the set of valid typing
judgments, referring to Lemma 13:

p `
HS

∇ { α } ∇
′

=⇒ f.a. v ∈ Lhs(α). p v ∇
′(v).

“⇐=” Follows directly from Lemma 12 (with t = ⊥), because given that for all v ∈ Lhs(α). p v ∇
′(v) one has ∇

′

α↑p = ∇
′, so

that the two statements coincide.

A.3. Proof of Lemma 4 (Equivalence of the Systems HS and cf)

WeshowLemma4 through anumber of transformation steps, startingwith systemHSand eventually endingwith system
cf. Altogether, the proof of Lemma 4 is split into three parts:

⊥ `
HS ∆0 { α } ∇ iff `

cfree ∆0 { α } ∇

iff `
cfa ∆0 { α } ∇

iff `
cf ∆0 { α } ∇.

System cfree (Fig. A.1) is a slight modification of Hunt and Sands’ original system where we have removed the context p
from typings and replaced it by side conditions relating to the type of assigned variables. This step is crucial since the side
condition is very natural to express in the DL calculus, which is not the case for the context. The equivalence of the systems
HS and cfree can be shown by induction on the set of valid type judgements and using Lemma 2.

R. Hähnle et al. / Theoretical Computer Science 402 (2008) 172–189 187

`
cfree

∇ { } ∇
Skipcfree

∇ ` E : t

`
cfree

∇ { v = E } ∇[v 7→ t]
Assigncfree

`
cfree

∇ { α1 } ∇
′

`
cfree

∇
′
{ α2 } ∇

′′

`
cfree

∇ { α1 ; α2 } ∇
′′

Seqcfree

∇ ` b : t `
cfree

∇ { αi } ∇
′ (i = 1, 2)

`
cfree

∇ { if b α1 α2 } ∇
′

Ifcfree f.a. v ∈ Lhs(α1). t v ∇
′(v)

f.a. v ∈ Lhs(α2). t v ∇
′(v)

∇ ` b : t `
cfree

∇ { α } ∇

`
cfree

∇ { while b α } ∇
Whilecfree

f.a. v ∈ Lhs(α). t v ∇(v)

`
cfree

∇1 { α } ∇
′

1

`
cfree

∇2 { α } ∇
′

2
Subcfree

∇2 v ∇1, ∇
′

1 v ∇
′

2

Fig. A.1. Intermediate flow-sensitive type system cfree.

`
cfa

∇ { } ∇
′
Skipcfa

∇ v ∇
′

∇ ` E : t `
cfa

∇[v 7→ t] { . . . } ∇
′

`
cfa

∇ { v = E ; . . . } ∇
′

Assigncfa

∇ ` b : t `
cfa

∇
′
{ . . . } ∇

′′

`
cfa

∇ { αi } ∇
′ (i = 1, 2)

`
cfa

∇ { if b α1 α2 ; . . . } ∇
′′

Ifcfa f.a. v ∈ Lhs(α1). t v ∇
′(v)

f.a. v ∈ Lhs(α2). t v ∇
′(v)

∇
′
` b : t `

cfa
∇

′
{ . . . } ∇

′′

`
cfa

∇
′
{ α } ∇

′

`
cfa

∇ { while b α ; . . . } ∇
′′

Whilecfa ∇ v ∇
′

f.a. v ∈ Lhs(α). t v ∇
′(v)

Fig. A.2. Intermediate flow-sensitive type system cfa.

System cfa (Fig. A.2) is obtained by further modifying the system cfree to make it more similar to the DL calculus,
which always operates on the first statement of a program (the active statement, cf. [9]). The Seqcfree and Subcfree rules are
integrated into the other rules. It is easy to show that each cfa rule can be simulated in terms of cfree rules, which proves
the soundness of cfa. On the other hand, an arbitrary cfree derivation can be normalised, employing the associativity of
sequential composition, and then translated into a cfa derivation.

Finally, the type system is brought into a shape that directly corresponds to our DL calculus (system cf in Fig. 4). The
difference to cfa is that we only work with typings of the form `

cf ∆0 { · } ∇
′. We can show the equivalence of cfa and cf

primarily using Lemma 3 for the type system HS (Lemma 6.8 about canonical derivations in [16]), which also holds for the
equivalent system cfa:

`
cfa

∇ { α } ∇
′ iff `

cfa ∆0 { α } γ∗

∇
(∇ ′).

A.4. Proof of Lemma 6

For showing that derivations in cf can be translated to proofs in the DL calculus, we first need a bit of further notation
for updates. For an update U and a term s, we write U [s] for the (unique) irreducible/update-free term s′ that is obtained by
repeatedly applying rules of Fig. 3: {U } s

∗
→

dl s′.
Further, for an update U, a type t ⊆ PVar and a logical variable R ∈ LVar, we write mrk(t, R,U) if the following identity

holds:

{v ∈ PVar | R ∈ vars(U [v])} = PVar\t. (A.2)

Intuitively, thismeans that all variablesw ∈ PVar\twhose interference is prohibited are “marked” byUwith a free variable R.
Removing the quantifiers in a non-interference statement like

∀u1 u2 ∃r. ∀u3 u4. { vi := ui }1≤i≤4 [p] (v1 = r)

using rules all-rightdl and ex-rightdl exactly creates this situation (in the example for t = ∇(v1) = {v1, v2}).
Referring to the last rule of Fig. 3, we will denote the update obtained by sequentially composing two updates U1 and

U2 = v1 := t1, . . . , vk := tk by

U1;U2 =def U1, v1 := {U1 } t1, . . . , vk := {U1 } tk.

188 R. Hähnle et al. / Theoretical Computer Science 402 (2008) 172–189

Recall the concretisation operator γ∇ (cf. [16]) used in the type system cf:

γ∇(t) =def {v | ∇(v) v t}, γ∗

∇1
(∇2)(v) =def γ∇1(∇2(v)).

There is an immediate relationship between sequential update composition and γ∇ , which is the key property that enables
to simulate type derivations in the DL calculus:

Lemma 14. Suppose that for an update U′ and a typing ∇
′
: PVar → P (PVar) the following property holds:

f.a. v ∈ PVar. ∇
′(v) = vars(U′

[v]) ∩ PVar and R 6∈ vars(U′
[v]).

Then

mrk(t, R,U) implies mrk(γ∇ ′(t), R, (U;U′)).

Proof. The stated implication follows almost immediately from (A.2) and the following equivalence (for arbitrary updates U,
U′ and variables v ∈ PVar, R ∈ LVar), which can be proven by induction on U′

[v]:

R ∈ vars((U;U′) [v]) iff there is x ∈ vars(U′
[v]) with R ∈ vars(U [x]).

Proof (Lemma 6). We show the stronger implication

`
cf ∆0 { α } ∇ =⇒ I ∩ Lhs(α) = ∅ =⇒ `

dl
{ α } ⇓ (∇, I)

by noetherian induction on the program α, using the sub-program-order: For showing the implication for a program α, we
will assume that it holds for all programs α′

6= α that literally occur as part of α.
We then first decompose α into a list α = α1 ; . . . ; αm of statements (m = 0 is possible) and assume that `

cf ∆0 { α } ∇

and I ∩ Lhs(α) = ∅. The formula { α } ⇓ (∇, I) leads to two kinds of proof obligations:

Non-interference obligations: For PO = ∀̇∇v. ∃r. ∀̇∇
C
v . [α] r = v and v 6∈ I, we prove by induction on a k ∈ N, k ≤ m the

following properties:
• There is a dl proof tree with PO as root that has exactly one open branch `

dl
{U } [αk+1 ; . . . ; αm] R = v,

where U is an update.
• For some typing ∇

′ with mrk(∇ ′(v), R,U), there is a type derivation of `
cf ∆0 { αk+1 ; . . . ; αm } ∇

′ that
corresponds to the open goal.

Invariance obligations: For PO = ∀̇v1 · · · vn. ∀u. { v := u }[α] u = v and v ∈ I, we prove by induction on a k ∈ N, k ≤ m the
following properties:
• There is a dl proof tree with PO as root that has exactly one open branch `

dl
{U } [αk+1 ; . . . ; αm] uc = v,

where U is an update with U [v] = uc.
• There is a type derivation of `

cf ∆0 { αk+1 ; . . . ; αm } ∇
′ that corresponds to the open goal.

References

[1] A. Sabelfeld, A.C. Myers, Language-based information-flow security, IEEE Journal on Selected Areas in Communications 21 (1) (2003) 5–19.
[2] R. Joshi, K.R.M. Leino, A semantic approach to secure information flow, Science of Computer Programming 37 (1–3) (2000) 113–138.
[3] G. Barthe, P.R. D’Argenio, T. Rezk, Secure Information Flow by Self-Composition, in: R. Foccardi (Ed.), Proceedings of CSFW’04, IEEE Press, Pacific Grove,

USA, 2004, pp. 100–114.
[4] A. Darvas, R. Hähnle, D. Sands, A theorem proving approach to analysis of secure information flow, in: D. Hutter, M. Ullmann (Eds.), Proc. 2nd

International Conference on Security in Pervasive Computing, in: LNCS, vol. 3450, Springer-Verlag, 2005, pp. 193–209.
[5] R. Hähnle, J. Pan, P. Rümmer, D.Walter, Integration of a security type system into a program logic, Tech. Rep. 2007:1, Department of Computer Science

and Engineering, Chalmers University of Technology, Göteborg, Sweden (2007).
[6] S. Chong, A. C. Myers, K. Vikram, L. Zheng, Jif Reference Manual, Cornell University, version 3.0 edition, June 2006.

http://www.cs.cornell.edu/jif/doc/jif-3.0.0/manual.html.
[7] K. Stenzel, Verification of JavaCard Programs, Technical report 2001-5, Institut für Informatik, Universität Augsburg, Germany, 2001.
[8] L. Burdy, A. Requet, J.-L. Lanet, Java applet correctness: A developer-oriented approach, in: Proc. Formal Methods Europe, Pisa, Italy, in: LNCS,

vol. 2805, Springer-Verlag, 2003, pp. 422–439.
[9] B. Beckert, R. Hähnle, P. H. Schmitt (Eds.), Verification of Object-Oriented Software: The KeY Approach, in: LNCS, vol. 4334, Springer-Verlag, 2007.

[10] W. Mostowski, Formalisation and verification of Java Card security properties in dynamic logic, in: M. Cerioli (Ed.), Proc. Fundamental Approaches to
Software Engineering (FASE), Edinburgh, in: LNCS, vol. 3442, Springer-Verlag, 2005, pp. 357–371.

[11] G.C. Necula, P. Lee, Safe, untrusted agents using proof-carrying code, in: G. Vigna (Ed.),Mobile Agents and Security, in: LNCS, vol. 1419, Springer-Verlag,
1998, pp. 61–91.

[12] MOBIUS Project Deliverable D 1.1, Resource and Information Flow Security Requirements, Mar. 2006.
[13] A.W. Appel, Foundational Proof-Carrying code, in: Proc. 16th Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society, Los

Alamitos, CA, 2001, pp. 247–258.
[14] G.C. Necula, R.R. Schneck, A sound framework for untrustred verification-condition generators, in: Proc. IEEE Symposiumon Logic in Computer Science

LICS, Ottawa, Canada, IEEE Computer Society, 2003, pp. 248–260.
[15] A. Bernard, P. Lee, Temporal logic for proof-carrying code, in: A. Voronkov (Ed.), Proc. 18th International Conference on Automated Deduction CADE,

Copenhagen, Denmark, in: Lecture Notes in Computer Science, vol. 2392, Springer-Verlag, 2002, pp. 31–46.
[16] S. Hunt, D. Sands, On flow-sensitive security types, in: J.G. Morrisett, S.L.P. Jones (Eds.), Symp. on Principles of Programming Languages (POPL), ACM

Press, 2006, pp. 79–90.
[17] D. Volpano, G. Smith, C. Irvine, A sound type system for secure flow analysis, Journal of Computer Security 4 (3) (1996) 167–187.

http://www.cs.cornell.edu/jif/doc/jif-3.0.0/manual.html

R. Hähnle et al. / Theoretical Computer Science 402 (2008) 172–189 189

[18] T. Amtoft, A. Banerjee, Information flow analysis in logical form, in: R. Giacobazzi (Ed.), 11th Static Analysis Symposium (SAS), Verona, Italy, in: LNCS,
vol. 3148, Springer-Verlag, 2004, pp. 100–115.

[19] B. Beckert, A dynamic logic for the formal verification of Java Card programs, in: I. Attali, T. Jensen (Eds.), Java on Smart Cards: Programming and
Security. Revised Papers, Java Card 2000, International Workshop, Cannes, France, in: LNCS, vol. 2041, Springer-Verlag, 2001, pp. 6–24.

[20] D. Harel, D. Kozen, J. Tiuryn, Dynamic Logic, Foundations of Computing, MIT Press, 2000.
[21] P. Rümmer, Sequential, parallel, and quantified updates of first-order structures, in: Logic for Programming, Artificial Intelligence and Reasoning,

in: LNCS, vol. 4246, Springer-Verlag, 2006, pp. 422–436.
[22] M.C. Fitting, First-Order Logic and Automated Theorem Proving, second ed., Springer-Verlag, New York, 1996.
[23] G.R. Andrews, R.P. Reitman, An axiomatic approach to information flow in programs, ACM Transactions on Programming Languages and Systems 2

(1) (1980) 56–76.
[24] L. Beringer,M. Hofmann, A.Momigliano, O. Shkaravska, Automatic certification of heap consumption, in: Logic for Programming, Artificial Intelligence,

and Reasoning: 11th International Conference, LPAR 2004, Montevideo, Uruguay, vol. 3452, Springer-Verlag, 2005, pp. 347–362.
[25] L. Beringer, M. Hofmann, Secure information flow and program logics, CSF 00, 2007, 233–248.
[26] J. Pan, A theorem proving approach to analysis of secure information flow using data abstraction, Master’s Thesis, Chalmers University of Technology,

2005.
[27] R. Focardi, R. Gorrieri, A classification of security properties for process algebras, Journal of Computer Security 3 (1) (1995) 5–33.
[28] P. Ryan, Mathematical models of computer security—tutorial lectures, in: R. Focardi, R. Gorrieri (Eds.), Foundations of Security Analysis and Design,

in: LNCS, vol. 2171, Springer-Verlag, 2001, pp. 1–62.
[29] H. Mantel, Possibilistic definitions of security – An assembly kit –, in: Proc. IEEE Computer Security Foundations Workshop, 2000, pp. 185–199.
[30] A. Bossi, R. Focardi, C. Piazza, S. Rossi, Verifying persistent security properties, Computer Languages, Systems & Structures 30 (3–4) (2004) 231–258.
[31] A. Bossi, C. Piazza, S. Rossi, Compositional information flow security for concurrent programs, Journal of Computer Security 15 (3) (2007) 373–416.
[32] B. Beckert, M. Giese, R. Hähnle, V. Klebanov, P. Rümmer, S. Schlager, P.H. Schmitt, The KeY System 1.0 (deduction component), in: F. Pfenning (Ed.),

Proc. 21st Conference on Automated Deduction (CADE), Bremen, Germany, in: LNCS, Springer-Verlag, 2007, pp. 379–384.

	Integration of a security type system into a program logic
	Introduction
	Integrating type systems and program logics
	Background and terminology
	Non-interference analysis
	Dynamic logic with updates

	Interpreting the type system in dynamic logic
	The Abstraction-based calculus
	Simulating type derivations in the DL calculus

	Reducing the size of proofs
	Non-Interference properties
	Proofs with the optimised encoding

	Higher precision and delimited information release
	Increasing precision
	Declassification of expressions

	Conclusion, related and future work
	Related work
	Future work

	Acknowledgments
	
	Proof of lem:dl-soundnessthmTheorem Theorems (Soundness)
	Auxiliary results about the type system of Hunt and Sands
	Proof of lem:dvEqCfallemLemma Lemmas (Equivalence of the Systems HS and cf)
	Proof of lem:DLsubsumesCFALlemLemma Lemmas

	References

