
Technical Report no. 2007:1

Integration of a Security Type System

into a Program Logic

Reiner Hähnle, Jing Pan,

Philipp Rümmer, Dennis Walter

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg
Sweden

Göteborg, 2007

Integration of a Security Type System into a Program Logic
Reiner Hähnle, Jing Pan, Philipp Rümmer, Dennis Walter

c© Reiner Hähnle, Jing Pan, Philipp Rümmer, Dennis Walter, 2007

Technical Report no. 2007:1
ISSN 1652-926X
Department of Computer Science and Engineering
Research Group: Formal Methods Group

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden
Telephone +46 (0)31–772 1000

Integration of a Security Type System into a

Program Logic?

Reiner Hähnle1, Jing Pan2, Philipp Rümmer1, and Dennis Walter1

1 Department of Computer Science and Engineering,
Chalmers University of Technology and Göteborg University

2 Department of Mathematics and Computer Science,
Eindhoven University of Technology

Abstract. Type systems and program logics are often conceived to be at
opposing ends of the spectrum of formal software analyses. In this paper
we show that a flow-sensitive type system ensuring non-interference in
a simple while language can be expressed through specialised rules of a
program logic. In our framework, the structure of non-interference proofs
resembles the corresponding derivations in a recent security type system,
meaning that the algorithmic version of the type system can be used as
a proof procedure for the logic. We argue that this is important for
obtaining uniform proof certificates in a proof-carrying code framework.
We discuss in which cases the interleaving of approximative and precise
reasoning allows us to deal with delimited information release. Finally, we
present ideas on how our results can be extended to encompass features
of realistic programming languages like Java.

1 Introduction

Formal verification of software properties has recently attracted a lot of interest.
An important factor in this trend is the enormously increased need for secure
applications, particularly in mobile environments. Confidentiality policies can
often be expressed in terms of information flow properties. Existing approaches
to verification of such properties mainly fall into two categories: the first are
type-based security analyses ([20] gives an overview), whereas the second are
deduction-based employing program logics (e.g. [13, 5, 9]).

It is often noted that type-based analyses have a very logic-like character:
A language for judgements is provided, a semantics that determines the set of
valid judgments, and finally type rules to approximate the semantics mechan-
ically. Type systems typically can trade a precise reflection of the semantics
of judgments for automation and efficiency: many valid judgments are rejected.

? This work was funded in part by a STINT institutional grant and by the Information
Society Technologies programme of the European Commission, Future and Emerging
Technologies under the IST-2005-015905 MOBIUS project. This article reflects only
the authors’ views and the Community is not liable for any use that may be made
of the information contained therein.

For program logics, the situation is quite the opposite: Calculi try to capture the
semantics as precisely as possible and therefore have significantly higher com-
plexity than type systems. Furthermore, due to the richer syntax of program
logics – compared to the judgments in the type world – the framework is more
general and the same program logic can be used to express and reason about
different kinds of program properties.

The main contributions of this paper are: we construct a calculus for a pro-
gram logic that naturally simulates the rules of a flow-sensitive type system for
secure information flow. We prove soundness of the program logic calculus with
respect to the type system. The so obtained interpretation of the type system in
dynamic logic yields increased precision and opens up ways of expressing proper-
ties beyond pure non-interference. Concretely, we are able to prove the absence
of exceptions in certain cases, and we can express delimited information release.
Therefore, we can speak of an integration of a security type system into program
logic.

A crucial benefit of the integration is that we obtain an automatic proof
procedure for non-interference formulae: because of the similarity between the
program logic calculus and the type rules, it is possible to mechanically translate
type derivations to deduction proofs in the program logic. At the same time,
certain advantages over the type system in terms of precision (Sect. 5) come for
free without sacrificing automation.

The paper is organised as follows. In Section 2 we argue that a formal con-
nection between type systems and program logics fits nicely into a verification
strategy for advanced security policies of mobile Java programs based on proof-
carrying-code (PCC). Section 3 introduces the terminology used in the rest of
the paper. In Section 4 we define and discuss our program logic tailored to non-
interference analysis. Our ideas for increasing the precision of the calculus and
for covering delimited information release are given in Section 5. Due to lack of
space, we could not include proofs in this paper. An extended version with all
proofs is provided at [10].

2 Integrating Type Systems and Program Logics

We think that the integration of type systems and program logics is an important
ingredient to make security policy checks scale up to mobile code written in
modern industrial programming languages.

Certificates for Proof-Carrying Code. For the security infrastructure of mobile,
ubiquituous computing it is essential that security policies can be enforced lo-
cally on the end-user device without requiring a secure internet connection to a
trusted authentication authority. In the EU project Mobius3 this infrastructure
is based on the proof-carrying code (PCC) technology [16]. The basic idea of
PCC is to provide a formal proof that a security policy holds for a given appli-
cation, and then to hand down to the code consumer (end user) not only the

3 mobius.inria.fr/twiki/bin/view/Mobius

4

application code, but also a certificate that allows to reconstruct the security
proof locally with low overhead. Therefore, the end user device must run a proof
checker, and, in a standard PCC architecture [16], also a verification condition
generator, because certificates do not contain aspects of programs. The latter
makes the approach unpractical for devices with limited resources. In addition,
the security policies considered in Mobius [14] are substantially more complex
than the safety policies originally envisioned in PCC. In foundational PCC [4]
this is dispensed with at the price of including the formal semantics of the target
language in the proof checker. The size of the resulting proof certificates makes
this approach impractical so far. In the case of an axiomatic semantics as used
in the verification system employed in the present paper [1], it seems possible to
arrive at a trusted code base that is small enough. In the type-based version of
PCC the trusted code base consists of a type checker instead of a proof checker.
The integration of a type system for secure information flow into a program logic
makes it possible to construct uniformly logic-based certificates, and no hybrid
certificates need to be maintained. As a consequence, the PCC architecture is
simplified and the trusted code base is significantly reduced. Efforts that go into
similar directions in the sense that the scope of certificates is extended include
Configurable PCC [17] and Temporal Logic PCC [8].

Synergies from Combining Type-Based and Deduction-Based Verification. The
possibility to combine type-based and deduction-based reasoning in one frame-
work leads to a number of synergies. In an integrated type- and deduction-based
framework it is possible to increase the precision of the analysis dynamically on
demand. Type systems ignore the values of variables. In a deduction framework,
however, one can, e.g., prove that in the program “if (b) y = x ; if (¬b) z = y ;”
the variables z and x are independent, because the value of b always excludes
the path through one of the conditionals. Note that it is not necessary to track
the values of all variables to determine this: only the value of b matters in the
example. More realistic examples are in Sect. 5.

A further opportunity offered by the integration of type-based analysis into
an expressive logical framework is the formulation of additional security prop-
erties without the need for substantial changes in the underlying rule system
or the deduction engine. To illustrate this point we show in Sect. 5 that it is
possible to express delimited information release in our program logic.

3 Background and Terminology

3.1 Non-Interference Analysis

Generally speaking, a program has secure information flow if no knowledge about
some given secret data can be gained by executing this program. Whether or not
a program has secure information flow can hence only be decided according to a
given security policy discriminating secret from public data. In our considerations
we adopt the common model where all input and output channels are taken to
be program variables. The semantic concept underlying secure information flow

5

then is that of non-interference: nothing can be learned about a secret initially
stored in variable h, by observing variable l after program execution, if the initial
value of h does not interfere with the final value of l. Put differently, the final
value of l must be independent of the initial value of h.

This non-interference property is commonly established via security type sys-
tems [20, 12, 21, 2], where a program is deemed secure if it is typable according
to some given policy. Type systems are used to perform flow-sensitive as well
as flow-insensitive analyses. Flow-insensitive approaches (e.g. [21]) require every
subprogram to be well-typed according to the same policy. Recent flow-sensitive
analyses [12, 2] allow the types of variables to change along the execution path,
thereby providing more flexibility for the programmer. Like these type systems,
the program logic developed in this paper will be termination insensitive, mean-
ing that a security guarantee is only made about terminating runs of the program
under consideration.

The type system of Hunt & Sands [12] is depicted in Fig. 1. The type p
represents the security level of the program counter and serves to eliminate in-
direct information flow. The remaining components of typing judgments are a
program α and two typing functions ∇,∇′ : PVar → L mapping program vari-
ables to their respective pre- and post-types. The type system is parametric with
respect to the choice of security types; it only requires them to form a (com-
plete) lattice L. In this paper, we will only consider the most general4 lattice
P(PVar). One may thus think of the type ∇(v) of a variable v as the set of
all variables that v’s value may depend on at a given point in the program.
A judgment p `HS ∇ { α } ∇′ states that in context p the program α trans-
forms the typing (or dependency approximation) ∇ into ∇′. We note that rule
Assign

HS gives the system its flow-sensitive character, stating that variable v’s
type is changed by an assignment v = E to E’s type as given by the pre-typing
∇ joined with the context type p. The type t of an expression E in a typing
∇ can simply be taken to be the join of the types ∇(v) of all free variables
v occurring in E, which we denote by ∇ ` E : t. Joining with the context p
is required to accomodate for leakage through the program context, as in the
program “if (h) {l = 1} {l = 0)}”, where the initial value of h is revealed in the
final value of l. A modification of the context p can be observed, e.g., in rule
If

HS, where the subderivation of the two branches of an if statement must be
conducted in a context lifted by the type of the conditional.

3.2 Dynamic Logic with Updates

Following [9], the program logic that we investigate is a simplified version of
dynamic logic (DL) for JavaCard [6]. The most notable difference to standard
first-order dynamic logic for the simple while-language [11] is the presence of
an explicit operator for simultaneous substitutions (called updates [19]). While
updates become particularly useful when more complicated programming lan-

4 In the sense that any other type lattice is subsumed by it, see [12, Lem. 6.8].

6

p `HS ∇ { } ∇
SkipHS

∇ ` E : t

p `HS ∇ { v = E } ∇[v 7→ p t t]
AssignHS

p `HS ∇ { α1 } ∇′ p `HS ∇′ { α2 } ∇′′

p `HS ∇ { α1 ; α2 } ∇′′ SeqHS

∇ ` b : t p t t `HS ∇ { αi } ∇′ (i = 1, 2)

p `HS ∇ { if b α1 α2 } ∇′ IfHS

∇ ` b : t p t t `HS ∇ { α } ∇

p `HS ∇ { while b α } ∇
WhileHS

p1 `HS ∇1 { α } ∇′
1

p2 `HS ∇2 { α } ∇′
2

SubHS

p2 v p1,∇2 v ∇1, ∇
′
1 v ∇′

2

Fig. 1. Hunt & Sands’ flow-sensitive type system for information flow analysis

guages (with arrays or object-oriented features) are considered, in any case, they
enable a more direct relation between program logic and type systems.

A signature of DL is a tuple (Σ,PVar,LVar) consisting of a set Σ of function
symbols with fixed, non-negative arity, a set PVar of program variables and of
a countably infinite set LVar of logical variables. Σ, PVar, LVar are pairwise
disjoint. Because some of our rules need to introduce fresh function symbols, we
assume that Σ contains infinitely many symbols for each arity n. Further, we
require that a distinguished nullary symbol TRUE ∈ Σ exists. Rigid terms tr,
ground terms tg, terms t,5 programs α, updates U and formulae φ are then
defined by the following grammar, where f ∈ Σ ranges over functions, x ∈ LVar
over logical variables and v ∈ PVar over program variables:

tr ::= x | f(tr, . . . , tr) tg ::= v | f(tg, . . . , tg)

t ::= tr | tg | f(t, . . . , t) | {U } t U ::= ε | v := t, U

φ ::= φ ∧ φ | ∀x. φ | . . . | t = t | [α]φ | {U } φ

α ::= α ; . . . ; α | v = tg | if tg α α | while tg α

For the whole paper, we assume a fixed signature (Σ,PVar,LVar) in which the
set PVar = {v1, . . . , vn} is finite, containing exactly those variables occurring in
the progam under investigation.

A structure is a pair S = (D, I) consisting of a non-empty universe D and
an interpretation I of function symbols, where I(f) : Dn → D if f ∈ Σ has ar-
ity n. Program variable assignments and variable assignments are mappings

5 Both rigid terms and ground terms are terms.

7

δ : PVar → D and β : LVar → D. The space of all program variable assignments
over the universe D is denoted by PAD = PVar → D, and the corresponding flat
domain by PAD

⊥ = PAD ∪ {⊥}, where δ v δ′ iff δ = ⊥ or δ = δ′.
While-programs α are evaluated in structures and operate on program vari-

able assignments. We use a standard denotational semantics for such programs

[[α]]
S

: PAD → PAD
⊥

and define, for instance, the meaning of a loop “while b α” through

[[while b α]]
S

=def

⊔

i

wi, wi : PAD → PAD
⊥

w0(δ) =def ⊥, wi+1(δ) =def

{

(wi)⊥([[α]]
S
(δ)) for valS,δ(b) = valS(TRUE)

δ otherwise

where we make use of a ‘bottom lifting’: (f)⊥(x) = if (x = ⊥) then ⊥ else f(x).
Likewise, updates are given a denotation as total operations on program

variable assignments. The statements of an update are executed in parallel and
statements that literally occur later can override the effects of earlier statements:

[[U]]
S,β

: PAD → PAD

[[w1 := t1, . . . , wk := tk]]
S,β

(δ) =def

(· · · ((δ[w1 7→ valS,β,δ(t1)])[w2 7→ valS,β,δ(t2)]) · · ·)[wk 7→ valS,β,δ(tk)]

where (δ[w 7→ a])(v) = if (v = w) then a else δ(v) are ordinary function updates.
Evaluation valS,β,δ of terms and formulae is mostly defined as it is common

for first-order predicate logic. Formulas are mapped into a Boolean domain,
where tt stands for semantic truth. The cases for programs and updates are

valS,β,δ([α]φ) =def

{

valS,β,[[α]]S(δ)(φ) for [[α]]
S
(δ) 6= ⊥

tt otherwise

valS,β,δ({U } φ) =def valS,β,[[U]]S,β(δ)(φ)

We interpret free logical variables x ∈ LVar existentially: a formula φ is valid
iff for each structure S = (D, I) and each program variable assignment δ ∈ PAD

there is a variable assignment β : LVar → D such that valS,β,δ(φ) = tt. Likewise,
a sequent Γ `dl ∆ is called valid iff

∧

Γ →
∨

∆ is valid.
The set of unbound variables occurring in a term or a formula t is denoted by

vars(t) ⊆ PVar ∪ LVar. For program variables v ∈ PVar, this means v ∈ vars(t)
iff v turns up anywhere in t. For logical variables x ∈ LVar, we define x ∈ vars(t)
iff x occurs in t and is not in the scope of ∀x or ∃x.

We note that the semantic notion of non-interference can easily be expressed
in the formalism of dynamic logic: One possibility [9] is to express the variable
independence property introduced above as follows. Assuming the set of program
variables is PVar = {v1, . . . , vn}, then vj only depends on v1, . . . , vi if variation
of vi+1, . . . , vn does not affect the final value of vj :

∀u1, . . . , ui. ∃r. ∀ui+1, . . . , un. { vi := ui }1≤i≤n [α] (vj = r) . (1)

8

The particular use of updates in this formula is a standard trick to quantify
over program variables which is not allowed directly: in order to quantify over
all values that a program variable v occurring in a formula φ can assume, we
introduce a fresh logical variable u and quantify over the latter. In the following
we use quantification over program variables as a shorthand, writing ∀̇v. φ for
∀u. { v := u } φ. One result of this paper is that simple, easily automated proofs
of formulae such as (1) are viable in at least those cases where a corresponding
derivation in the type system of Hunt and Sands exists.

4 Interpreting the Type System in Dynamic Logic

We now present a calculus for dynamic logic in which the rules involving pro-
gram statements employ abstraction instead of precise evaluation. The calculus
facilitates automatic proofs of secure information flow. In particular, when prov-
ing loops the burden of finding invariants is reduced to the task of providing a
dependency approximation between program variables. There is a close corre-
spondence to the type system of [12] (Fig. 1). Intuitively, state updates in the
DL calculus resemble security typings in the type system: updates arising dur-
ing a proof will essentially take the form { v := f(. . . vars . . .) }, where the vars
form the type of v in a corresponding derivation in the type system. To put
our observation on a formal basis, we prove the soundness of the calculus and
show that every derivation in the type system has a corresponding proof in our
calculus.

The Abstraction-based Calculus. We introduce extended type environments
as pairs (∇, I) consisting of a typing function ∇ : PVar → P(PVar) and an
invariance set I ⊆ PVar used to indicate those variables whose value does not
change after execution of the program. We write ∇v for the syntactic sequence
of variables w1, . . . , wk with arbitrary ordering when ∇(v) = {w1, . . . , wk} and
∇C

v for a sequence of all variables not in ∇(v). Ultimately, we want to prove
non-interference properties of the form

{ α } ⇓ (∇, I) ≡def

∧

v∈PVar

{

∀̇v1 · · · vn. ∀u. { v := u }[α] v = u , v ∈ I

∀̇∇v . ∃r. ∀̇∇C
v . [α] v = r , v 6∈ I

(2)

where we assume PVar = {v1, . . . , vn}. Validity of a judgment { α } ⇓ (∇, I)
ensures that all variables in the invariance set I remain unchanged after exe-
cution of the program α, and that any variable v of the rest only depends on
variables in ∇(v). The invariance set I corresponds to the context p that turns
up in judgments p `HS ∇ { α } ∇′: while the type system ensures that p is a
lower bound of the post-type ∇′(v) of variables v assigned in α, the set I can
be used to ensure that variables with low post-type are not assigned (or, more
precisely, not changed). The equivalence is formally stated in Lem. 2.

In the proof process we want to abstract program statements “while b α”
and “if b α1 α2” into updates modelling the effects of these statements. Thus

9

we avoid having to split up the proof for the two branches of an if-statement, or
having to find an invariant for a while-loop. Extended type environments capture
the essence of these updates: the arguments for the abstraction functions and
the unmodified variables. They are translated into updates as follows:

upd(∇, I) =def { v := fv(∇v) }v∈PVar\I

ifUpd(b,∇, I) =def { v := fv(b,∇v) }v∈PVar\I

The above updates assign to each v not in the invariance set I a fresh function
symbol fv whose arguments are exactly the variables given by the type ∇(v).
In a program “if b α1 α2” the final state may depend on the branch condition
b, so the translation ifUpd ‘injects’ the condition into the update. This is the
analogon of the context lifting present in If

HS. For the while-rule, we transform
the loop body into a conditional, so that we must handle the context lifting only
in the if-rule.

Figs. 2 and 3 contain the rules for a sequent calculus. We have only included
those propositional and first-order rules (the first four rules of Fig. 2) that are
necessary for proving the results in this section; more rules are required to make
the calculus usable in practice. The calculus uses free logical variables X ∈ LVar
(ex-rightdl) and unification (close-eqdl) for handling existential quantifica-
tion, where the latter rule works by applying the unifier of terms s and t to
the whole proof tree. We have to demand that only rigid terms (not containing
program variables) are substituted for free variables, because free variables can
also occur in the scope of updates or the box modal operator. Skolemisation
(all-rightdl) has to collect the free variables that occur in a quantified formula
to ensure soundness. By definition of the non-interference properties (2) and by
the design of the rules of the dynamic logic calculus it is sufficient to define
update rules for terms, quantifier-free formulae, and other updates. Such rules
can be used at any point in a proof to simplify expressions containing updates.

Rule Abstract
dl can be used to normalise terms occuring in updates to

the form f(. . . vars . . .). In rules If
dl and While

dl the second premiss represents
the actual abstraction of the program statement for a suitably chosen typing ∇
and invariance set I . This abstraction is justified through the first premiss in
terms of another non-interference proof obligation. The concretisation operator
γ∗ (cf. [12]) of rule While

dl is generally defined as

γ∗∇1
(∇2)(x) =def {y ∈ PVar | ∇1(y) ⊆ ∇2(x)} (x ∈ PVar) . (3)

Together with the side condition that for all v we require v ∈ ∇(v), a clo-
sure property on dependencies is ensured: w ∈ γ∗∇(∇)(v) implies γ∗∇(∇)(w) ⊆
γ∗∇(∇)(v): if a variable depends on another, the latter’s dependencies are in-
cluded in the former’s. This accounts for the fact that the loop body can be
executed more than once, which, in general, causes transitive dependencies.

Function Arguments Ensure Soundness. A recurring proof obligation in a non-
interference proof is a statement of the form ∀̇∇v. ∃r. ∀̇∇C

v . [α] v = r. To prove

10

Γ `dl φ,∆ Γ `dl ψ,∆

Γ `dl φ ∧ ψ,∆
and-rightdl

Γ `dl φ[x/f(X1, . . . , Xn)], ∆

Γ `dl ∀x. φ,∆
all-rightdl {X1, . . . , Xn} = vars(φ) ∩ LVar\{x},

f fresh

Γ `dl φ[x/X], ∃x. φ,∆

Γ `dl ∃x. φ,∆
ex-rightdl

X fresh

∗
[s ≡ t]

Γ `dl s = t,∆
close-eqdl

s, t unifiable (with rigid unifier)

(Γ `dl ∆)[x/f(vars(t))]

(Γ `dl ∆)[x/t]
abstractdl

f fresh

Γ `dl {U } φ,∆

Γ `dl {U } []φ,∆
Skipdl

Γ `dl {U } { v := E } [. . .] φ,∆

Γ `dl {U } [v = E ; . . .]φ,∆
Assigndl

`dl { αi } ⇓ (∇, I) (i = 1, 2)

Γ `dl {U } { ifUpd(b,∇, I) } [. . .]φ,∆

Γ `dl {U } [if b α1 α2 ; . . .]φ,∆
Ifdl

`dl { if b α {} } ⇓ (γ∗
∇(∇), I)

Γ `dl {U } { upd(∇, I) } [. . .]φ,∆

Γ `dl {U } [while b α ; . . .]φ,∆
Whiledl

v ∈ ∇(v) for all v ∈ PVar

Fig. 2. A dynamic logic calculus for information flow security. In the last four rules
the update {U } can also be empty and disappear.

this statement without abstraction essentially is to find a function of the variables
∇v that yields the value of v under α for every given pre-state: one must find the
strongest post-condition w.r.t. v’s value. Logically, one must create this function
as a term for the existentially quantified variable r in which the ∇C

v do not occur.
In a unification-based calculus the occurs check will let all those proofs fail where
an actual information flow takes places from ∇C

v to v. The purpose of function
arguments for fv is exactly to retain this crucial property in the abstract version
of the calculus. We must make sure that a function fv – abstracting the effect
of α on v – gets at least those variables as arguments that are parts of the term
representing the final value of v after α.

Theorem 1 (Soundness). The rules of the DL calculus given in Figs. 2 and
3 are sound: the root of a closed proof tree is a valid sequent.

11

{w1 := t1, . . . , wk := tk } wi →dl ti if wj 6= wi for i < j ≤ k

{w1 := t1, . . . , wk := tk } t →dl t if w1, . . . , wk 6∈ vars(t)

{U } f(t1, . . . , tn) →dl f({U } t1, . . . , {U } tn)

{U } (t1 = t2) →dl {U } t1 = {U } t2

{U } ¬φ →dl ¬{U } φ

{U } (φ1 ∗ φ2) →dl {U } φ1 ∗ {U } φ2 for ∗ ∈ {∨,∧}

{U } {w1 := t1, . . . , wk := tk } φ →dl {U, w1 := {U } t1, . . . , wk := {U } tk } φ

Fig. 3. Application rules for updates in dynamic logic, as far as they are required for
Lem. 6. Further application and simplification rules are necessary in general.

Simulating Type Derivations in the DL Calculus. In order to show sub-
sumption of the type system in the logic, we first put the connection between
invariance sets and context on solid ground. It suffices to approximate the in-
variance of variables v with the requirement that v must not occur as left-hand
side of assignments (Lhs(α) is the set of all left-hand sides of assignments in α).

Lemma 2. In the type system of [12], see Fig. 1, the following equivalence holds:

p `HS ∇ { α } ∇′ iff ⊥ `HS ∇ { α } ∇′ and f.a. v ∈ Lhs(α) : p v ∇′(v)

Furthermore, we can normalize type derivations thanks to the Canonical
Derivations Lemma of [12]. The crucial ingredient is the concretisation operator
γ∗ defined in (3).

Lemma 3 (Canonical Derivations).

⊥ `HS ∇ { α } ∇′ iff ⊥ `HS ∆0 { α } γ∗∇(∇′) where ∆0 = λx. {x}

For brevity, we must refer to Hunt and Sands’ paper for details, but in the
setting at hand one can intuitively take Lemma 3 as stating that any typing
judgment can also be understood as a dependency judgment: the typing on the
left-hand side is equivalent to the statement that the final value of x may depend
on the initial value of y only if y appears in the post-type, or dependence set,
γ∗∇(∇′)(x).

The type system of Fig. 4 only mentions judgments with a pre-type ∆0 as
depicted on the right-hand side of the equivalence in Lemma 3. Further, the
context p has been replaced by equivalent side conditions (Lemma 2), and rule
Seq

HS is built into the other rules, i.e., the rules always work on the initial
statement of a program. Likewise, rule Sub

HS has been integrated in Skip
cf and

While
cf . The type system is equivalent to Hunt and Sands’ system (Fig. 1):

Lemma 4.

⊥ `HS ∆0 { α } ∇ if and only if `cf ∆0 { α } ∇

12

The proof proceeds in multiple steps by devising intermediate type systems,
each of which adds a modification towards the system in Fig. 4 and which is
equivalent to Hunt and Sands’ system.

Obviously, due to the approximating character of If
dl and While

dl (and the
lack of arithmetic), our DL calculus is not (relatively) complete in the sense of
[11]. For the particular judgements { α } ⇓ (∇, I) the calculus is, however, not
more incomplete than the type system of Fig. 1: every typable program can also
be proven secure using the DL calculus.6

Theorem 5.

⊥ `HS ∆0 { α } ∇ implies `dl { α } ⇓ (∇, ∅)

The proof of the theorem is constructive: A method for translating type deriva-
tions into DL proofs is given. The existence of this translation mapping shows
that proving in the DL calculus is in principle not more difficult than typing
programs using the system of Fig. 1.

The first part of the translation is accomplished by Lem. 4, which covers
structural differences between type derivations and DL proofs. Applications of
the rules of Fig. 4 can then almost directly be replaced with the corresponding
rules of the DL calculus:

Lemma 6.

`cf ∆0 { α } ∇ implies `dl { α } ⇓ (∇, ∅)

5 Higher Precision and Delimited Information Release

Many realistic languages feature exceptions as a means to indicate failure. The
occurrence of an exception can also lead to information leakage. Therefore, an
information flow analysis for such a language must, at each point where an
exception might possibly occur, either ensure that this will indeed not happen at
runtime or verify that the induced information flow is benign. The Jif system [15]
which implements a security type system for a large subset of the Java language
employs a simple data flow analysis to retain a practically acceptable precision
w.r.t. exceptions. The data flow analysis can verify the absence of null pointer
exceptions and class cast exceptions in certain cases. However, to enhance the
precision of this analysis to an acceptable level one is forced to apply a slightly
cumbersome programming style.

The need for treatment of exceptions is an example showing that we actually
gain something from the fact that our analysis is embedded in a more general
program logic: there is no need to stack one analysis on top of the other to scale

6 The converse of Theorem 5 does not hold. In the basic version of the calculus of
Fig. 2, untypable programs like “if (h) {l = 1} {l = 0}” can be proven secure. Sect. 5
discusses how the precision of the DL calculus can be further augmented.

13

`cf ∆0 { } ∇
Skipcf

v ∈ ∇(v) for all v ∈ PVar

∆0 ` E : t `cf ∆0 { . . . } γ∗
∆0[v 7→t](∇)

`cf ∆0 { v = E ; . . . } ∇
Assigncf

∆0 ` b : t `cf ∆0 { . . . } γ∗
∇(∇′)

`cf ∆0 { αi } ∇ (i = 1, 2)

`cf ∆0 { if b α1 α2 ; . . . } ∇′ Ifcf f.a. v ∈ Lhs(α1). t v ∇(v)
f.a. v ∈ Lhs(α2). t v ∇(v)

∆0 ` b : t `cf ∆0 { . . . } γ∗
∇(∇′)

`cf ∆0 { α } γ∗
∇(∇)

`cf ∆0 { while b α ; . . . } ∇′ Whilecf v ∈ ∇(v) for all v ∈ PVar
f.a. v ∈ Lhs(α). t v γ∗

∇(∇)(v)

Fig. 4. Intermediate flow-sensitive type system for information flow analysis

∗
[f ′

l (TRUE) ≡ R]

odd(fh(R)) `dl f ′
l (TRUE) = R

close-eqdl

odd(fh(R)) `dl f ′
l (odd(fh(R))) = R

apply-eqdl

odd(fh(R)) `dl { l := fl(R), h := fh(R) } { l := f ′
l (odd(h)) } l = R

∗
→dl

D

· · ·

∗

`dl { l = 0 } ⇓ (∇, {h})

∗

`dl { l = 1 } ⇓ (∇, {h}) D

odd(fh(R)) `dl { l := fl(R), h := fh(R) } [α] l = R
Ifdl

`dl { l := fl(R), h := fh(R) } (odd(h) → [α] l = R)

∗
→dl , imp-rightdl

`dl ∃r. ∀̇l. ∀̇h. (odd(h) → [α] l = r)
ex-rightdl, all-rightdl

`dl { α } ⇓ (∇, {h}, odd (h))
(Def),and-rightdl

Fig. 5. Non-interference proof with delimited information release: The precondition
odd(h) entails that (only) the parity of h is allowed to leak into l. A similar proof is
required for ¬odd (h). For sake of brevity, we use odd both as function and predicate,
and only in one step (apply-eqdl) make use of the fact that odd(fh(R)) actually
represents the equation odd(fh(R)) = TRUE .

14

the approach up to larger languages, but we can coherently deal with added
features, in this case exceptions, within one calculus. In the precise version of the
calculus for JavaCard – as implemented in the KeY system [1] – exceptions are
handled like conditional statements by branching on the condition under which
an exception would occur. An uncaught exception is treated as non-termination.
As an example, the division v1/v2 would have the condition that v2 is zero
(“.. ...” denotes a context possibly containing exception handlers):

v2 6= 0 `dl {w := v1/v2 } [.. ...]φ v2 = 0 `dl [.. throw E ...]φ

`dl [.. w = v1/v2 ...]φ .

If we knew v2 6= 0 at this point of the proof, implying that the division does
in fact not raise an exception, the right branch could be closed immediately.
Because our DL calculus stores the values of variables (instead of only the type)
as long as no abstraction occurs, this information is often available: (i) rule
Assign

dl does not involve abstraction, which means that sequential programs
can be executed without loss of information, and (ii) invariance sets I in non-
interference judgments allow to retain information about unchanged variables
also across conditional statements and loops.

This can be seen for a program like “v = 2 ; while b α ; w = w/v” in which
α does not assign to v. By including v in the invariance set for “while b α” we
can deduce v = 2 also after the loop, and thus be sure that the division will
succeed. This is a typical example for a program containing an initialisation
part that establishes invariants, and a use part that relies on the invariants.
The pattern recurs in many flavours: examples are the initialisation and use
of libraries and the well-definedness of references after object creation. We are
optimistic to gather empirical evidence of our claim that the increased precision
is useful in practice through future experiments.

Increasing Precision. While our DL calculus is able to maintain state infor-
mation across statements, the rules If

dl and While
dl lose this information in

the first premisses, containing non-interference proofs for the statement bodies.
This makes it impossible to deduce that no exceptions can occur in the program
“v = 2 ; while b {w = w/v}”. As another shortcoming, the branch predicate is
not taken into account, so that absence of exceptions cannot be shown for a
program like “if (v 6= 0) {w = 1/v} ”.

One way to remedy these issues might be to relax the first premisses in If
dl

and While
dl. The idea is to generalise non-interference judgments and introduce

preconditions φ under which the program must satisfy non-interference.

{ α } ⇓ (∇, I, φ) ≡def

∧

v∈PVar

{

∀̇v1 · · · vn. (φ → [α] v = u) , v ∈ I

∀̇∇v . ∃r. ∀̇∇C
v . (φ → [α] v = r) , v 6∈ I

In an extended rule for if-statements, for instance, such a precondition can be
used to ‘carry through’ side formulae and state information contained in the

15

update U , as well as to integrate the branch predicates: we may assume arbitrary
preconditions φ1, φ2 in the branches if we can show that they hold before the
if-statement:

`dl { α1 } ⇓ (∇, I, φ1) `dl { α2 } ⇓ (∇, I, φ2)
Γ, {U } b = TRUE `dl {U }φ1, ∆ Γ, {U } b 6= TRUE `dl {U }φ2, ∆

Γ `dl {U } { ifUpd(b,∇, I) } [. . .]φ,∆

Γ `dl {U } [if b α1 α2 ; . . .]φ,∆

Probably more interestingly, preconditions allow us to handle delimited in-
formation release in the style of [9], i.e. situations in which non-interference does
not strictly hold and some well-defined information about secret values may be
released. Fig. 5 shows parts of a non-interference proof with delimited informa-
tion release for the program “α = if (odd (h)) {l = 0} {l = 1}”, in which one can
learn the parity of h by reading l. The typing ∇ is given by ∇(l) = ∅,∇(h) = {h},
indicating that only declassified information flows into l.

6 Towards a Realistic Language

The simple imperative language examined in Sec. 4 features only pure expres-
sions that do not trigger side-effects. A more realistic language like JavaCard al-
lows expressions that change states, for example the increment operation “++x”.
The evaluation of expressions is furthermore not guaranteed to terminate nor-
mally: an exception can be raised, e.g. if a division by zero occurs, resulting in
abrupt termination. We present ideas on how to handle these two issues in a
calculus utilising abstraction.

The state changes that may occur during the evaluation of a right-hand
side of an assignment necessitate the use of a different assignment rule. This
rule must capture all state changes caused by the evaluation of the expression.
Given the semantics of expression evaluation for the language at hand, the state
changes can easily be captured in a sequence of updates. In the abstraction
based calculus one might conceive a combination of the abstraction rule with
the modified assignment rule. An example application would look like this:

`dl { v := f(v) } {w := v } φ

`dl [w = ++v]φ

The treatment of exceptions, though, asks for more substantial additions to
the calculus. In the precise version of the calculus for JavaCard—as implemented
in the KeY system [1]—so-called prefixes are used inside the modal operators to
be able to simulate the control flow caused by exceptions. An uncaught excep-
tion is treated as non-termination. The idea to incorporate exceptions into our
specialised calculus is to explicitly determine the conditions that must hold for
a particular exception to be thrown. As an example, the division “v1/v2” would
yield the condition that v2 is zero:

`dl
(

(v2 6= 0 → {w := f(v1, v2) } [.. ...]φ) ∧ (v2 = 0 → [.. throw E ...]φ)
)

`dl [.. w = v1/v2 ...]φ

16

The two dots (..) inside the modal operator represent a prefix, that might, e.g.,
represent an environment that will eventually catch the exception raised by the
zero division.

In more general terms, the evaluation of an assignment specifies all possible
exceptions that can be raised and captures the effects on state changes of vari-
ables in updates. The corresponding rule is shown in Fig. 6 and explained in
Sec. 6.2 below. Currently, one would have to resort to precise evaluation to ac-
tually prove a subformulae mentioning throw. It requires further investigation
to see how exceptions can be best integrated into the rules for conditionals and
loops.

6.1 The Input-Output Relation

Intuitively, interpretations of statements using abstraction are different from
regular evaluations in that: 1) exceptions that can possibly be thrown in the
evaluation are determined beforehand; 2) state updates are divided into small
groups w.r.t. the occurrences of possible exceptions.

If we take our concern to the bytecode level, every program can be seen as
a sequence of instructions for the Java Virtual Machine consisting of an opcode
followed by zero or more operands. This concept enables us to virtually disassem-
ble a program and label the intervals between any two immediate instructions
in order to track the control flow.

Assume there exist intervals ep1..n in a program such that executing their im-
mediate succeeding instructions can possibly cause exceptions E1..n respectively.
We introduce exception tuples T1..n ≡def 〈E1..n, ψ1..n, U1..n 〉 to characterize the
n possibly raised exceptions, encapsulating the types of the exception, the con-
ditions that must hold for the exceptions to be thrown and the state changes
of variables affected by the execution of the instructions between the current
exception and the previous one. At an arbitrary interval pj in a program, an ex-
ception environment is symbolized as a pair (σj , Uj), where σj collects exception
tuples T1..k indicating all the k possible exceptions that might have been raised
so far and Uj captures in updates the state changes of variables resulted from
the part of the program between epk and pj . An environment judgment consists
of a program α, a pre-environment (σ, U) and a post-environment (σ′, U ′):

(σ, U) ` { α } ⇓ (σ′, U ′)

An Input-Output Relation R maps a program α to its resulting exception envi-
ronment when the pre-environment is empty:

R : {α } → (σ, U) ≡def ∅ ` { α } ⇓ (σ, U)

Intuitively, the Input-Output Relation of a program captures the effects of the
program w.r.t. possible exceptions and state changes of variables caused by the
evaluation of the program. An example of the application of Input-Output Re-
lation could be:

R ({x -= ++y/z; }) = (〈 ArithmeticException, z = 0, { y := fy(y) } 〉 ,

{x := fx(x, y, z) })

17

∅ ` { α } ⇓ (σ, U),

`dl

{U1 } (¬ψ1 → {U2 } (¬ψ2 → · · · {Un } (¬ψn → {U ′ } [.. ...] φ
∧ ψn → [.. throw En ...] φ)

· · · ∧ ψ2 → [.. throw E2 ...] φ)
∧ ψ1 → [.. throw E1 ...] φ)

`dl [.. α ...] φ

Fig. 6. The extended abstraction rule Ext-Abstractdl

Note that the updates for y is encapsulated in the exception tuple as the prefix
increment is evaluated before the division. The updates for x, in the other hand,
is left in U as the decrement assignment is evaluated after the division. The
derivation of the Input-Output Relation of a program is presented in sec. 6.3.

6.2 The Extended Abstraction Rule

At the beginning of this section, we give an example how an assignment can
be evaluated using abstraction. In an even more general term, given the Input-
Output Relation of a program α one can evaluate α with the extended abstrac-
tion rule Ext-Abstract

dl shown in Fig. 6.
For example, the program in Sec. 6.1 would be evaluated like this (with AE

as an abbreviation for ArithmeticException):

∅ ` { x -= ++y/z; } ⇓ (〈 AE, z = 0, { y := fy(y) } 〉, {x := fx(x, y, z) }),

`dl { y := f0(y) } ((z 6= 0 → {x := f1(x, y, z) } [.. ...]φ)
∧ (z = 0 → [.. throw new AE(); ...]φ))

`dl [.. x -= ++y/z; ...]φ

6.3 Derivation of Input-Output Relations

Input-Output Relations of programs are derived using a calculus where the rules
explicitly specify the evaluation of each type of program constructs of the pro-
gramming language. The calculus has been implemented in the KeY system. We
show the rules used in this report in Fig. 7. More rules are presented in [18]. In
practice, the derivations of the Input-Output Relation of programs (i.e. the first
premise in rule Ext-Abstract

dl in Fig. 6) are processed in background and
are thus hidden from the proof.

6.4 Proving Non-interference

We recall the DL formulism in (1) for proving non-interference and use the
extended abstraction rule to execute programs instead of precise evaluation.

18

(σ, U) ` { v1 = e1; } ⇓ (σ′, U ′)
(σ′, U ′) ` { v2 = e2; } ⇓ (σ′′, U ′′)

(σ, U) ` { w = e1 ◦ e2; } ⇓ (σ′′, {U ′′ }{w := f(v1, v2) }) for ◦ ∈ {+, -}

(σ, U) ` { v = (T)(v + 1); } ⇓ (σ′, U ′)
(σ′, U ′) ` { w = v; } ⇓ (σ′′, U ′′)

(σ, U) ` { w = ++v; } ⇓ (σ′′, U ′′) T is type of v

(σ, U) ` { w = e; } ⇓ (σ′, U ′)

(σ, U) ` { w = (T)e; } ⇓ (σ′, U ′) if w is of type T

(σ, U) ` { v1 = e1; } ⇓ (σ′, U ′)
(σ′, U ′) ` { v2 = e2; } ⇓ (σ′′, U ′′)

(σ, U) `
{ w = e1/e2; } ⇓
(concat (σ′′, 〈 AE, v2 = 0, {U ′′ } 〉), {w := f(v1, v2) })

(σ, U) ` { w = e; } ⇓ (σ′, U ′)

(σ, U) ` { w = (e); } ⇓ (σ′, U ′)

(σ, U) ` { w = w−e; } ⇓ (σ′, U ′)

(σ, U) ` { w -= e); } ⇓ (σ′, U ′)

Fig. 7. Derivation rules for Input-Output Relations. Symbols σ, σ′, σ′′ stand for ex-
ception tuples and AE is a shortened term for ArithmeticException.

We give two examples to demonstrate how non-interference is checked for Java
programs. In the example programs the final value of l can be publicly observed
and variable h carries the secret.

Example 1. Statement “ l= l+ (h= l); ” involves assignments to both l and h.
The proof below shows that after applying the rule Ext-Abstract

dl on the
statement, it becomes clear that the final value of l actually depends on the
initial value of itself. The program is thus secure.

∗
[fl(ll) ≡ R]

fl(ll) = R
close-eqdl

∃r. fl(ll) = r
ex-rightdl

` ∀ll. ∃r. ∀lh. { l := fl(ll) }[] l = r
all-rightdl,all-rightdl

` ∀ll. ∃r. ∀lh. { l := ll, h := lh }[l = l + (h = l);] l = r Ext-Abstract
dl

where

R ({ l = l + (h = l); }) = (∅, {h := fh(l), l := fl(l) })

19

Example 2. Another example “ l=1; h=1/h; l=0; ” involves an exception in
the evaluation. The proof is shown in Fig. 8. The formulae splits into two cases
after applying the rule Ext-Abstract

dl on the division: 1) when h 6= 0, the
assignment of h is eliminated and the state change of h is expressed in updates;
2) when h = 0, an exception is thrown and no exception handler exists in this
program. For the first branch, the proof later points out that the output of l
is actually a constant regardless of the value of h. As previously mentioned,
uncaught exceptions, such as the one in the second branch, are treated as non-
termination in KeY, which by formalism (1), is considered not to be a leakage
for non-interference as no output of variables is produced at all if a program
does not terminate. Therefore, the second branch in the proof can be closed in
a few steps and consequently this program is secure.

∗
[f(ll) ≡ R]

¬(lh = 0) ` fl = R
close-eqdl

` ∃r. ∀lh. ¬(lh = 0) → { l := fl } l = r
all-rightdl, ex-rightdl

`
∃r. ∀lh. { l := ll, h := lh }

(¬(h = 0) → {h := fh(h) } [l = 0;] l = r)

Ext-Abstractdl

....

`
∃r. ∀lh. { l := ll, h := lh }

(¬(h = 0) → {h := fh(h) } [l = 0;] l = r
∧ (h = 0) → [throw new AE(); l = 0;] l = r)

` ∃r. ∀lh. { l := ll, h := lh }[h = 1/h; l = 0;] l = r
Ext-Abstractdl

` ∀ll. ∃r. ∀lh. { l := ll, h := lh }[h = 1/h; l = 0;] l = r
all-rightdl

where

R ({h = 1/h; }) = (〈 AE, h = 0, { } 〉 , {h := fh(h) })

R ({ l = 0 }) = (∅, { l := fl })

Fig. 8. An example proof using the extended abstraction rule. AE is an abbreviation
for ArithmeticException.

7 Conclusion, Related and Future Work

In this paper we made a formal connection between type-based and logic-based
approaches to information flow analysis. We proved that every program that is
typeable in Hunt & Sands’ type system [12] has a proof in an abstract version
of dynamic logic whose construction is not more expensive than the type check.
We argued that an integrated logic-based approach fits well into a proof-carrying

20

code framework for establishing security policies of mobile software. In order to
support this claim we showed how to increase the precision of the program logic,
for example, to express declassification.

Related Work. The background for our work are a number of recent type-based
and logic-based approaches to information flow [20, 2, 9, 12]. Our concrete start-
ing points were the flow-sensitive type system of Hunt & Sands [12] and the
characterisation of non-interference in [9]. Amtoft & Banerjee [2] devised an
analysis with a very logic-like structure, that is however not more precise than
the type system by Hunt & Sands. In an early paper Andrews & Reitman [3]
developed a flow logic – one may also consider it a security type system – for
proving information flow properties of concurrent Pascal programs. They outline
a combination of their flow logic with regular Hoare logic, but keep the formulae
for both logics separated. Joshi & Leino [13] give logical characterisations of the
semantic notion of information flow, and their presentation in terms of Hoare
triples is similar in spirit to our basic formulation. Their results do, however, not
provide means to aid automated proofs of these triples. Finally, Beringer et al.
[7] presented a logic for resource consumption whose proof rules and judgements
are derived from a more general program logic; both logics are formalised in the
Isabelle/HOL proof assistant. Their approach is similar in spirit to the one pre-
sented here, since the preciseness of their derived logic is compared to an extant
type system for resource comsumption.

Future Work. On a technical level, we have not investigated the complexity of
the translation of HS type derivations to DL proofs (Theorem 5) and the size of
resulting proofs in detail. We believe that both can be linear in the size of type
derivations, although this requires a more efficient version of proof obligations
{ α } ⇓ (∇, I). Conceptually, the present work is only a starting point in the
integration of type-based and logic-based information-flow analysis. In addition
to non-interference and declassification, more complex security policies need to
be looked at. It has to be seen how well the notion of abstraction presented in
this paper is suited to express these. We also want to extend the program logic to
cover at least JavaCard, based on the axiomatisation in [6], as implemented in our
program verifier KeY. Ideas towards this goal have been worked out in [18], parts
of which are also presented in [10]. Finally, a suitable notion of proof certificate
and proof checking for proof-carrying code must be derived for dynamic logic
proofs of security policies. This is a substantial task to which a whole Work
Package within Mobius is devoted.

Acknowledgments

We would like to thank Dave Sands for inspiring discussions and Andrei Sabelfeld
for reminding us of declassification. Thanks to Tarmo Uustalu for pointing out [3].

21

References

[1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool: integrating
object oriented design and formal verification. Software and System Modeling,
4(1):32–54, 2005.

[2] T. Amtoft and A. Banerjee. Information flow analysis in logical form. In R. Gi-
acobazzi, editor, 11th Static Analysis Symposium (SAS), Verona, Italy, volume
3148 of LNCS, pages 100–115. Springer-Verlag, 2004.

[3] G. R. Andrews and R. P. Reitman. An axiomatic approach to information flow in
programs. ACM Transactions on Programming Languages and Systems, 2(1):56–
76, Jan. 1980.

[4] A. W. Appel. Foundational Proof-Carrying code. In Proc. 16th Annual IEEE
Symposium on Logic in Computer Science, pages 247–258, Los Alamitos, CA,
June 2001. IEEE Computer Society.

[5] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure Information Flow by Self-
Composition. In R. Foccardi, editor, Proceedings of CSFW’04, pages 100–114,
Pacific Grove,USA, June 2004. IEEE Press.

[6] B. Beckert. A dynamic logic for the formal verification of Java Card programs.
In I. Attali and T. Jensen, editors, Java on Smart Cards: Programming and Secu-
rity. Revised Papers, Java Card 2000, International Workshop, Cannes, France,
volume 2041 of LNCS, pages 6–24. Springer-Verlag, 2001.

[7] L. Beringer, M. Hofmann, A. Momigliano, and O. Shkaravska. Automatic certi-
fication of heap consumption. In Logic for Programming, Artificial Intelligence,
and Reasoning: 11th International Conference, LPAR 2004, Montevideo, Uruguay,
volume 3452, pages 347–362. Springer-Verlag, 2005.

[8] A. Bernard and P. Lee. Temporal logic for proof-carrying code. In A. Voronkov,
editor, Proc. 18th International Conference on Automated Deduction CADE,
Copenhagen, Denmark, volume 2392 of Lecture Notes in Computer Science, pages
31–46. Springer-Verlag, 2002.

[9] A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis
of secure information flow. In D. Hutter and M. Ullmann, editors, Proc. 2nd
International Conference on Security in Pervasive Computing, volume 3450 of
LNCS, pages 193–209. Springer-Verlag, 2005.

[10] R. Hähnle, J. Pan, P. Rümmer, and D. Walter. On the integration of security type
systems into program logics. Technical report, Chalmers University of Technology,
2006. Preliminary version at www.cs.chalmers.se/~philipp/IflowPaper.pdf.

[11] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. Foundations of Computing.
MIT Press, Oct. 2000.

[12] S. Hunt and D. Sands. On flow-sensitive security types. In Symp. on Principles
of Programming Languages (POPL). ACM Press, 2006.

[13] R. Joshi and K. R. M. Leino. A semantic approach to secure information flow.
Science of Computer Programming, 37(1-3):113–138, 2000.

[14] MOBIUS Project Deliverable D 1.1, Resource and Information Flow Security Re-
quirements, Mar. 2006.

[15] A. C. Myers. JFlow: Practical mostly-static information flow control. In Sympo-
sium on Principles of Programming Languages, pages 228–241, 1999.

[16] G. C. Necula and P. Lee. Safe, untrusted agents using proof-carrying code. In
G. Vigna, editor, Mobile Agents and Security, volume 1419 of LNCS, pages 61–91.
Springer-Verlag, 1998.

22

[17] G. C. Necula and R. R. Schneck. A sound framework for untrustred verification-
condition generators. In Proc. IEEE Symposium on Logic in Computer Science
LICS, Ottawa, Canada, pages 248–260. IEEE Computer Society, 2003.

[18] J. Pan. A theorem proving approach to analysis of secure information flow using
data abstraction. Master’s thesis, Chalmers University of Technology, 2005.

[19] P. Rümmer. Sequential, parallel, and quantified updates of first-order structures.
In Logic for Programming, Artificial Intelligence and Reasoning, volume 4246 of
LNCS, pages 422–436. Springer-Verlag, 2006.

[20] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[21] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
Journal of Computer Security, 4(3):167–187, 1996.

Appendix

Proof of Thm. 1 (Soundness) Substitution—as used in rule Abstract
dl—

must be handled with care in dynamic logic, due to the presence of modal oper-
ators. Therefore, one only gets a restricted version of a substitution theorem:

Lemma 7 (Substitution in Dynamic Logic). Let S = (D, I) be a structure
and t1, t2 terms. Suppose that for all program variable assignments δ, δ′, and all
variable assignments β, it is the case that valS,β,δ(t1) = valS,β,δ′(t2). Then for
all formulae φ of dynamic logic and all (program) variable assignments β, δ one
has valS,β,δ(φ[x/t1]) = valS,β,δ(φ[x/t2]).

Proof (Thm. 1). The proofs for the rules relating to predicate logic are standard
and therefore omitted. For a description of update application rules and sound-
ness proofs see [19]. The interesting cases are Abstract

dl, While
dl and If

dl,
of which we present the first two.

⇒ Abstract
dl: We apply Lemma 7. Therefore, given a structure S = (D, I)

and program variable assignment δ invalidating the conclusion of Abstract
dl

we construct a structure Sf = (D, If) such that (i) If coincides with I apart
from the interpretation If (f), and (ii) for all variable assignments β, δ,

valSf ,β,δ(t) = valSf ,β,δ(f(vars(t)))

Obviously, Sf is uniquely defined by these two conditions. By Lemma 7 and the
fact that f is fresh we then obtain

valS,β,δ((Γ `dl ∆)[x/t]) = valSf ,β,δ((Γ `dl ∆)[x/t])

= valSf ,β,δ((Γ `dl ∆)[x/f(vars(t))])

and Sf , δ invalidate the premiss of Abstract
dl for all β.

⇒ While
dl: Overview of the soundness proof: Assuming the conclusion is

invalidated by some structure S and program variable assignment δ for all vari-
able assignments β, we give an interpretation for the fresh function symbols fv

occurring in the second premiss s. t. they capture the state change caused by the

23

while loop, and thus invalidate this premiss. The problem is to show that the fv

have ‘enough’ arguments to act as semantic functions for the while loop. This is
however exactly guaranteed by the first premiss, whose validity we may assume
in the proof. It is essential that the typing ∇ of the conclusion is modified in the
first premiss to become γ∗∇(∇), cf. Lem. 3.

The side condition that for all v we require v ∈ ∇(v) enforces a closure prop-
erty on dependencies: w ∈ γ∗∇(∇)(v) implies γ∗∇(∇)(w) ⊆ γ∗∇(∇)(v): if a variable
depends on another, the latter’s dependencies are included in the former’s. This
closure of dependencies allows us to derive the existence of appropriate semantic
functions for the loop from the existence of such functions for the loop body. ut

⇒ While
dl: Details of the soundness proof: We ignore any possible up-

date {U } that might occur in front of the formulae in the second premiss
and the conclusion as this does not add any interesting detail. We assume the
first premisses of While

dl and that the conclusion is invalidated by some δ
for all β: valS,δ,β([while b α]φ) = ff , so that [[while b α]]

S
δ = δ′(6= ⊥) and

valS,δ′,β(φ) = ff . We need to show that there exists S ′ agreeing with S apart from

the interpretation of the fresh fv s. t. valS′,δ,β(fv(γ
∗
∇(∇))) = ([[while b α]]

S
δ)(v),

which would invalidate the second premiss of the rule. From the first set of pre-
misses we obtain, for all v and all δ, δ′ that agree on all u ∈ γ∗∇(∇)(v), that

([[if b α]]
S
δ)(v) = ([[if b α]]

S
δ′)(v). Importantly, the closure property of γ∗∇(∇)

yields this equality for all dependencies of v:

([[if b α]]
S
δ)(u) = ([[if b α]]

S
δ′)(u), f. a. u ∈ γ∗∇(∇)(v) (4)

The interpretations of the fv are definable as least fixed-points of an ascending
chain of functions7. We show the construction of fv for a given v. Therefore it
is more convenient to work with a semantic function for loops that is restricted
to the value of a single variable.

w0
v(δ) = ⊥, wn+1

v (δ) =

{

(wn
v)⊥([[α]]

S
δ) for valS,δ(b) = valS(TRUE)

δ(v) otherwise

Now let |∇(v)| = k and inductively assume there is a function fn
v : Dk → D⊥ s. t.

wn
v (δ) v fn

v (d1, . . . , dk) f. a. δ with δ(∇v [j]) = dj , 1 ≤ j ≤ k (in particular, this
states that wn

v yields the same results (or ⊥) for all such δ); then we construct
appropriate fn+1

v w fn
v . The essential point to show is that wn+1

v (δ) = wn+1
v (δ′)

for all δ, δ′ that agree on ∇(v) and where wn+1
v (δ) 6= ⊥ 6= wn+1

v (δ′) . Then we
know that for all d1, . . . , dk and all assignments δ with δ(∇v [j]) = dj there is
a value r such that wn+1

v (δ) = r or wn+1
v (δ) = ⊥, meaning there is at most

one final value of v if one fixes the initial values of the ∇v to d1, . . . , dk. We let
fn+1

v (d1, . . . , dk) yield that value, or ⊥ if there is no such value.
Let δ, δ′ agree on ∇(v) and, crucially, thereby also on γ∗∇(∇)(v), since the

latter set is a subset of the former by virtue of the side condition on While
dl. To

7 The so obtained function fv : D|∇(v)| → D⊥ can easily be converted to a function
of the right type D|∇(v)| → D by remapping all elements on which fv yields bottom
to some arbitrary value in D, since we consider a terminating execution.

24

show wn+1
v (δ) = wn+1

v (δ′) we consider the three possible cases: (i) valS,δ(b) =
valS,δ′(b) 6= valS(TRUE): since v ∈ γ∗∇(∇)(v), we have wn+1

v (δ) = δ(v) =
δ′(v) = wn+1

v (δ′). (ii) valS,δ(b) = valS,δ′(b) = valS(TRUE): we obtain wn+1
v (δ) =

[[α]]
S
δ = δ1 and wn+1

v (δ) = [[α]]
S
δ′ = δ′1 where, by (4), δ1, δ

′
1 again agree on

γ∗∇(∇), hence δ1(v) = δ′1(v). The slightly more involved case (iii) has valS,δ(b) 6=
valS(TRUE) = valS,δ′(b), so that for δ the terminating case is chosen (wn+1

v (δ) =
δ(v)), and for δ′ the evaluation continues recursively. The assumption wn+1

v (δ′) 6=

⊥ ensures there is an m ≤ n s. t. ([[α]]S)m δ′ (v) = wn
v ([[α]]Sδ′), i.e. to obtain the

result of wn+1
v (δ′) we ‘run α on δ′ m times’. But by (4) we know that running α

on an assignment that agrees with δ on γ∗∇(∇) (as δ′ does) yields an assignment
that again agrees with δ on these variables. By an easy induction we finally see
that ([[α]]

S
)m δ′ agrees with δ on the desired domain, too. ut

Proof of Lem. 2

Proof. “=⇒”
The first conjunct on the right-hand side can obviously be obtained from the

derivation on the left by a single application of Sub
HS. To conclude, we show

the following implication by rule induction on the inductively defined set of valid
typing judgments:

p `HS ∇ { α } ∇′ =⇒ f.a. v ∈ Lhs(α). p v ∇′(v)

– Skip: Immediate since there are no assignments
– Assign: For p `HS ∇ { v = E } ∇[v 7→ t t p] one has Lhs(v = E) = {v} and

clearly p v t t p.
– Seq: We assume f.a. v ∈ Lhs(α1). p v ∇′′(v) for p `HS ∇ { α1 } ∇′′ as well as

f.a. v ∈ Lhs(α2). p v ∇′(v) for a derivation p `HS ∇′′ { α2 } ∇′. By Lemma
9 we know that f.a. v ∈ Lhs(α1)\Lhs(α2). p v ∇′′(v) v ∇′(v) so that we
may conclude f.a. v ∈ Lhs(α1;α2). p v ∇′(v) since Lhs(α1;α2) = Lhs(α1)∪
Lhs(α2).

– If: We have Lhs(if b α1 α2) = Lhs(α1) ∪ Lhs(α2). By induction hypothesis,
p v t t p v ∇′(v) for all v ∈ Lhs(α1) ∪ Lhs(α2).

– While: Analogous to if.
– Sub: Follows directly from hypothesis.

“⇐=” Follows directly from Lemma 10 (with t = ⊥), because given that for all
v ∈ Lhs(α). p v ∇′(v) one has ∇′

α↑p = ∇′, so that the two statements coincide .

Proof of Lem. 4

We show Lem. 4 through a number of transformation steps, starting with system
HS and eventually ending with system cf. Altogether, the proof of Lem. 4 is split
into three lemmas:

⊥ `HS ∆0 { α } ∇ iff `cfree ∆0 { α } ∇ (Lem. 11)

iff `cfa ∆0 { α } ∇ (Lem. 12)

iff `cf ∆0 { α } ∇ (Lem. 14)

25

`cfree ∇ { } ∇
Skipcfree

∇ ` E : t

`cfree ∇ { v = E } ∇[v 7→ t]
Assigncfree

`cfree ∇ { α1 } ∇′ `cfree ∇′ { α2 } ∇′′

`cfree ∇ { α1 ; α2 } ∇′′ Seqcfree

∇ ` b : t `cfree ∇ { αi } ∇′ (i = 1, 2)

`cfree ∇ { if b α1 α2 } ∇′ Ifcfree f.a. v ∈ Lhs(α1). t v ∇′(v)
f.a. v ∈ Lhs(α2). t v ∇′(v)

∇ ` b : t `cfree ∇ { α } ∇

`cfree ∇ { while b α } ∇
Whilecfree

f.a. v ∈ Lhs(α). t v ∇(v)

`cfree ∇1 { α } ∇′
1

`cfree ∇2 { α } ∇′
2

Subcfree

∇2 v ∇1, ∇
′
1 v ∇′

2

Fig. 9. Intermediate flow-sensitive type system for information flow analysis

Modified Context-Free Flow-Sensitive Type Rules: Fig. 9 is a slight
modification of Sands’ original system where we have removed the context p
from typings and replaced it by side conditions relating to the type of assigned
variables. The two systems are shown to be equivalent. We will need a set of
lemmas first.

Lemma 8. It is possible to increase the type of variables in a typing judgement
by joining its type with the context p: we write ∇x↑p for the typing ∇[x 7→
p t ∇(x)]. Then the following holds:

p′ `HS ∇ { α } ∇′ and p v p′ implies p′ `HS ∇x↑p { α } ∇′
x↑p

Proof. By induction on the structure of proof trees. We claim that by simply
lifting all typings ∇ to ∇x↑p in a given proof tree for p′ `HS ∇′ { α } ∇′′, we

obtain a valid proof tree for p′ `HS ∇′
x↑p { α } ∇′′

x↑p. The cases for Skip
cfree

and Seq
cfree are trivial, so we only show the cases for Assign

cfree, Sub
cfree and

While
cfree (the case for If

cfree is analogous to the latter).

– Assign
cfree: Given a derivation

∇ ` E : t

p′ `HS ∇ { y = E } ∇[y 7→ t t p′]

we need to show that

∇x↑p ` E : t′

p′ `HS ∇x↑p { y = E } ∇[y 7→ t t p′]x↑p (5)

26

is a valid derivation. We will now assume that x ∈ vars(E), as otherwise
t′ = t and the proof becomes trivial. So we know that t′ = t t p since

t′ =
⊔

v∈vars(E)

∇x↑p(v) =





⊔

v∈vars(E)

∇(v)



 t p = t t p

Since t t p t p′ = t t p′ for p v p′ this yields a valid derivation

∇x↑p ` E : t t p

p′ `HS ∇x↑p { y = E } ∇x↑p[y 7→ t t p′]

We observe that the two typing updates are interchangeable: ∇x↑p[y 7→
t t p′] = (∇[y 7→ t t p′])x↑p. For y 6= x this is obvious, and for y = x
this again stems from the absorption property p′ = p t p′. We can therefore
tranform the above derivation into (5), which finishes this case.

– Sub
cfree: This case simply relies on the fact that (·)x↑p is a monotone opera-

tion on typings, so that the side-conditions of this rule are satisfied for the
modified derivation if they are satisfied for the original one.

– While
cfree: Given a derivation ending in

∇ ` E : t p′ t t `HS ∇ { α } ∇

p′ `HS ∇ { while E α } ∇

the modified derivation will be valid due to the fact that for ∇x↑p ` E : t′

we know that p′ t t′ = p′ t t. Therefore, the induction hypothesis

p′ t t `HS ∇x↑p { α } ∇x↑p

coincides with the required premiss for the modified derivation.

Lemma 9.

p `HS ∇ { α } ∇′ and v 6∈ Lhs(α) implies ∇(v) v ∇′(v)

Proof. By induction

Lemma 10. Given any valid typing judgment and type p, one retains a valid
typing judgement when lifting by p the context and the post-type of all assigned
variables.

t `HS ∇ { α } ∇′ implies t t p `HS ∇ { α } ∇′′

where

∇′′(x) =

{

∇′(x) t p for x ∈ Lhs(α)

∇′(x) otherwise

Appealing to the notation used in Lemma 8 we denote the above ∇′′ by ∇′
α↑p

27

Proof. By induction on the structure of derivations. All cases except for Seq
cfree

and While
cfree are immediate, and the latter ones basically follow from Lemma

8: for the While
cfree case, we are given a derivation t `HS ∇ { while E α } ∇,

where ∇ ` E : t′, and we need to show t t p `HS ∇ { while E α } ∇α↑p. By
the induction hypothesis we know t′ t t t p `HS ∇ { α } ∇α↑p which we can
extend to t′ t t t p `HS ∇α↑p { α } ∇α↑p by Lemma 8. Two rule applications of

While
HS and Sub

HS respectively yield the required derivation.

We are now in a position to replace the context occurring in a typing judge-
ment by a side condition about the post-types of the assigned variables. This step
is crucial since the side condition is very natural to express in the DL calculus,
whereas this is not the case for the context.

Lemma 11. The system HS and the context-free system are equivalent (if the
context is ⊥):

⊥ `HS ∇ { α } ∇′ if and only if `cfree ∇ { α } ∇′

Proof. “=⇒”
We show the stronger property

p `HS ∇ { α } ∇′ implies `cfree ∇ { α } ∇′

by induction on the set of valid type judgements (the weaker implication from
the lemma would make it impossible to handle case Sub

HS). The interesting
cases are Assign

HS, If
HS and While

HS. As If
HS is very similar to While

HS,
we only show Assign

HS and While
HS:

– Assign
HS: A derivation

∇ ` b : t

p `HS ∇ { v = b } ∇[v 7→ t t p]
Assign

HS

can be achieved in the context-free system as follows:

∇ ` b : t

`cfree ∇ { v = b } ∇[v 7→ t]
Assign

cfree

`cfree ∇ { v = b } ∇[v 7→ t t p]
Sub

cfree

– While
HS: Given a derivation

∇ ` b : t p t t `HS ∇ { α } ∇

p `HS ∇ { while b α } ∇
While

HS

we first obtain `cfree ∇ { α } ∇ by the induction hypothesis. By Lem. 2 we
furthermore have f.a. v ∈ Lhs(α). t v p t t v ∇(v) and can apply While

cfree:

∇ ` b : t `cfree ∇ { α } ∇

`cfree ∇ { while b α } ∇
While

cfree

28

`cfa ∇ { } ∇′ Skipcfa

∇ v ∇′

∇ ` E : t `cfa ∇[v 7→ t] { . . . } ∇′

`cfa ∇ { v = E ; . . . } ∇′ Assigncfa

∇ ` b : t `cfa ∇′ { . . . } ∇′′

`cfa ∇ { αi } ∇′ (i = 1, 2)

`cfa ∇ { if b α1 α2 ; . . . } ∇′′ Ifcfa f.a. v ∈ Lhs(α1). t v ∇′(v)
f.a. v ∈ Lhs(α2). t v ∇′(v)

∇′ ` b : t `cfa ∇′ { . . . } ∇′′

`cfa ∇′ { α } ∇′

`cfa ∇ { while b α ; . . . } ∇′′ Whilecfa ∇ v ∇′

f.a. v ∈ Lhs(α). t v ∇′(v)

Fig. 10. Intermediate flow-sensitive type system for information flow analysis

“⇐=”
We show this implication again by induction on the set of valid type judge-

ments. The only non-trivial cases are If
cfree and While

cfree, of which we show
the latter:

– While
cfree: Given the condition f.a. v ∈ Lhs(α). t v ∇(v) and a derivation

∇ ` b : t `cfree ∇ { α } ∇

`cfree ∇ { while b α } ∇
While

cfree

we first obtain t `HS ∇ { α } ∇ by the induction hypothesis and Lem. 2. The
derivation step can then be translated as follows:

∇ ` b : t t `HS ∇ { α } ∇

⊥ `HS ∇ { while b α } ∇
While

HS

Modified Context-Free Active-Statement-Style Type Rules: A further
modification of the type system (Fig. 10) is necessary to fit it into the KeY frame-
work with its active statements. The Seq

cfree and Sub
cfree rules are integrated

into the other rules.

Lemma 12. The systems cfree and cfa are equivalent:

`cfree ∇ { α } ∇′ if and only if `cfa ∇ { α } ∇′

Proof. “⇐=”
By a simple induction on the set of valid type judgements. We can translate

`cfa ∇ { } ∇′ Skipcfa
;

`cfree ∇ { } ∇
Skipcfree

`cfree ∇ { } ∇′ Subcfree

29

∇ ` E : t `cfa ∇[v 7→ t] { . . . } ∇′

`cfa ∇ { v = E ; . . . } ∇′ Assigncfa

;

∇ ` E : t

`cfree ∇ { v = E } ∇[v 7→ t]
Assigncfree

`cfree ∇[v 7→ t] { . . . } ∇′

`cfree ∇ { v = E ; . . . } ∇′ Seqcfree

∇ ` b : t `cfa ∇ { αi } ∇′ (i = 1, 2) `cfa ∇′ { . . . } ∇′′

`cfa ∇ { if b α1 α2 ; . . . } ∇′′ Ifcfa

;

∇ ` b : t `cfree ∇ { αi } ∇′ (i = 1, 2)

`cfree ∇ { if b α1 α2 } ∇′ Ifcfree

`cfree ∇′ { . . . } ∇′′

`cfree ∇ { if b α1 α2 ; . . . } ∇′′ Seqcfree

∇′ ` b : t `cfa ∇′ { α } ∇′ `cfa ∇′ { . . . } ∇′′

`cfa ∇ { while b α ; . . . } ∇′′ Whilecfa

;

∇′ ` b : t `cfree ∇′ { α } ∇′

`cfree ∇′ { while b α } ∇′ Whilecfree

`cfree ∇ { while b α } ∇′ Subcfree

`cfree ∇′ { . . . } ∇′′

`cfree ∇ { while b α ; . . . } ∇′′ Seqcfree

“=⇒”
We perform noetherian induction on the set of valid type judgements. The

ordering that is used is the sub-program-order: For showing the implication for
a program α, we will assume that it holds for all programs α′ 6= α that literally
occur as part of α (in particular for the empty program).

Obviously, for the empty program we have

`cfree ∇ { } ∇′ =⇒ `cfa ∇ { } ∇′

so we can concentrate on the case of non-empty programs α ; . . . (where . . .
is an arbitrary program—that might also be empty—whereas α is one of the
statements v = E, if b β1 β2 or while b β).

We assume that a derivation of a valid type judgement for such a program
has a root of the following shape (where r is one of the rules Assign

cfree, If
cfree

and While
cfree):

· · ·

`cfree ∇1 { α } ∇′
1

r

`cfree ∇2 { α } ∇′
2

Sub
cfree

....
`cfree ∇′

2 { . . . } ∇′′
2

`cfree ∇2 { α ; . . . } ∇′′
2

Seq
cfree

30

This is not a restriction, because an arbitrary derivation can easily be nor-
malised. Depending on r, we translate the derivation in different ways into a cfa
derivation:

– r = Assign
cfree: We assume ∇2 v ∇1, ∇1[v 7→ t] v ∇′

2 and the derivation

∇1 ` E : t

`cfree ∇1 { x = E } ∇1[v 7→ t]
Assign

cfree

`cfree ∇2 { x = E } ∇′
2

Sub
cfree

`cfree ∇′
2 { . . . } ∇′′

2

`cfree ∇2 { x = E ; . . . } ∇′′
2

Seq
cfree

The corresponding type judgement can then be derived as

∇2 ` E : t2 `cfa ∇2[v 7→ t2] { . . . } ∇′′
2

`cfa ∇2 { x = E ; . . . } ∇′′
2

Assign
cfa

For providing the second premiss, we first have ∇2 v ∇1, which entails t2 v t,
and thus ∇2[v 7→ t2] v ∇1[v 7→ t] v ∇′

2. Then Sub
cfree can be applied

`cfree ∇′
2 { . . . } ∇′′

2

`cfree ∇2[v 7→ t2] { . . . } ∇′′
2

Sub
cfree

and by the induction hypothesis we obtain `cfa ∇2[v 7→ t2] { . . . } ∇′′
2 .

– r = If
cfree: We assume f.a. v ∈ Lhs(β1) ∪ Lhs(β1). t v ∇′

1(v), the inequa-
tions ∇2 v ∇1, ∇

′
1 v ∇′

2 and the derivation

∇1 ` b : t
`cfree ∇1 { βi } ∇′

1 (i = 1, 2)

`cfree ∇1 { if b β1 β2 } ∇′
1

If
cfree

`cfree ∇2 { if b β1 β2 } ∇′
2

Sub
cfree

`cfree ∇′
2 { . . . } ∇′′

2

`cfree ∇2 { if b β1 β2 ; . . . } ∇′′
2

Seq
cfree

A corresponding application of If
cfa is possible as

∇2 ` b : t2 `cfa ∇2 { βi } ∇′
1 (i = 1, 2) `cfa ∇′

1 { . . . } ∇′′
2

`cfa ∇2 { if b β1 β2 ; . . . } ∇′′
2

If
cfa

In order to show the premisses, we apply Sub
cfree and the induction hypoth-

esis:

`cfree ∇1 { β1 } ∇′
1

`cfree ∇2 { β1 } ∇′
1

Sub
cfree

`cfree ∇1 { β2 } ∇′
1

`cfree ∇2 { β2 } ∇′
1

Sub
cfree

`cfree ∇′
2 { . . . } ∇′′

2

`cfree ∇′
1 { . . . } ∇′′

2
Sub

cfree

Finally, from ∇2 v ∇1 we derive f.a. v ∈ Lhs(β1) ∪ Lhs(β1). t2 v t v ∇′
1(v).

31

– r = While
cfree: We assume f.a. v ∈ Lhs(β). t v ∇1(v) as well as the inequa-

tions ∇2 v ∇1, ∇1 v ∇′
2 and the derivation

∇1 ` b : t
`cfree ∇1 { β } ∇1

`cfree ∇1 { while b β } ∇1
While

cfree

`cfree ∇2 { while b β } ∇′
2

Sub
cfree

`cfree ∇′
2 { . . . } ∇′′

2

`cfree ∇2 { while b β ; . . . } ∇′′
2

Seq
cfree

A corresponding application of While
cfa is directly possible as

∇1 ` b : t `cfa ∇1 { β } ∇1 `cfa ∇1 { . . . } ∇′′
2

`cfa ∇2 { while b β ; . . . } ∇′′
2

While
cfa

where we obtain the last premiss using Sub
cfree and the induction hypothesis:

`cfree ∇′
2 { . . . } ∇′′

2

`cfree ∇1 { . . . } ∇′′
2

Sub
cfree

Where Type System and DL Calculus Meet: Finally, the type system is
brought into a shape that directly corresponds to a subsuming abstraction-based
DL calculus (Fig. 4). The difference to the cfa version is that we only work with
typings of the form `cf ∆0 { · } ∇′.

Lemma 13.

∆0 ` E : t0 and ∇ ` E : t implies
(

t v p iff t0 v γ∇(p)
)

Proof. Directly from [12], because t = α∇(t0) =
⊔

s∈t0
∇(s) and (α∇, γ∇) is a

Galois Connection.

Lemma 14. The systems cfa and cf are equivalent:

`cfa ∆0 { α } ∇′ if and only if `cf ∆0 { α } ∇′

Proof. The central property that is used throughout this proof is derived from
Lem. 3 (Lem. 6.8 about canonical derivations in [12]) and Lem. 11 and 12:

`cfa ∇ { α } ∇′ iff `cfa ∆0 { α } γ∗∇∇
′ (6)

“=⇒”
The implication from left to right is shown by noetherian induction on the

set of valid type judgements. The ordering that is used is the sub-program-
order: For showing the implication for a program α, we will assume that it holds
for all programs α′ 6= α that literally occur as part of α (in particular for the

32

empty program). The most interesting case for constructing a valid judgement
is While

cfa (the other cases are not shown here): We assume

∇′ ` b : t `cfa ∇′ { . . . } ∇′′ `cfa ∇′ { α } ∇′

`cfa ∆0 { while b α ; . . . } ∇′′ While
cfa

where ∆0 v ∇′ and f.a. v ∈ Lhs(α). t v ∇′(v). The last two premisses are by (6)
equivalent to

`cfa ∆0 { . . . } γ∗∇′(∇′′), `cfa ∆0 { α } γ∗∇′(∇′)

and the induction hypothesis can be applied. Hence, While
cf can be used as

∆0 ` b : t0 `cf ∆0 { . . . } γ∗∇′(∇′′) `cf ∆0 { α } γ∗∇′(∇′)

`cf ∆0 { while b α ; . . . } ∇′′ While
cf

as∆0 v ∇′ holds by assumption and f.a. v ∈ Lhs(α). t0 v γ∗∇′(∇′)(v) by Lem. 13.
“⇐=”

We use the same inductive argument as for the other direction and again
only show the case While

cf :

∆0 ` b : t0 `cf ∆0 { . . . } γ∗∇(∇′) `cf ∆0 { α } γ∗∇(∇)

`cf ∆0 { while b α ; . . . } ∇′ While
cf

where ∆0 v ∇ and f.a. v ∈ Lhs(α). t0 v γ∗∇(∇)(v). By the induction hypothesis
and (6) we obtain the valid judgements

`cfa ∇ { . . . } ∇′, `cfa ∇ { α } ∇

whilecfa can then be applied as

∇ ` b : t `cfa ∇ { . . . } ∇′ `cfa ∇ { α } ∇

`cfa ∆0 { while b α ; . . . } ∇′ While
cfa

because ∆0 v ∇ holds by assumption and f.a. v ∈ Lhs(α). t v ∇(v) by Lem. 13.

Proof of Lem. 6

For showing that derivations in cf can be translated to proofs in the DL calculus,
we first need a bit of further notation. For an update U and a term s, we write
U [s] for the (unique) irreducible term s′ that is obtained by repeatedly applying
rules of Fig. 3:

{U } s
∗
→dl s′

Note that terms U [s] do not contain updates.
Further, for an update U , a type t ⊆ PVar and a logical variable R ∈ LVar,

we write rel(t, R, U) if the following identity holds:

{v ∈ PVar | R ∈ vars(U [v])} = PVar\t (7)

33

Intuitively, this means that all variables w ∈ PVar\t whose interference is pro-
hibited are “poisoned” by U with a free variable R. Removing the quantifiers in
a non-interference statement like

∀u1 u2 ∃r. ∀u3 u4. { vi := ui }1≤i≤4 [p] (v1 = r)

using rules all-rightdl and ex-rightdl exactly creates this situation (in the
example for t = ∇(v1) = {v1, v2}).

We will denote the update obtained by sequentially composing two updates U1

and U2 = v1 := t1, . . . , vk := tk by

U1;U2 := U1, v1 := {U1 } t1, . . . , vk := {U1 } tk

(note the similarity to the last rule of Fig. 3).

Lemma 15. Suppose that for an update U ′ and a typing ∇′ : PVar → P(PVar)
the following property holds:

f.a. v ∈ PVar. ∇′(v) = vars(U ′ [v]) ∩ PVar and R 6∈ vars(U ′ [v])

Then

rel(t, R, U) implies rel(γ∇′(t), R, (U ;U ′))

Proof. For arbitrary updates U , U ′ and variables v ∈ PVar, R ∈ LVar the fol-
lowing equivalence holds:

R ∈ vars((U ;U ′) [v]) iff there is x ∈ vars(U ′ [v]) with R ∈ vars(U [x]) (8)

The equivalence can be shown by induction on the term U ′ [v], making use of the
identity (U ;U ′) [v] = U [U ′ [v]] and the fact that U ′ [v] does not contain updates.

The x on the right side of (8) can either be a free logical variable (from
LVar) or a program variable (from PVar). The first case entails x = R because
of U [x] = x for x ∈ LVar. By assumption, for our U ′ we have R 6∈ vars(U ′ [v]),
so (8) can be strengthened to

R ∈ vars((U ;U ′) [v]) iff there is w ∈ vars(U ′ [v])∩PVar with R ∈ vars(U [w])
(9)

From this we can derive the conjecture (referring to (7)) as follows:

PVar\γ∇′(t)

= {v ∈ PVar | ∇′(v) 6⊆ t}

= {v ∈ PVar | vars(U ′ [v]) ∩ PVar 6⊆ t} (Ass.)

= {v ∈ PVar | ex. w ∈ vars(U ′ [v]) ∩ PVar with w ∈ PVar\t}

= {v ∈ PVar | ex. w ∈ vars(U ′ [v]) ∩ PVar with R ∈ vars(U [w])} (Ass.)

= {v ∈ PVar | R ∈ vars((U ;U ′) [v])} (9)

34

Proof of Lem. 6 :
We show the stronger implication

`cf ∆0 { α } ∇ =⇒ I ∩ Lhs(α) = ∅ =⇒ `dl { α } ⇓ (∇, I)

by induction on the program α. It appears easiest to use noetherian induction
and the sub-program-order: For showing the implication for a program α, we
will assume that it holds for all programs α′ 6= α that literally occur as part of
α (in particular for the empty program).

In the whole proof, given a type environment ∇ : PVar → P(PVar) we write
∇↓A for the environment defined by

∇↓A(v) :=

{

{v} for v ∈ A

∇(v) otherwise

We then first decompose α into a list α = α1 ; . . . ; αm of statements (m = 0
is possible) and assume `cf ∆0 { α } ∇ and I ∩ Lhs(α) = ∅. { α } ⇓ (∇, I) con-
sists of two kinds of proof obligations:

Non-interference obligations: We pick one of the obligations,

PO = ∀̇∇v . ∃r. ∀̇∇
C
v . [α] r = v

(for v 6∈ I), and by induction on a k ∈
�

, k ≤ m we show that the following
properties hold:

– There is a dl proof tree with PO as root that has exactly one open branch:

`dl {U } [αk+1 ; . . . ; αm]R = v

where U is an update
– There is a type derivation that corresponds to the open goal:

`cf ∆0 { αk+1 ; . . . ; αm } ∇′

for some typing ∇′ with rel(∇′(v), R, U).

The induction is conducted as follows:
Induction base case (k = 0): (Just eliminate the quantifiers of PO)
Induction step (the properties hold for a 0 ≤ k < m): There are different cases
depending on the next statement αk+1:

– αk+1 is an assignment w = E: There is a derivation ending with

∆0 ` E : t `cf ∆0 { αk+2 ; . . . ; αm } γ∗
∆0[w 7→t](∇

′)

`cf ∆0 { w = E ; αk+2 ; . . . ; αm } ∇′ Assign
cf

In the dl proof, we apply rule Assign
dl to the open branch:

`dl {U ; w := E } [αk+2 ; . . . ; αm]R = v

`dl {U } [w = E ; αk+2 ; . . . ; αm]R = v
Assign

dl,→dl

35

and by Lem. 15 we have

rel(γ∗∆0[w 7→t](∇
′)(v), R, (U ; w := E))

– αk+1 is a conditional statement if b β1 β2: Let A := Lhs(β1) ∪ Lhs(β2). There
is a type derivation ending with

∆0 ` b : t `cf ∆0 { αk+2 ; . . . ; αm } γ∗∇′′ (∇′)
`cf ∆0 { βi } ∇′′ (i = 1, 2)

`cf ∆0 { if b β1 β2 ; αk+2 ; . . . ; αm } ∇′ If
cf

and the condition f.a. v ∈ A. t v ∇′′(v) holds. In order to continue the dl
proof we apply If

dl for the extended type environment (∇′′
↓AC , A

C):

`dl { βi } ⇓ (∇′′
↓AC , A

C) (i = 1, 2)

`dl {U ; ifUpd(b,∇′′
↓AC , A

C) } [αk+2 ; . . . ; αm]R = v

`dl {U } [if b β1 β2 ; αk+2 ; . . . ; αm]R = v
If

dl,→dl

For proving the first two premisses, the type judgements

`cf ∆0 { βi } ∇′′ (i = 1, 2) (10)

and the induction hypothesis entail that there are dl proofs of

`dl { β1 } ⇓ (∇′′, AC), `dl { β2 } ⇓ (∇′′, AC) (11)

Because of the definition of non-interference proof obligations, these proofs
are also proofs of the first two premisses

`dl { β1 } ⇓ (∇′′
↓AC , A

C), `dl { β2 } ⇓ (∇′′
↓AC , A

C)

Finally, from Lem. 9 and (10) we obtain the inequation ∇′′
↓AC v ∇′′, which

means γ∗∇′′ (∇′) v γ∗∇′′

↓AC
(∇′), and thus the typing

`cf ∆0 { αk+2 ; . . . ; αm } γ∗∇′′

↓AC
(∇′)

which is related to the open goal of the dl proof: By Lem. 15 and the condition
f.a. v ∈ A. vars(b) = t v ∇′′(v) we have

rel(γ∗∇′′

↓AC
(∇′)(v), R, (U ; ifUpd(b,∇′′

↓AC , A
C)))

– αk+1 is a loop while b β: Let A := Lhs(β). There is a type derivation ending
with

∆0 ` b : t `cf ∆0 { αk+2 ; . . . ; αm } γ∗∇′′(∇′)
`cf ∆0 { β } γ∗∇′′(∇′′)

`cf ∆0 { while b β ; αk+2 ; . . . ; αm } ∇′ While
cf

36

and the conditions ∆0 v ∇′′ and f.a. v ∈ A. t v γ∗∇′′(∇′′)(v) hold. In order
to continue the dl proof, we apply rule While

dl using the extended type
environment (∇′′, AC):

`dl { if b β {} } ⇓ (γ∗∇′′ (∇′′), AC)
`dl {U ; upd(∇′′, AC) } [αk+2 ; . . . ; αm]R = v

`dl {U } [while b β ; αk+2 ; . . . ; αm]R = v
While

dl,→dl

The first premiss again leads to two different kinds of proof obligations,
non-interference obligations and invariance obligations, one for each existing
program variable.

• Non-interference obligations: We pick one of the obligations (for aw ∈ A),
eliminate the quantifiers and apply If

dl using the type environment
(γ∗∇′′ (∇′′), AC):

`dl { β } ⇓ (γ∗∇′′ (∇′′), AC) `dl { } ⇓ (γ∗∇′′ (∇′′), AC)
`dl {U ′; ifUpd(b, γ∗∇′′(∇′′), AC) } []R′ = w

`dl {U ′ } [if b β {}]R′ = w
If

dl,→dl

....
`dl ∀̇∇w. ∃r. ∀̇∇C

w . [if b β {}] r = w

Because of (the second judgement follows because of ∆0 v γ∗∇′′(∇′′))

`cf ∆0 { β } γ∗∇′′(∇′′), `cf ∆0 { } γ∗∇′′(∇′′)

and the induction hypothesis there are dl proofs of the first two pre-
misses.
For the last premiss, because of f.a. v ∈ A. vars(b) = t v γ∗∇′′(∇′′)(v) and
by Lem. 15 we have (for ∇′′′ := γ∗∇′′(∇′′)↓AC)

rel(γ∗∇′′′ (γ∗∇′′(∇′′))(w), R′, (U ′; ifUpd(b, γ∗∇′′(∇′′), AC)))

Because of w ∈ γ∗∇′′′(γ∗∇′′ (∇′′))(w), that is

R′ 6∈ vars((U ′; ifUpd(b, γ∗∇′′(∇′′), AC)) [w])

by (7), the premiss can be proven by

∗
[R′ ≡ (U ′; ifUpd(b, γ∗∇′′(∇′′), AC)) [w]]

`dl R′ = (U ′; ifUpd(b, γ∗∇′′(∇′′), AC)) [w]
close-eqdl

`dl {U ′ } { ifUpd(b, γ∗∇′′(∇′′), AC) } []R′ = w
Skip

dl,
∗
→dl

• Invariance obligations: Again we pick one of the obligations (for w 6∈ A),
eliminate the quantifiers and apply If

dl using the type environment

37

(γ∗∇′′ (∇′′), AC):

`dl { β } ⇓ (γ∗∇′′ (∇′′), AC) `dl { } ⇓ (γ∗∇′′ (∇′′), AC)
`dl {U ′; ifUpd(b, γ∗∇′′(∇′′), AC) } []uc = w

`dl {U ′ } [if b β {}]uc = w
If

dl,→dl

....
`dl ∀̇v1 · · · vn. ∀u. {w := u }[if b β {}]u = w

The first two premisses can be handled as in the first case. For the last
premiss, because of w 6∈ A we obtain

(U ′; ifUpd(b, γ∗∇′′(∇′′), AC)) [w] = uc

and the branch can be proven by

∗

`dl uc = uc

close-eqdl

`dl uc = (U ′; ifUpd(b, γ∗∇′′(∇′′), AC)) [w]

`dl {U ′; ifUpd(b, γ∗∇′′(∇′′), AC) } []uc = w
Skip

dl,
∗
→dl

As in the if-case, we finally have ∆0 v ∇′′, that is ∇′′
↓AC v ∇′′, that is

γ∗∇′′ (∇′) v γ∗∇′′

↓AC
(∇′), and we obtain

`cf ∆0 { αk+2 ; . . . ; αm } γ∗∇′′

↓AC
(∇′)

This type judgement is related with the open branch of the dl proof because
of Lem. 15:

rel(γ∗∇′′

↓AC
(∇′)(v), R, (U ; upd(∇′′, AC)))

Harvesting: Having finished the induction on k, we know that

– There is a dl proof tree with PO as root that has exactly one open branch:

`dl {U } []R = v

where U is an update
– There is a type derivation that corresponds to the open goal:

`cf ∆0 { } ∇′

for some typing ∇′ with rel(∇′(v), R, U).

The second item entails ∆0 v ∇′ (because the only applicable rule is Skip
cf),

that means v ∈ ∇′(v), and we can finish the dl proof with

∗
[R ≡ U [v]]

`dl R = U [v]
close-eqdl

`dl {U } []R = v
Skip

dl,
∗
→dl

38

Invariance obligations: As for non-interference obligations, we construct a dl
proof by induction. There are in fact very simple proofs of the invariance obli-
gations, because the type environments ∇ that are chosen when applying If

dl

and While
dl are irrelevant. Nevertheless, it is meaningful to select certain type

environments, because this demonstrates that the same choices for ∇ can be
made as for the non-interference obligations, and actually the same proof can
be used for all proof obligations.

We pick one of the obligations,

PO = ∀̇v1 · · · vn. ∀u. { v := u }[α]u = v

(for v ∈ I), and by induction on a k ∈
�

, k ≤ m we show that the following
properties hold:

– There is a dl proof tree with PO as root that has exactly one open branch:

`dl {U } [αk+1 ; . . . ; αm]uc = v

where U is an update with U [v] = uc

– There is a type derivation that corresponds to the open goal:

`cf ∆0 { αk+1 ; . . . ; αm } ∇′

The induction is conducted as follows:
Induction base case (k = 0): (Just eliminate the quantifiers of PO)
Induction step (the properties hold for a 0 ≤ k < m): There are different cases
depending on the next statement αk+1:

– αk+1 is an assignment w = E: There is a derivation ending with

∆0 ` E : t `cf ∆0 { αk+2 ; . . . ; αm } γ∗
∆0[w 7→t](∇

′)

`cf ∆0 { w = E ; αk+2 ; . . . ; αm } ∇′ Assign
cf

In the dl proof, we apply rule Assign
dl to the open branch:

`dl {U ; w := E } [αk+2 ; . . . ; αm]uc = v

`dl {U } [w = E ; αk+2 ; . . . ; αm]uc = v
Assign

dl,→dl

Because of v 6∈ Lhs(α) we have v 6= w and thus

(U ;w := E) [v] = uc

– αk+1 is a conditional statement if b β1 β2: Let A := Lhs(β1) ∪ Lhs(β2). There
is a type derivation ending with

∆0 ` b : t `cf ∆0 { αk+2 ; . . . ; αm } γ∗∇′′ (∇′)
`cf ∆0 { βi } ∇′′ (i = 1, 2)

`cf ∆0 { if b β1 β2 ; αk+2 ; . . . ; αm } ∇′ If
cf

39

In order to continue the dl proof we apply If
dl:

`dl { βi } ⇓ (∇′′
↓AC , A

C) (i = 1, 2)

`dl {U ; ifUpd(b,∇′′
↓AC , A

C) } [αk+2 ; . . . ; αm]uc = v

`dl {U } [if b β1 β2 ; αk+2 ; . . . ; αm]uc = v
If

dl,→dl

The first two premisses can be proven as for non-interference obligations.
Further, because of v ∈ AC , we obtain

(U ; ifUpd(b,∇′′
↓AC , A

C)) [v] = uc

– αk+1 is a loop while b β: Let A := Lhs(β). There is a type derivation ending
with

∆0 ` b : t `cf ∆0 { αk+2 ; . . . ; αm } γ∗∇′′(∇′)
`cf ∆0 { β } γ∗∇′′(∇′′)

`cf ∆0 { while b β ; αk+2 ; . . . ; αm } ∇′ While
cf

In order to continue the dl proof, we apply rule While
dl using the extended

type environment (∇′′, AC):

`dl { if b β {} } ⇓ (γ∗∇′′ (∇′′), AC)
`dl {U ; upd(∇′′, AC) } [αk+2 ; . . . ; αm]uc = v

`dl {U } [while b β ; αk+2 ; . . . ; αm]uc = v
While

dl,→dl

The first premiss can again be handled as for non-interference obligations.
Further, because of v ∈ AC , we obtain

(U ; upd(∇′′, AC)) [v] = uc

Harvesting: Having finished the induction on k, we know that there is a dl proof
tree with PO as root that has exactly one open branch:

`dl {U } []uc = v

where U is an update with U [v] = uc. Hence, the dl proof can directly be finished
with

∗

`dl uc = uc

close-eqdl

`dl uc = U [v]

`dl {U } []uc = v
Skip

dl,
∗
→dl

40

