
Integration of a Security Type System into a
Program Logic?

Reiner Hähnle1, Jing Pan2, Philipp Rümmer1, and Dennis Walter1

1 Department of Computer Science and Engineering,
Chalmers University of Technology and Göteborg University

2 Department of Mathematics and Computer Science,
Eindhoven University of Technology

Abstract. Type systems and program logics are often conceived to be at
opposing ends of the spectrum of formal software analyses. In this paper
we show that a flow-sensitive type system ensuring non-interference in
a simple while language can be expressed through specialised rules of a
program logic. In our framework, the structure of non-interference proofs
resembles the corresponding derivations in a recent security type system,
meaning that the algorithmic version of the type system can be used as
a proof procedure for the logic. We argue that this is important for
obtaining uniform proof certificates in a proof-carrying code framework.
We discuss in which cases the interleaving of approximative and precise
reasoning allows us to deal with delimited information release. Finally, we
present ideas on how our results can be extended to encompass features
of realistic programming languages like Java.

1 Introduction

Formal verification of software properties has recently attracted a lot of interest.
An important factor in this trend is the enormously increased need for secure
applications, particularly in mobile environments. Confidentiality policies can
often be expressed in terms of information flow properties. Existing approaches
to verification of such properties mainly fall into two categories: the first are
type-based security analyses ([20] gives an overview), whereas the second are
deduction-based employing program logics (e.g. [13, 5, 9]).

It is often noted that type-based analyses have a very logic-like character:
A language for judgements is provided, a semantics that determines the set of
valid judgments, and finally type rules to approximate the semantics mechan-
ically. Type systems typically can trade a precise reflection of the semantics
of judgments for automation and efficiency: many valid judgments are rejected.

? This work was funded in part by a STINT institutional grant and by the Information
Society Technologies programme of the European Commission, Future and Emerging
Technologies under the IST-2005-015905 MOBIUS project. This article reflects only
the authors’ views and the Community is not liable for any use that may be made
of the information contained therein.

For program logics, the situation is quite the opposite: Calculi try to capture the
semantics as precisely as possible and therefore have significantly higher com-
plexity than type systems. Furthermore, due to the richer syntax of program
logics – compared to the judgments in the type world – the framework is more
general and the same program logic can be used to express and reason about
different kinds of program properties.

The main contributions of this paper are: we construct a calculus for a pro-
gram logic that naturally simulates the rules of a flow-sensitive type system for
secure information flow. We prove soundness of the program logic calculus with
respect to the type system. The so obtained interpretation of the type system in
dynamic logic yields increased precision and opens up ways of expressing proper-
ties beyond pure non-interference. Concretely, we are able to prove the absence
of exceptions in certain cases, and we can express delimited information release.
Therefore, we can speak of an integration of a security type system into program
logic.

A crucial benefit of the integration is that we obtain an automatic proof
procedure for non-interference formulae: because of the similarity between the
program logic calculus and the type rules, it is possible to mechanically translate
type derivations to deduction proofs in the program logic. At the same time,
certain advantages over the type system in terms of precision (Sect. 5) come for
free without sacrificing automation.

The paper is organised as follows. In Section 2 we argue that a formal con-
nection between type systems and program logics fits nicely into a verification
strategy for advanced security policies of mobile Java programs based on proof-
carrying-code (PCC). Section 3 introduces the terminology used in the rest of
the paper. In Section 4 we define and discuss our program logic tailored to non-
interference analysis. Our ideas for increasing the precision of the calculus and
for covering delimited information release are given in Section 5. Due to lack of
space, we could not include proofs in this paper. An extended version with all
proofs is provided at [10].

2 Integrating Type Systems and Program Logics

We think that the integration of type systems and program logics is an important
ingredient to make security policy checks scale up to mobile code written in
modern industrial programming languages.

Certificates for Proof-Carrying Code. For the security infrastructure of mobile,
ubiquituous computing it is essential that security policies can be enforced lo-
cally on the end-user device without requiring a secure internet connection to a
trusted authentication authority. In the EU project Mobius3 this infrastructure
is based on the proof-carrying code (PCC) technology [16]. The basic idea of
PCC is to provide a formal proof that a security policy holds for a given appli-
cation, and then to hand down to the code consumer (end user) not only the
3 mobius.inria.fr/twiki/bin/view/Mobius

application code, but also a certificate that allows to reconstruct the security
proof locally with low overhead. Therefore, the end user device must run a proof
checker, and, in a standard PCC architecture [16], also a verification condition
generator, because certificates do not contain aspects of programs. The latter
makes the approach unpractical for devices with limited resources. In addition,
the security policies considered in Mobius [14] are substantially more complex
than the safety policies originally envisioned in PCC. In foundational PCC [4]
this is dispensed with at the price of including the formal semantics of the target
language in the proof checker. The size of the resulting proof certificates makes
this approach impractical so far. In the case of an axiomatic semantics as used
in the verification system employed in the present paper [1], it seems possible to
arrive at a trusted code base that is small enough. In the type-based version of
PCC the trusted code base consists of a type checker instead of a proof checker.
The integration of a type system for secure information flow into a program logic
makes it possible to construct uniformly logic-based certificates, and no hybrid
certificates need to be maintained. As a consequence, the PCC architecture is
simplified and the trusted code base is significantly reduced. Efforts that go into
similar directions in the sense that the scope of certificates is extended include
Configurable PCC [17] and Temporal Logic PCC [8].

Synergies from Combining Type-Based and Deduction-Based Verification. The
possibility to combine type-based and deduction-based reasoning in one frame-
work leads to a number of synergies. In an integrated type- and deduction-based
framework it is possible to increase the precision of the analysis dynamically on
demand. Type systems ignore the values of variables. In a deduction framework,
however, one can, e.g., prove that in the program “if (b) y = x ; if (¬b) z = y ;”
the variables z and x are independent, because the value of b always excludes
the path through one of the conditionals. Note that it is not necessary to track
the values of all variables to determine this: only the value of b matters in the
example. More realistic examples are in Sect. 5.

A further opportunity offered by the integration of type-based analysis into
an expressive logical framework is the formulation of additional security prop-
erties without the need for substantial changes in the underlying rule system
or the deduction engine. To illustrate this point we show in Sect. 5 that it is
possible to express delimited information release in our program logic.

3 Background and Terminology

3.1 Non-Interference Analysis

Generally speaking, a program has secure information flow if no knowledge about
some given secret data can be gained by executing this program. Whether or not
a program has secure information flow can hence only be decided according to a
given security policy discriminating secret from public data. In our considerations
we adopt the common model where all input and output channels are taken to
be program variables. The semantic concept underlying secure information flow

then is that of non-interference: nothing can be learned about a secret initially
stored in variable h, by observing variable l after program execution, if the initial
value of h does not interfere with the final value of l. Put differently, the final
value of l must be independent of the initial value of h.

This non-interference property is commonly established via security type sys-
tems [20, 12, 21, 2], where a program is deemed secure if it is typable according
to some given policy. Type systems are used to perform flow-sensitive as well
as flow-insensitive analyses. Flow-insensitive approaches (e.g. [21]) require every
subprogram to be well-typed according to the same policy. Recent flow-sensitive
analyses [12, 2] allow the types of variables to change along the execution path,
thereby providing more flexibility for the programmer. Like these type systems,
the program logic developed in this paper will be termination insensitive, mean-
ing that a security guarantee is only made about terminating runs of the program
under consideration.

The type system of Hunt & Sands [12] is depicted in Fig. 1. The type p
represents the security level of the program counter and serves to eliminate in-
direct information flow. The remaining components of typing judgments are a
program α and two typing functions ∇,∇′ : PVar → L mapping program vari-
ables to their respective pre- and post-types. The type system is parametric with
respect to the choice of security types; it only requires them to form a (com-
plete) lattice L. In this paper, we will only consider the most general4 lattice
P(PVar). One may thus think of the type ∇(v) of a variable v as the set of
all variables that v’s value may depend on at a given point in the program.
A judgment p `HS ∇ { α } ∇′ states that in context p the program α trans-
forms the typing (or dependency approximation) ∇ into ∇′. We note that rule
AssignHS gives the system its flow-sensitive character, stating that variable v’s
type is changed by an assignment v = E to E’s type as given by the pre-typing
∇ joined with the context type p. The type t of an expression E in a typing
∇ can simply be taken to be the join of the types ∇(v) of all free variables
v occurring in E, which we denote by ∇ ` E : t. Joining with the context p
is required to accomodate for leakage through the program context, as in the
program “if (h) {l = 1} {l = 0)}”, where the initial value of h is revealed in the
final value of l. A modification of the context p can be observed, e.g., in rule
IfHS, where the subderivation of the two branches of an if statement must be
conducted in a context lifted by the type of the conditional.

3.2 Dynamic Logic with Updates

Following [9], the program logic that we investigate is a simplified version of
dynamic logic (DL) for JavaCard [6]. The most notable difference to standard
first-order dynamic logic for the simple while-language [11] is the presence of
an explicit operator for simultaneous substitutions (called updates [19]). While
updates become particularly useful when more complicated programming lan-

4 In the sense that any other type lattice is subsumed by it, see [12, Lem. 6.8].

p `HS ∇ { } ∇ SkipHS

∇ ` E : t

p `HS ∇ { v = E } ∇[v 7→ p t t] AssignHS

p `HS ∇ { α1 } ∇′ p `HS ∇′ { α2 } ∇′′

p `HS ∇ { α1 ; α2 } ∇′′ SeqHS

∇ ` b : t p t t `HS ∇ { αi } ∇′ (i = 1, 2)

p `HS ∇ { if b α1 α2 } ∇′ IfHS

∇ ` b : t p t t `HS ∇ { α } ∇
p `HS ∇ { while b α } ∇ WhileHS

p1 `HS ∇1 { α } ∇′
1

p2 `HS ∇2 { α } ∇′
2

SubHS

p2 v p1,∇2 v ∇1, ∇′
1 v ∇′

2

Fig. 1. Hunt & Sands’ flow-sensitive type system for information flow analysis

guages (with arrays or object-oriented features) are considered, in any case, they
enable a more direct relation between program logic and type systems.

A signature of DL is a tuple (Σ,PVar,LVar) consisting of a set Σ of function
symbols with fixed, non-negative arity, a set PVar of program variables and of
a countably infinite set LVar of logical variables. Σ, PVar, LVar are pairwise
disjoint. Because some of our rules need to introduce fresh function symbols, we
assume that Σ contains infinitely many symbols for each arity n. Further, we
require that a distinguished nullary symbol TRUE ∈ Σ exists. Rigid terms tr,
ground terms tg, terms t,5 programs α, updates U and formulae φ are then
defined by the following grammar, where f ∈ Σ ranges over functions, x ∈ LVar
over logical variables and v ∈ PVar over program variables:

tr ::= x | f(tr, . . . , tr) tg ::= v | f(tg, . . . , tg)
t ::= tr | tg | f(t, . . . , t) | {U } t U ::= ε | v := t, U

φ ::= φ ∧ φ | ∀x. φ | . . . | t = t | [α]φ | {U } φ

α ::= α ; . . . ; α | v = tg | if tg α α | while tg α

For the whole paper, we assume a fixed signature (Σ,PVar,LVar) in which the
set PVar = {v1, . . . , vn} is finite, containing exactly those variables occurring in
the progam under investigation.

A structure is a pair S = (D, I) consisting of a non-empty universe D and
an interpretation I of function symbols, where I(f) : Dn → D if f ∈ Σ has ar-
ity n. Program variable assignments and variable assignments are mappings

5 Both rigid terms and ground terms are terms.

δ : PVar → D and β : LVar → D. The space of all program variable assignments
over the universe D is denoted by PAD = PVar → D, and the corresponding flat
domain by PAD

⊥ = PAD ∪ {⊥}, where δ v δ′ iff δ = ⊥ or δ = δ′.
While-programs α are evaluated in structures and operate on program vari-

able assignments. We use a standard denotational semantics for such programs

[[α]]S : PAD → PAD
⊥

and define, for instance, the meaning of a loop “while b α” through

[[while b α]]S =def

⊔
i

wi, wi : PAD → PAD
⊥

w0(δ) =def ⊥, wi+1(δ) =def

{
(wi)⊥([[α]]S(δ)) for valS,δ(b) = valS(TRUE)
δ otherwise

where we make use of a ‘bottom lifting’: (f)⊥(x) = if (x = ⊥) then ⊥ else f(x).
Likewise, updates are given a denotation as total operations on program

variable assignments. The statements of an update are executed in parallel and
statements that literally occur later can override the effects of earlier statements:

[[U]]S,β : PAD → PAD

[[w1 := t1, . . . , wk := tk]]S,β(δ) =def

(· · · ((δ[w1 7→ valS,β,δ(t1)])[w2 7→ valS,β,δ(t2)]) · · ·)[wk 7→ valS,β,δ(tk)]

where (δ[w 7→ a])(v) = if (v = w) then a else δ(v) are ordinary function updates.
Evaluation valS,β,δ of terms and formulae is mostly defined as it is common

for first-order predicate logic. Formulas are mapped into a Boolean domain,
where tt stands for semantic truth. The cases for programs and updates are

valS,β,δ([α]φ) =def

{
valS,β,[[α]]S(δ)(φ) for [[α]]S(δ) 6= ⊥
tt otherwise

valS,β,δ({U } φ) =def valS,β,[[U]]S,β(δ)(φ)

We interpret free logical variables x ∈ LVar existentially: a formula φ is valid
iff for each structure S = (D, I) and each program variable assignment δ ∈ PAD

there is a variable assignment β : LVar → D such that valS,β,δ(φ) = tt. Likewise,
a sequent Γ `dl ∆ is called valid iff

∧
Γ →

∨
∆ is valid.

The set of unbound variables occurring in a term or a formula t is denoted by
vars(t) ⊆ PVar ∪ LVar. For program variables v ∈ PVar, this means v ∈ vars(t)
iff v turns up anywhere in t. For logical variables x ∈ LVar, we define x ∈ vars(t)
iff x occurs in t and is not in the scope of ∀x or ∃x.

We note that the semantic notion of non-interference can easily be expressed
in the formalism of dynamic logic: One possibility [9] is to express the variable
independence property introduced above as follows. Assuming the set of program
variables is PVar = {v1, . . . , vn}, then vj only depends on v1, . . . , vi if variation
of vi+1, . . . , vn does not affect the final value of vj :

∀u1, . . . , ui. ∃r. ∀ui+1, . . . , un. { vi := ui }1≤i≤n [α] (vj = r) . (1)

The particular use of updates in this formula is a standard trick to quantify
over program variables which is not allowed directly: in order to quantify over
all values that a program variable v occurring in a formula φ can assume, we
introduce a fresh logical variable u and quantify over the latter. In the following
we use quantification over program variables as a shorthand, writing ∀̇v. φ for
∀u. { v := u } φ. One result of this paper is that simple, easily automated proofs
of formulae such as (1) are viable in at least those cases where a corresponding
derivation in the type system of Hunt and Sands exists.

4 Interpreting the Type System in Dynamic Logic

We now present a calculus for dynamic logic in which the rules involving pro-
gram statements employ abstraction instead of precise evaluation. The calculus
facilitates automatic proofs of secure information flow. In particular, when prov-
ing loops the burden of finding invariants is reduced to the task of providing a
dependency approximation between program variables. There is a close corre-
spondence to the type system of [12] (Fig. 1). Intuitively, state updates in the
DL calculus resemble security typings in the type system: updates arising dur-
ing a proof will essentially take the form { v := f(. . . vars . . .) }, where the vars
form the type of v in a corresponding derivation in the type system. To put
our observation on a formal basis, we prove the soundness of the calculus and
show that every derivation in the type system has a corresponding proof in our
calculus.

The Abstraction-based Calculus. We introduce extended type environments
as pairs (∇, I) consisting of a typing function ∇ : PVar → P(PVar) and an
invariance set I ⊆ PVar used to indicate those variables whose value does not
change after execution of the program. We write ∇v for the syntactic sequence
of variables w1, . . . , wk with arbitrary ordering when ∇(v) = {w1, . . . , wk} and
∇C

v for a sequence of all variables not in ∇(v). Ultimately, we want to prove
non-interference properties of the form

{ α } ⇓ (∇, I) ≡def

∧
v∈PVar

{
∀̇v1 · · · vn. ∀u. { v := u }[α] v = u , v ∈ I

∀̇∇v. ∃r. ∀̇∇C
v . [α] v = r , v 6∈ I

(2)

where we assume PVar = {v1, . . . , vn}. Validity of a judgment { α } ⇓ (∇, I)
ensures that all variables in the invariance set I remain unchanged after exe-
cution of the program α, and that any variable v of the rest only depends on
variables in ∇(v). The invariance set I corresponds to the context p that turns
up in judgments p `HS ∇ { α } ∇′: while the type system ensures that p is a
lower bound of the post-type ∇′(v) of variables v assigned in α, the set I can
be used to ensure that variables with low post-type are not assigned (or, more
precisely, not changed). The equivalence is formally stated in Lem. 2.

In the proof process we want to abstract program statements “while b α”
and “if b α1 α2” into updates modelling the effects of these statements. Thus

we avoid having to split up the proof for the two branches of an if-statement, or
having to find an invariant for a while-loop. Extended type environments capture
the essence of these updates: the arguments for the abstraction functions and
the unmodified variables. They are translated into updates as follows:

upd(∇, I) =def { v := fv(∇v) }v∈PVar\I

ifUpd(b,∇, I) =def { v := fv(b,∇v) }v∈PVar\I

The above updates assign to each v not in the invariance set I a fresh function
symbol fv whose arguments are exactly the variables given by the type ∇(v).
In a program “if b α1 α2” the final state may depend on the branch condition
b, so the translation ifUpd ‘injects’ the condition into the update. This is the
analogon of the context lifting present in IfHS. For the while-rule, we transform
the loop body into a conditional, so that we must handle the context lifting only
in the if-rule.

Figs. 2 and 3 contain the rules for a sequent calculus. We have only included
those propositional and first-order rules (the first four rules of Fig. 2) that are
necessary for proving the results in this section; more rules are required to make
the calculus usable in practice. The calculus uses free logical variables X ∈ LVar
(ex-rightdl) and unification (close-eqdl) for handling existential quantifica-
tion, where the latter rule works by applying the unifier of terms s and t to
the whole proof tree. We have to demand that only rigid terms (not containing
program variables) are substituted for free variables, because free variables can
also occur in the scope of updates or the box modal operator. Skolemisation
(all-rightdl) has to collect the free variables that occur in a quantified formula
to ensure soundness. By definition of the non-interference properties (2) and by
the design of the rules of the dynamic logic calculus it is sufficient to define
update rules for terms, quantifier-free formulae, and other updates. Such rules
can be used at any point in a proof to simplify expressions containing updates.

Rule Abstractdl can be used to normalise terms occuring in updates to
the form f(. . . vars . . .). In rules Ifdl and Whiledl the second premiss represents
the actual abstraction of the program statement for a suitably chosen typing ∇
and invariance set I. This abstraction is justified through the first premiss in
terms of another non-interference proof obligation. The concretisation operator
γ∗ (cf. [12]) of rule Whiledl is generally defined as

γ∗∇1
(∇2)(x) =def {y ∈ PVar |∇1(y) ⊆ ∇2(x)} (x ∈ PVar) . (3)

Together with the side condition that for all v we require v ∈ ∇(v), a clo-
sure property on dependencies is ensured: w ∈ γ∗∇(∇)(v) implies γ∗∇(∇)(w) ⊆
γ∗∇(∇)(v): if a variable depends on another, the latter’s dependencies are in-
cluded in the former’s. This accounts for the fact that the loop body can be
executed more than once, which, in general, causes transitive dependencies.

Function Arguments Ensure Soundness. A recurring proof obligation in a non-
interference proof is a statement of the form ∀̇∇v. ∃r. ∀̇∇C

v . [α] v = r. To prove

Γ `dl φ,∆ Γ `dl ψ,∆

Γ `dl φ ∧ ψ,∆ and-rightdl

Γ `dl φ[x/f(X1, . . . , Xn)], ∆

Γ `dl ∀x. φ,∆ all-rightdl {X1, . . . , Xn} = vars(φ) ∩ LVar\{x},
f fresh

Γ `dl φ[x/X], ∃x. φ,∆
Γ `dl ∃x. φ,∆ ex-rightdl

X fresh

∗
[s ≡ t]

Γ `dl s = t,∆
close-eqdl

s, t unifiable (with rigid unifier)

(Γ `dl ∆)[x/f(vars(t))]

(Γ `dl ∆)[x/t]
abstractdl

f fresh

Γ `dl {U }φ,∆
Γ `dl {U } []φ,∆

Skipdl
Γ `dl {U } { v := E } [. . .]φ,∆

Γ `dl {U } [v = E ; . . .]φ,∆
Assigndl

`dl { αi } ⇓ (∇, I) (i = 1, 2)

Γ `dl {U } { ifUpd(b,∇, I) } [. . .]φ,∆

Γ `dl {U } [if b α1 α2 ; . . .]φ,∆
Ifdl

`dl { if b α {} } ⇓ (γ∗∇(∇), I)

Γ `dl {U } { upd(∇, I) } [. . .]φ,∆

Γ `dl {U } [while b α ; . . .]φ,∆
Whiledl

v ∈ ∇(v) for all v ∈ PVar

Fig. 2. A dynamic logic calculus for information flow security. In the last four rules
the update {U } can also be empty and disappear.

this statement without abstraction essentially is to find a function of the variables
∇v that yields the value of v under α for every given pre-state: one must find the
strongest post-condition w.r.t. v’s value. Logically, one must create this function
as a term for the existentially quantified variable r in which the ∇C

v do not occur.
In a unification-based calculus the occurs check will let all those proofs fail where
an actual information flow takes places from ∇C

v to v. The purpose of function
arguments for fv is exactly to retain this crucial property in the abstract version
of the calculus. We must make sure that a function fv – abstracting the effect
of α on v – gets at least those variables as arguments that are parts of the term
representing the final value of v after α.

Theorem 1 (Soundness). The rules of the DL calculus given in Figs. 2 and
3 are sound: the root of a closed proof tree is a valid sequent.

{w1 := t1, . . . , wk := tk } wi →dl ti if wj 6= wi for i < j ≤ k

{w1 := t1, . . . , wk := tk } t →dl t if w1, . . . , wk 6∈ vars(t)

{U } f(t1, . . . , tn) →dl f({U } t1, . . . , {U } tn)

{U } (t1 = t2) →dl {U } t1 = {U } t2
{U } ¬φ →dl ¬{U } φ

{U } (φ1 ∗ φ2) →dl {U } φ1 ∗ {U } φ2 for ∗ ∈ {∨,∧}

{U } {w1 := t1, . . . , wk := tk } φ →dl {U, w1 := {U } t1, . . . , wk := {U } tk } φ

Fig. 3. Application rules for updates in dynamic logic, as far as they are required for
Lem. 6. Further application and simplification rules are necessary in general.

Simulating Type Derivations in the DL Calculus. In order to show sub-
sumption of the type system in the logic, we first put the connection between
invariance sets and context on solid ground. It suffices to approximate the in-
variance of variables v with the requirement that v must not occur as left-hand
side of assignments (Lhs(α) is the set of all left-hand sides of assignments in α).

Lemma 2. In the type system of [12], see Fig. 1, the following equivalence holds:

p `HS ∇ { α } ∇′ iff ⊥ `HS ∇ { α } ∇′ and f.a. v ∈ Lhs(α) : p v ∇′(v)

Furthermore, we can normalize type derivations thanks to the Canonical
Derivations Lemma of [12]. The crucial ingredient is the concretisation operator
γ∗ defined in (3).

Lemma 3 (Canonical Derivations).

⊥ `HS ∇ { α } ∇′ iff ⊥ `HS ∆0 { α } γ∗∇(∇′) where ∆0 = λx. {x}

For brevity, we must refer to Hunt and Sands’ paper for details, but in the
setting at hand one can intuitively take Lemma 3 as stating that any typing
judgment can also be understood as a dependency judgment: the typing on the
left-hand side is equivalent to the statement that the final value of x may depend
on the initial value of y only if y appears in the post-type, or dependence set,
γ∗∇(∇′)(x).

The type system of Fig. 4 only mentions judgments with a pre-type ∆0 as
depicted on the right-hand side of the equivalence in Lemma 3. Further, the
context p has been replaced by equivalent side conditions (Lemma 2), and rule
SeqHS is built into the other rules, i.e., the rules always work on the initial
statement of a program. Likewise, rule SubHS has been integrated in Skipcf and
Whilecf . The type system is equivalent to Hunt and Sands’ system (Fig. 1):

Lemma 4.

⊥ `HS ∆0 { α } ∇ if and only if `cf ∆0 { α } ∇

The proof proceeds in multiple steps by devising intermediate type systems,
each of which adds a modification towards the system in Fig. 4 and which is
equivalent to Hunt and Sands’ system.

Obviously, due to the approximating character of Ifdl and Whiledl (and the
lack of arithmetic), our DL calculus is not (relatively) complete in the sense of
[11]. For the particular judgements { α } ⇓ (∇, I) the calculus is, however, not
more incomplete than the type system of Fig. 1: every typable program can also
be proven secure using the DL calculus.6

Theorem 5.

⊥ `HS ∆0 { α } ∇ implies `dl { α } ⇓ (∇, ∅)

The proof of the theorem is constructive: A method for translating type deriva-
tions into DL proofs is given. The existence of this translation mapping shows
that proving in the DL calculus is in principle not more difficult than typing
programs using the system of Fig. 1.

The first part of the translation is accomplished by Lem. 4, which covers
structural differences between type derivations and DL proofs. Applications of
the rules of Fig. 4 can then almost directly be replaced with the corresponding
rules of the DL calculus:

Lemma 6.

`cf ∆0 { α } ∇ implies `dl { α } ⇓ (∇, ∅)

5 Higher Precision and Delimited Information Release

Many realistic languages feature exceptions as a means to indicate failure. The
occurrence of an exception can also lead to information leakage. Therefore, an
information flow analysis for such a language must, at each point where an
exception might possibly occur, either ensure that this will indeed not happen at
runtime or verify that the induced information flow is benign. The Jif system [15]
which implements a security type system for a large subset of the Java language
employs a simple data flow analysis to retain a practically acceptable precision
w.r.t. exceptions. The data flow analysis can verify the absence of null pointer
exceptions and class cast exceptions in certain cases. However, to enhance the
precision of this analysis to an acceptable level one is forced to apply a slightly
cumbersome programming style.

The need for treatment of exceptions is an example showing that we actually
gain something from the fact that our analysis is embedded in a more general
program logic: there is no need to stack one analysis on top of the other to scale
6 The converse of Theorem 5 does not hold. In the basic version of the calculus of

Fig. 2, untypable programs like “if (h) {l = 1} {l = 0}” can be proven secure. Sect. 5
discusses how the precision of the DL calculus can be further augmented.

`cf ∆0 { } ∇ Skipcf

v ∈ ∇(v) for all v ∈ PVar

∆0 ` E : t `cf ∆0 { . . . } γ∗∆0[v 7→t](∇)

`cf ∆0 { v = E ; . . . } ∇ Assigncf

∆0 ` b : t `cf ∆0 { . . . } γ∗∇(∇′)

`cf ∆0 { αi } ∇ (i = 1, 2)

`cf ∆0 { if b α1 α2 ; . . . } ∇′ Ifcf f.a. v ∈ Lhs(α1). t v ∇(v)
f.a. v ∈ Lhs(α2). t v ∇(v)

∆0 ` b : t `cf ∆0 { . . . } γ∗∇(∇′)

`cf ∆0 { α } γ∗∇(∇)

`cf ∆0 { while b α ; . . . } ∇′ Whilecf v ∈ ∇(v) for all v ∈ PVar
f.a. v ∈ Lhs(α). t v γ∗∇(∇)(v)

Fig. 4. Intermediate flow-sensitive type system for information flow analysis

∗
[f ′l (TRUE) ≡ R]

odd(fh(R)) `dl f ′l (TRUE) = R
close-eqdl

odd(fh(R)) `dl f ′l (odd(fh(R))) = R
apply-eqdl

odd(fh(R)) `dl { l := fl(R), h := fh(R) } { l := f ′l (odd(h)) } l = R
∗→dl

D

· · ·

∗
`dl { l = 0 } ⇓ (∇, {h})

∗
`dl { l = 1 } ⇓ (∇, {h}) D

odd(fh(R)) `dl { l := fl(R), h := fh(R) } [α] l = R
Ifdl

`dl { l := fl(R), h := fh(R) } (odd(h) → [α] l = R)

∗→dl , imp-rightdl

`dl ∃r. ∀̇l. ∀̇h. (odd(h) → [α] l = r)
ex-rightdl,all-rightdl

`dl { α } ⇓ (∇, {h}, odd(h))
(Def),and-rightdl

Fig. 5. Non-interference proof with delimited information release: The precondition
odd(h) entails that (only) the parity of h is allowed to leak into l. A similar proof is
required for ¬odd(h). For sake of brevity, we use odd both as function and predicate,
and only in one step (apply-eqdl) make use of the fact that odd(fh(R)) actually
represents the equation odd(fh(R)) = TRUE .

the approach up to larger languages, but we can coherently deal with added
features, in this case exceptions, within one calculus. In the precise version of the
calculus for JavaCard – as implemented in the KeY system [1] – exceptions are
handled like conditional statements by branching on the condition under which
an exception would occur. An uncaught exception is treated as non-termination.
As an example, the division v1/v2 would have the condition that v2 is zero
(“.. ...” denotes a context possibly containing exception handlers):

v2 6= 0 `dl {w := v1/v2 } [.. ...]φ v2 = 0 `dl [.. throw E ...]φ

`dl [.. w = v1/v2 ...]φ .

If we knew v2 6= 0 at this point of the proof, implying that the division does
in fact not raise an exception, the right branch could be closed immediately.
Because our DL calculus stores the values of variables (instead of only the type)
as long as no abstraction occurs, this information is often available: (i) rule
Assigndl does not involve abstraction, which means that sequential programs
can be executed without loss of information, and (ii) invariance sets I in non-
interference judgments allow to retain information about unchanged variables
also across conditional statements and loops.

This can be seen for a program like “v = 2 ; while b α ; w = w/v” in which
α does not assign to v. By including v in the invariance set for “while b α” we
can deduce v = 2 also after the loop, and thus be sure that the division will
succeed. This is a typical example for a program containing an initialisation
part that establishes invariants, and a use part that relies on the invariants.
The pattern recurs in many flavours: examples are the initialisation and use
of libraries and the well-definedness of references after object creation. We are
optimistic to gather empirical evidence of our claim that the increased precision
is useful in practice through future experiments.

Increasing Precision. While our DL calculus is able to maintain state infor-
mation across statements, the rules Ifdl and Whiledl lose this information in
the first premisses, containing non-interference proofs for the statement bodies.
This makes it impossible to deduce that no exceptions can occur in the program
“v = 2 ; while b {w = w/v}”. As another shortcoming, the branch predicate is
not taken into account, so that absence of exceptions cannot be shown for a
program like “if (v 6= 0) {w = 1/v} ”.

One way to remedy these issues might be to relax the first premisses in Ifdl

and Whiledl. The idea is to generalise non-interference judgments and introduce
preconditions φ under which the program must satisfy non-interference.

{ α } ⇓ (∇, I, φ) ≡def

∧
v∈PVar

{
∀̇v1 · · · vn. (φ → [α] v = u) , v ∈ I

∀̇∇v. ∃r. ∀̇∇C
v . (φ → [α] v = r) , v 6∈ I

In an extended rule for if-statements, for instance, such a precondition can be
used to ‘carry through’ side formulae and state information contained in the

update U , as well as to integrate the branch predicates: we may assume arbitrary
preconditions φ1, φ2 in the branches if we can show that they hold before the
if-statement:

`dl { α1 } ⇓ (∇, I, φ1) `dl { α2 } ⇓ (∇, I, φ2)
Γ, {U } b = TRUE `dl {U }φ1,∆ Γ, {U } b 6= TRUE `dl {U }φ2,∆

Γ `dl {U } { ifUpd(b,∇, I) } [. . .]φ,∆

Γ `dl {U } [if b α1 α2 ; . . .]φ,∆

Probably more interestingly, preconditions allow us to handle delimited in-
formation release in the style of [9], i.e. situations in which non-interference does
not strictly hold and some well-defined information about secret values may be
released. Fig. 5 shows parts of a non-interference proof with delimited informa-
tion release for the program “α = if (odd(h)) {l = 0} {l = 1}”, in which one can
learn the parity of h by reading l. The typing∇ is given by∇(l) = ∅,∇(h) = {h},
indicating that only declassified information flows into l.

6 Conclusion, Related and Future Work

In this paper we made a formal connection between type-based and logic-based
approaches to information flow analysis. We proved that every program that is
typeable in Hunt & Sands’ type system [12] has a proof in an abstract version
of dynamic logic whose construction is not more expensive than the type check.
We argued that an integrated logic-based approach fits well into a proof-carrying
code framework for establishing security policies of mobile software. In order to
support this claim we showed how to increase the precision of the program logic,
for example, to express declassification.

Related Work. The background for our work are a number of recent type-based
and logic-based approaches to information flow [20, 2, 9, 12]. Our concrete start-
ing points were the flow-sensitive type system of Hunt & Sands [12] and the
characterisation of non-interference in [9]. Amtoft & Banerjee [2] devised an
analysis with a very logic-like structure, that is however not more precise than
the type system by Hunt & Sands. In an early paper Andrews & Reitman [3]
developed a flow logic – one may also consider it a security type system – for
proving information flow properties of concurrent Pascal programs. They outline
a combination of their flow logic with regular Hoare logic, but keep the formulae
for both logics separated. Joshi & Leino [13] give logical characterisations of the
semantic notion of information flow, and their presentation in terms of Hoare
triples is similar in spirit to our basic formulation. Their results do, however, not
provide means to aid automated proofs of these triples. Finally, Beringer et al.
[7] presented a logic for resource consumption whose proof rules and judgements
are derived from a more general program logic; both logics are formalised in the
Isabelle/HOL proof assistant. Their approach is similar in spirit to the one pre-
sented here, since the preciseness of their derived logic is compared to an extant
type system for resource comsumption.

Future Work. On a technical level, we have not investigated the complexity of
the translation of HS type derivations to DL proofs (Theorem 5) and the size of
resulting proofs in detail. We believe that both can be linear in the size of type
derivations, although this requires a more efficient version of proof obligations
{ α } ⇓ (∇, I). Conceptually, the present work is only a starting point in the
integration of type-based and logic-based information-flow analysis. In addition
to non-interference and declassification, more complex security policies need to
be looked at. It has to be seen how well the notion of abstraction presented in
this paper is suited to express these. We also want to extend the program logic to
cover at least JavaCard, based on the axiomatisation in [6], as implemented in our
program verifier KeY. Ideas towards this goal have been worked out in [18], parts
of which are also presented in [10]. Finally, a suitable notion of proof certificate
and proof checking for proof-carrying code must be derived for dynamic logic
proofs of security policies. This is a substantial task to which a whole Work
Package within Mobius is devoted.

Acknowledgments

We would like to thank Dave Sands for inspiring discussions and Andrei Sabelfeld
for reminding us of declassification. Thanks to Tarmo Uustalu for pointing out [3].

References

[1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool: integrating
object oriented design and formal verification. Software and System Modeling,
4(1):32–54, 2005.

[2] T. Amtoft and A. Banerjee. Information flow analysis in logical form. In R. Gi-
acobazzi, editor, 11th Static Analysis Symposium (SAS), Verona, Italy, volume
3148 of LNCS, pages 100–115. Springer-Verlag, 2004.

[3] G. R. Andrews and R. P. Reitman. An axiomatic approach to information flow in
programs. ACM Transactions on Programming Languages and Systems, 2(1):56–
76, Jan. 1980.

[4] A. W. Appel. Foundational Proof-Carrying code. In Proc. 16th Annual IEEE
Symposium on Logic in Computer Science, pages 247–258, Los Alamitos, CA,
June 2001. IEEE Computer Society.

[5] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure Information Flow by Self-
Composition. In R. Foccardi, editor, Proceedings of CSFW’04, pages 100–114,
Pacific Grove,USA, June 2004. IEEE Press.

[6] B. Beckert. A dynamic logic for the formal verification of Java Card programs.
In I. Attali and T. Jensen, editors, Java on Smart Cards: Programming and Secu-
rity. Revised Papers, Java Card 2000, International Workshop, Cannes, France,
volume 2041 of LNCS, pages 6–24. Springer-Verlag, 2001.

[7] L. Beringer, M. Hofmann, A. Momigliano, and O. Shkaravska. Automatic certi-
fication of heap consumption. In Logic for Programming, Artificial Intelligence,
and Reasoning: 11th International Conference, LPAR 2004, Montevideo, Uruguay,
volume 3452, pages 347–362. Springer-Verlag, 2005.

[8] A. Bernard and P. Lee. Temporal logic for proof-carrying code. In A. Voronkov,
editor, Proc. 18th International Conference on Automated Deduction CADE,
Copenhagen, Denmark, volume 2392 of Lecture Notes in Computer Science, pages
31–46. Springer-Verlag, 2002.

[9] A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis
of secure information flow. In D. Hutter and M. Ullmann, editors, Proc. 2nd
International Conference on Security in Pervasive Computing, volume 3450 of
LNCS, pages 193–209. Springer-Verlag, 2005.

[10] R. Hähnle, J. Pan, P. Rümmer, and D. Walter. On the integration of security type
systems into program logics. Technical report, Chalmers University of Technology,
2006. Preliminary version at www.cs.chalmers.se/~philipp/IflowPaper.pdf.

[11] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. Foundations of Computing.
MIT Press, Oct. 2000.

[12] S. Hunt and D. Sands. On flow-sensitive security types. In Symp. on Principles
of Programming Languages (POPL). ACM Press, 2006.

[13] R. Joshi and K. R. M. Leino. A semantic approach to secure information flow.
Science of Computer Programming, 37(1-3):113–138, 2000.

[14] MOBIUS Project Deliverable D 1.1, Resource and Information Flow Security Re-
quirements, Mar. 2006.
URL: mobius.inria.fr/twiki/pub/DeliverablesList/WebHome/Deliv1-1.pdf

[15] A. C. Myers. JFlow: Practical mostly-static information flow control. In Sympo-
sium on Principles of Programming Languages, pages 228–241, 1999.

[16] G. C. Necula and P. Lee. Safe, untrusted agents using proof-carrying code. In
G. Vigna, editor, Mobile Agents and Security, volume 1419 of LNCS, pages 61–91.
Springer-Verlag, 1998.

[17] G. C. Necula and R. R. Schneck. A sound framework for untrustred verification-
condition generators. In Proc. IEEE Symposium on Logic in Computer Science
LICS, Ottawa, Canada, pages 248–260. IEEE Computer Society, 2003.

[18] J. Pan. A theorem proving approach to analysis of secure information flow using
data abstraction. Master’s thesis, Chalmers University of Technology, 2005.

[19] P. Rümmer. Sequential, parallel, and quantified updates of first-order structures.
In Logic for Programming, Artificial Intelligence and Reasoning, volume 4246 of
LNCS, pages 422–436. Springer-Verlag, 2006.

[20] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[21] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
Journal of Computer Security, 4(3):167–187, 1996.

