
Non-Termination Checking for
Imperative Programs

Helga Velroyen1 and Philipp Rümmer2

1 Department of Computer Science
RWTH Aachen University of Technology

helga.velroyen@rwth-aachen.de
2 Department of Computer Science and Engineering,

Chalmers University of Technology and Göteborg University
philipp@chalmers.se

Abstract. While termination checking tailored to real-world library
code or frameworks has received ever-increasing attention during the last
years, the complementary question of disproving termination properties
as a means of debugging has largely been ignored so far. We present an
approach to automatic non-termination checking that relates to termi-
nation checking in the same way as symbolic testing does to program
verification. Our method is based on the automated generation of invari-
ants that show that terminating states of a program are unreachable from
certain initial states. Such initial states are identified using constraint-
solving techniques. The method is fully implemented on top of a program
verification system and available for download. We give an empirical eval-
uation of the approach using a collection of non-terminating example
programs.

1 Introduction

Termination properties of programs are crucial for liveness and safety: a piece
of software which does not terminate can have vast consequences, especially
when employed in critical environments or wide-spread. The latter concerns in
particular library code or frameworks, whose specific use is often unknown at
the time of development. Non-termination bugs can be very subtle and hide long
before they take effect in productivity situations.

Although the concept of formally proving termination properties has been
known and investigated for a long time, the last years have seen intensified re-
search on how to check the termination of real-world code [1, 2]. During the same
time, however, the complementary field of showing the potential non-termination
of programs as a means of debugging has largely been ignored. This is a surpris-
ing situation, because programs under development are prone to contain defects.
In this context, direct attempts to find those bugs might be more successful and
more useful than to learn from failed correctness or termination proofs.

Traditional dynamic techniques of testing program behavior by means of
concrete execution are not adequate to show non-termination (they can nev-
ertheless provide valuable hints). As a consequence, although the purpose of

non-termination analysis is more related to testing than to program verification,
in most cases the usage of symbolic reasoning cannot be avoided. In the present
paper, we introduce an approach to automatic non-termination checking that
relates to termination checking in the same way as symbolic testing does to pro-
gram verification. The method has been implemented on top of a general-purpose
program verification system. Experiments using a database of non-terminating
programs indicate that it can be a useful tool for detecting termination defects
early during software development.

Showing the non-termination of a program consists of two parts: (i) to prove
that a potential loop in a program is reachable from some initial state, and
(ii) to prove that the potential loop can indeed cause non-termination. We use
constraint solving techniques to achieve the first part, following the approach de-
scribed in [3]. For the second part, we introduce an algorithm to synthesise invari-
ants that show that the found loop is never exited and that terminating states of
the program are therefore unreachable. Our approach is based on two main tech-
niques, a template method for generating invariants (together with constraint
solving) and refinement (strengthening) of invariants based on counterexamples.
Because our experiments show that invariants for proving non-termination are
typically much smaller than invariants for proving partial correctness, we believe
that this yields a practical procedure for constructing non-termination proofs.

The paper is organised as follows: In Sect. 2 we define the programming lan-
guage that is analysed in the whole paper. Sect. 3 introduces the logic and the
calculus that we use to reason about programs, which is the basis for an effective
algorithm in Sect. 4. An empirical evaluation of our approach is given in Sect. 5.
Finally, we list related work in Sect. 6 and conclude in Sect. 7.

2 Preliminaries

We assume that the reader is familiar with classical first-order logic and Gentzen-
style sequent calculi, see [4] for an introduction. For sake of simplicity, all con-
siderations of this paper are done in the context of a simple while-language that
operates on the (infinite) domain of integers. The generalisation to other im-
perative languages is mostly straightforward, and, in our experience, occurring
problems tend to be orthogonal to the task of proving non-termination. More
details are given in [5, 3].

In order to introduce the while-language, we first assume a fixed vocabularyΣ
of functions and predicates (with fixed arity) that describe the native side-effect-
free operations that are available, as well as a fixed set Vp of program variables.
The set Σ is supposed to contain at least literals and the standard operations
on integers (0, 1,−1, . . . ,+,−, ·,=, <,≤). Ground terms, ground formulae and
programs are then inductively defined by the following grammars:

tg ::= v | f(tg, . . . , tg)
φg ::= true | false | φg ∧ φg | ¬φg | · · · | p(tg, . . . , tg)
α ::= α ; . . . ; α | v = tg | if (φg) α else α | while (φg) α

where f ∈ Σ ranges over functions, p ∈ Σ over predicates and v ∈ Vp over pro-
gram variables.

Semantics of Programs. Because only the integers are considered as domain, a
structure is a pair S = (Z, I) consisting of the set Z of integers and an interpre-
tation I with I(f) : Zn → Z if f ∈ Σ is a function of arity n and I(p) ⊆ Zn if
p ∈ Σ is a predicate of arity n. Only those structures are considered in which
the standard integer operations from above (like 0, 1,−1,+, . . .) have their usual
meaning. A program variable assignment is a mapping γ : Vp → Z. The space of
all program variable assignments is denoted by PA = Vp → Z. While-programs α
are evaluated in structures S and denote partial mappings [[α]]S : PA ⇀ PA from
program variable assignments to program variable assignments:

[[α]]S(γ) =

{
γ′ α terminates in state γ′ when started in γ
⊥ α does not terminate when started in γ

Given an evaluation function valS,γ for ground terms and formulae, which is
defined as is common for first-order logic (cf. [4]), the concrete definition of [[α]]S

follows the lines of denotational semantics (for instance, [6]).

3 Proving Non-Termination: The Calculus Level

We introduce our approach to non-termination detection in two parts: in this
section, we describe the logic and the calculus to reason about programs. Based
on this declarative framework, Sect. 4 defines an algorithm (a proof procedure)
for automatically detecting non-termination.

Dynamic Logic for the While-Language (WhileDL). First-order dynamic
logic (DL) [7] is a multi-modal extension of first-order predicate logic, in which
modal operators are labelled with programs. Most importantly, given a pro-
gram α and a formula φ, a box-formula [α]φ expresses that φ holds in each
final state of α. This paper uses a version of dynamic logic for the simple while-
language [7] that is enriched with an explicit operator for simultaneous sub-
stitutions called updates [8, Sect. 3]. Updates allow us to present some of the
techniques of this papers in a simpler way, but also simplify the generalisation
to more involved languages like Java [5, 3, 8].

We assume the same vocabulary Σ and the same set Vp of program variables
as in Sect. 2, but in addition we define a disjoint set Vl of logical variables that
can occur in formulae and terms (outside of programs). Because some of our rules
need to introduce fresh function symbols, we assume that Σ contains infinitely
many functions for each arity n. Extending the grammar from Sect. 2, arbitrary
terms, formulae and updates are then defined by:

t ::= tg | x | f(t, . . . , t) | {U } t
φ ::= φg | φ ∧ φ | ¬φ | · · · | p(t, . . . , t) | [α]φ | {U } φ
U ::= v := t | U, . . . , U

where f ∈ Σ ranges over functions, p ∈ Σ over predicates, x ∈ Vl over logical
variables and v ∈ Vp over program variables.

In order to define the semantics of terms, formulae and updates, besides
structures S = (Z, I) and program variable assignments γ ∈ PA we also need
logical variable assignments β : Vl → Z. The denotation [[U]]S,β : PA → PA of
an update U is a total operation on program variable assignments:

[[v1 := t1, . . . , vk := tk]]S,β(γ)(w) =


valS,β,γ(ti) w = vi and

w 6∈ {vi+1, . . . , vk}
γ(w) w 6∈ {v1, . . . , vk}

This means that the assignments of an update are executed in parallel, and
that assignments that syntactically occur later can override the effects of earlier
assignments (vj := tj will override vi := ti for vi = vj and j > i).

The evaluation valS,β,γ of terms and formulae is mostly defined as it is com-
mon for first-order predicate logic. Formulae are mapped into a Boolean domain,
where tt stands for semantic truth. The cases for programs and updates are:

valS,β,γ([α]φ) =

{
valS,β,[[α]]S(γ)(φ) if [[α]]S(γ) is defined
tt otherwise

valS,β,γ({U } φ) = valS,β,[[U]]S,β(γ)(φ)

We interpret free logical variables x ∈ Vl existentially: a formula φ is valid iff for
each structure S and each program variable assignment γ ∈ PA there is a variable
assignment β : Vl → D such that valS,β,γ(φ) = tt. Likewise, a sequent Γ ` ∆ is
called valid iff

∧
Γ →

∨
∆ is valid. Free variables are used to express symbolic

program inputs and as parameters in loop invariants and serve as an interface
to constraint solving (see below for more details).

Characterisation of Non-Termination. Because box-formulae [α]φ are triv-
ially rendered true by a diverging program α, we can express non-termination by
asserting false as post-condition: [α] false. This means that, given a structure S,
valS,γ([α] false) = tt holds for exactly those initial states γ ∈ PA for which α
diverges.

In order to express non-termination for some arbitrary initial state, it is
necessary to quantify the variables occurring in α existentially, following the
approach from [3]. For the while-language, this is done by prefixing the formula
from above with an update that assigns arbitrary values to all program variables
in α:

{ v1 := x1, . . . , vn := xn } [α] false (1)

where v1, . . . , vn ∈ Vp are the variables occurring in α and x1, . . . , xn ∈ Vl are
fresh logical variables. (1) is valid iff there are initial states from which α diverges.

A Sequent Calculus for WhileDL. To reason formally about the non-
termination of programs, we introduce a Gentzen-style sequent calculus for
WhileDL that follows closely the calculi in [3, 8]. Fig. 1 contains the most impor-
tant calculus rules, which can be categorised as program-independent first-order
rules (the upper part of the figure) and symbolic execution rules.

The rule Assign turns assignments into updates, which subsequently can be
merged with the former preceding update U and simplified. The simplification
and application of updates is performed by the rewriting rules in Fig. 2, which
propagate updates in formulae or terms downwards until they can be applied to
program variables like substitutions.

In If, a case analysis for an if-statement is performed by splitting on the
branch predicate ψ evaluated in the current program state U . The invariant
rule While is a simplified version of the rule for Java defined in [8, Chap. 3].
In While, the erasure of side formulae is avoided with the help of anonymising
updates A1, A2 that assign unspecified values to all variables that can be modified
by the loop body α. More formally, given that (i) v1, . . . , vn ∈ Vp are the variables
that occur as left-hand sides of assignments in α, that (ii) x1, . . . , xm ∈ Vl are
the logical variables that occur in U , φ, or Inv , and that (iii) f1, . . . , fn are fresh
function symbols, we say that the update

v1 := f1(x1, . . . , xm), . . . , vn := fn(x1, . . . , xm)

is a fresh anonymising update for α with respect to U, φ, Inv . Note, that we need
to inject the logical variables x1, . . . , xm as arguments of the functions f1, . . . , fn

for exactly the same reasons as in the standard Skolemisation rule (cf. [4]).
Finally, theory rules are necessary to handle equality, integers, etc. in the

calculus, we refer the reader to [9] for more details. An example proof using the
WhileDL calculus is shown below.

When inspecting the calculus rules, it can be observed that all rules but
While are local equivalence transformations: for all structures, program variable
assignments and logical variable assignments, the conclusion of a rule holds iff
all premisses hold. This property is important for us, because it implies that
countermodels of an open goal are also countermodels of the initial conjecture
(unless While has been applied). In Sect. 4, we use counterexamples that were
extracted from open proof goals to refine invariant candidates.

Incremental Closure of Proofs. In order to close a proof tree that contains
free logical variables, we have to show that the variables can be given values
(depending on the considered structure) such that all remaining goals are turned
into obviously valid sequents. We apply the idea of incremental closure [4, 10]
together with the arithmetic constraint language from [3, Sect. 4] to check the
existence of such values. The rules in Fig. 3 are responsible for introducing closure
constraints for proof goals. If it is possible, in this way, to find compatible closure
constraints for all proof goals (i.e., the conjunction of the constraints is valid),
then it is sound to close the proof.

∗
Γ ` true,∆

true-right
Γ ` ∆

Γ, true ` ∆
true-left

Γ ` φ,∆ Γ ` ψ,∆

Γ ` φ ∧ ψ,∆ ∧-right
Γ, φ, ψ ` ∆

Γ, φ ∧ ψ ` ∆
∧-left

Γ, φ ` ∆

Γ ` ¬φ,∆ ¬-right
Γ ` φ,∆

Γ,¬φ ` ∆
¬-left

· · ·
Γ ` {U }φ,∆
Γ ` {U } []φ,∆

Skip
Γ ` {U } { v := t } [. . .]φ,∆

Γ ` {U } [v = t ; . . .]φ,∆
Assign

Γ ` {U } (ψ → [α1 ; . . .]φ),∆ Γ ` {U } (¬ψ → [α2 ; . . .]φ),∆

Γ ` {U } [if (ψ) α1 else α2 ; . . .]φ,∆
If

Γ ` {U } Inv ,∆
Γ ` {U } {A1 } (Inv ∧ ψ → [α] Inv),∆
Γ ` {U } {A2 } (Inv ∧ ¬ψ → [. . .]φ),∆

Γ ` {U } [while (ψ) α ; . . .]φ,∆
While

(A1, A2 are fresh anonymising updates for α w.r.t. U, φ, Inv)

Fig. 1. Sequent calculus for WhileDL. In the last four rules, the update {U } can also
be empty and disappear.

{ v1 := t1, . . . , vk := tk } vi → ti if vi 6∈ {vi+1, . . . , vk}
{ v1 := t1, . . . , vk := tk } t → t if v1, . . . , vk do not occur in t

{U } f(t1, . . . , tn) → f({U } t1, . . . , {U } tn)

{U } p(t1, . . . , tn) → p({U } t1, . . . , {U } tn)

{U } ¬φ → ¬{U } φ
{U } (φ ∧ ψ) → {U } φ ∧ {U } ψ

{U } { v1 := t1, . . . , vk := tk } φ → {U, v1 := {U } t1, . . . , vk := {U } tk } φ
{ . . . , v := s, . . . , v := t, . . . } φ → { . . . , v := t, . . . } φ

Fig. 2. The main application rules for updates in WhileDL. Further rules to simplify
updates can be formulated (cf. [8, Chap. 3]), but are not shown here.

[s = t]

Γ ` s = t,∆
=-right

[s ≤ t]

Γ ` s ≤ t,∆
≤-right

[s ≥ t]

Γ ` s ≥ t,∆
≥-right

[s 6= t]

Γ, s = t ` ∆
=-left

[s > t]

Γ, s ≤ t ` ∆
≤-left

[s < t]

Γ, s ≥ t ` ∆
≥-left

Fig. 3. Closure rules for the WhileDL sequent calculus

Example. We illustrate the usage of the sequent calculus by proving the non-
termination of the following program:

Lcm =


a = a0 ; b = b0 ;
while (a 6= b) {

if (a > b) b = b+ b0 else a = a+ a0

}

In case of termination, the post-value of a and b is the least common multiple
of the two integers a0, b0. The program fails, however, to handle negative inputs
correctly: if the signs of a0 and b0 are different, for instance, the program does
not terminate. To prove this formally, we instantiate (1) with Lcm and construct
a proof tree (Fig. 4).

The only step in the course of the proof that requires creativity is the choice
of the formula Inv that is used as invariant when applying the rule While (our
technique for synthesising such formulae is described in the next section). In
terms of the program execution, Inv has to describe a set of program states
that (i) is entered when Lcm reaches the while-loop, (ii) is not left during the
execution of the loop, and (iii) does not contain any states in which the loop
guard becomes false. We chose a < b as invariant in this example, but similar
proofs can be given for the invariants a < 0 ∧ b > 0 or a 6= b. In all cases, the
technique of incremental closure has to be used to determine some initial state
(i.e., values of the variables a0, b0) for which the chosen formula Inv actually
is an invariant and the proof can be closed. The closing constraint in Fig. 4 is
[xa < 1 ∧ xa < xb], which means that we have proven the non-termination for
initial states (a0, b0) like (0, 1), (0, 2), (−10,−5), etc.

4 Automatically Detecting Non-Termination

In our work, we developed an algorithm to identify non-terminating programs au-
tomatically. It has two components, an invariant generator and a theorem prover.
The theorem prover is used to prove formulae which state the non-termination of
a program. This done by construction of proof trees using the calculus rules and
incremental closure, described in Sect. 3. The other component, the invariant
generator, is used to provide and refine invariants for the theorem prover. It was
used to construct the invariant a < b from the previous section in a systematic
way.

The idea of the algorithm is to construct a non-termination proof as described
in the preceding section. The essential part of a non-termination proof is the
invariant which is used in the application of the While rule. Our algorithm tries
to find this invariant by repeatedly constructing proof attempts. In each iteration
a different invariant is used, starting with the formula true, representing that the
prover has no knowledge about the invariant at start up. After each failed proof
attempt, the incomplete proof tree is examined. The retrieved information from
this examination is then used to refine the invariant. There are several ways of
refinement of which one uses template variables for the invariants.

[xa < xb]

xa ≥ xb ` ≥-left

` xa < xb
(∗)

` {U0, a := xa, b := xb } a < b
∗→ Inv. Preservation Inv. Usage

` {U0, a := xa, b := xb } [while (a 6= b) β] false
While

` {U0, a := xa, b := x2 } [b = b0 ; while (a 6= b) β] false
Assign,

∗→

` {U0, a := x1, b := x2 } { a := a0 } [b = b0 ; while (a 6= b) β] false
∗→

` { a0 := xa, b0 := xb, a := x1, b := x2 } [a = a0 ; b = b0 ; . . .] false
Assign

` { a0 := xa, b0 := xb, a := x1, b := x2 } [Lcm] false

∗.... (∗)

[xa < 1]

fa ≤ fb − 1, fa ≥ fb − xa, xa ≥ 1 ` ≥-left

fa ≤ fb − 1 ` fa + xa < fb
(∗)

fa ≤ fb − 1 ` {U0, a := fa + xa, b := fb } [] a < b
Skip,

∗→

fa ≤ fb − 1 ` {U0, a := fa, b := fb } [a = a+ a0] a < b
Assign,

∗→

fa ≤ fb − 1 ` fa 6> fb → {U0, a := fa, b := fb } [a = a+ a0] a < b
(∗)

fa ≤ fb − 1 ` {U0, a := fa, b := fb } (a 6> b→ [a = a+ a0] a < b)
∗→

fa ≤ fb − 1 ` {U0, a := fa, b := fb } [if (a > b) . . . else . . .] a < b
If

` fa < fb ∧ fa 6= fb → {U0, a := fa, b := fb } [β] a < b
(∗)

` {U0, a := xa, b := xb } { a := fa, b := fb } (a < b ∧ a 6= b→ [β] a < b)
∗→

Inv. Preservation

∗
` ga < gb ∧ ga = gb → {U0, a := ga, b := gb } [] false

(∗)

` {U0, a := xa, b := xb } { a := ga, b := gb } (a < b ∧ a = b→ [] false)
∗→

Inv. Usage

Fig. 4. Proof for the (potential) non-termination of the program Lcm using the in-
variant a < b. The proof can be closed with the constraint [xa < 1 ∧ xa < xb], which
describes a set of initial states that causes Lcm to diverge. We write β for the body of
the while-loop, fa, fb, ga, gb as abbreviation for the Skolem terms fa(xa, xb), fb(xa, xb),
ga(xa, xb), gb(xa, xb), and U0 as abbreviation for the update a0 := xa, b0 := xb. Rewrit-
ing steps to apply updates are denoted by

∗→ , whereas (∗) means that rules for propo-
sitional and arithmetic reasoning are applied which are not shown in detail.

It. cur. Inv. Open goals Queue after step 5 of algorithm

1 true a = b ` b > a, b < a, b < Ub, a < Ua, b > Lb, a > La, a 6= b
2 b > a none b < a, b < Ub, . . .

Fig. 5. Application of the algorithm on Lcm. Technically, a and b in the open goals
are Skolem terms like fa(xa, xb) in Fig. 4, which have to be translated back to obtain
invariants in terms of the program variables. In iteration 2, the non-termination proof
can be closed with the constraint [xa < xb ∧ xa < 1]. The result expresses that Lcm
does not terminate if the initial value of a0 is less than that of b0 and not positive.

A positive result of the algorithm is a successful non-termination proof of the
program together with a description of a set of input values for which the loop
of the program runs forever.

Note on Nested Loops. The algorithm as it is described here is only applicable
to single, unnested loops. As it is always possible to transform nested loops into
unnested ones, this is no real restriction. Besides, in [5] we describe how our
algorithm can be adapted so that it directly works on nested loops.

Outline of the Algorithm. Let α be the program whose termination is in
question. The input of the algorithm is α’s source code, which is inserted into a
WhileDL formula φ (formula (1) in Sect. 3) which states that there are inputs
for which α does not terminate.

Initialisation

1. The formula φ is handed over to the theorem prover. The proof procedure
is invoked and constructs a proof tree in which the program is symbolically
executed until the execution reaches the loop.

Iteration

2. The proof procedure applies the invariant rule While (Fig. 1). The invariant
Invcur which is used in the invariant rule’s application is chosen from a queue
of invariants. Initially there is only Invcur ≡ true in the queue.

3. The proof procedure keeps on constructing the proof as far as possible with-
out human interaction.

4. If the proof procedure can close the proof, the algorithm terminates with the
result that the program does not terminate. If the proof cannot be closed,
the open goals of the proof are extracted and handed over to the invariant
generator.

5. The invariant generator inspects the formulae of the open goals. The ob-
tained information is used to refine the invariant candidate to create one or
more new candidates, which are then added to the queue.

The algorithm repeats step 2 to 5 iteratively, each time using one of the
invariant candidates from the invariant queue. The iterations are carried out
until one of these events occurs: the proof can be closed with the help of the
invariant candidate, the algorithm runs out of new invariant candidates or a
maximum number of iterations is reached. In case of a successful termination
of the algorithm, it outputs the invariant used for the final proof, together with
the (consistent) closing constraint.

There are three parts of step 5 of the algorithm that we like to describe in
more detail. The first is the actual creation of the invariants.

Invariant Creation. There are different methods to create new invariants from
the open goals of failed proofs. Assume that we obtained the open goal

φ1, . . . , φn ` ψ1, . . . ψm

where φi and ψi are WhileDL-formulae. Given such an open goal, the invariant
generator creates invariant fragments ρ which are conjunctively added to the
invariant Invcur which was used in the current iteration to obtain a new invari-
ant Invnew = Invcur ∧ ρ. The invariant fragments are created by the following
operations:

– Add. A formula ψi in the succedent states a situation in which there is a
problem with the non-termination proof when ψi does not hold. Most often
that means that in this situation the loop actually terminates. We exclude
this situation by setting ρ = ψi.

– NegAdd. A formula φi in the antecedent means that there is a problem
with the non-termination in the situation where φi holds. Here, the same
idea applies as for formulae in the succedent, but in this case we have to
negate it before we add it to the old invariant, which means ρ = ¬φi.

– Ineq. In case a formula φi of the antecedent is of form φi ≡ a = b, we do not
only add the negation as in negAndAdd, but an inequality. That means
from a = b we obtain two fragments ρ1 ≡ a ≥ b and ρ2 ≡ a ≤ b, yielding
two different new invariants.

– IneqVar. Often it is useful to express that there are upper or lower bounds
for an expression rather than specifically setting one like in Ineq. This is
done through the introduction of free logical variables. Those variables stand
for particular but not yet specified values. For each term in the open goal, we
provide two new variables U and L, one for the upper and one for the lower
bound. Thus, for each term tk occurring in one φi, we obtain two fragments
ρu

k ≡ tk ≤ Uk and ρl
k ≡ tk ≥ Lk. The values for the new variables are

estimated by the constraint solver of the proof procedure.

The latter two creation methods are of course only applicable if a, b and tk
are expressions of an ordered type, in our case integers.

Invariant Filtering. In the process of invariant creation, sometimes invariant
candidates are created that are not helpful in the search of a non-termination
invariant. This is due to the fact that these methods are applied “blindly” with-
out actually examining the old invariant candidate. Therefore, after the creation
of invariants in step 5 of the algorithm, we filter out those candidates which are
obviously useless:

– Inconsistent Invariant. A newly created invariant candidate can be equiv-
alent to the formula false. Because the first property of non-termination
invariants is that the invariant must hold before the loop execution, it is
dismissed.

– Equivalence to Previous Invariants. A new invariant candidate can be equiv-
alent to a candidate that was already created and/or used in an earlier iter-
ation. Dismissal of these candidates avoid unnecessary calculations and thus
save resources.

– Impossible Closure of the Init-branch. The application of the invariant rule
makes the proof branch into three branches. The first branch proves that the
invariant holds when the loop is reached in the execution of the program. In
the refinement process, invariant candidates might be created that do not
hold in the beginning of the loop, even if they are satisfiable in general. Once
we have created an invariant candidate which prevents the first branch from
closing, it does not make sense to refine any further: refinement would only
strengthen the candidate even more.3

– Complexity. For performance reasons, we set a limit on the complexity of
formulae to keep the runtime at a reasonable level.

Invariant Scoring. In each iteration of the algorithm, when the invariant can-
didates are created and filtered in step 5 still a lot of invariants can remain. In
order to traverse the search space of invariants in a reasonable way, we have
to queue invariants according to their probable usefulness for non-termination
proofs.

We estimate this usefulness by several criteria and express it in a score, which
is a real number between 0 and 1. The lower the score is, the more the invariant
is preferred in the queue. The score is calculated as a weighted average of scores
for each of the following criteria.

– Complexity. In order to find the most general description of a set of critical
inputs, we prefer simple invariants to complex ones. The complexity is mea-
sured in both the term depth and the number of operators of the invariant.

– Existence of Free Variables. The creation method IneqVar is a strong tool
(and sometimes the only effective one) to find the desired invariant. The
problem with free variables is that in cases where they do not lead to a
closed proof, they tend to lead to even bigger open proofs. It is reasonable to
prefer invariant candidates that do not contain free variables to those who do
in order to keep the number of newly created candidates as low as possible.

– Multiple Occurrence of Formulae. In an open proof, sometimes the same
formulae occur in several open goals. We prefer invariant candidates made
from those formulae to others, because if the candidate makes the algorithm
close branches, it will close several branches in the same proof.

– Reoccurring Formulae. Formulae which occurred in open proofs in several it-
erations of the algorithm might be suitable candidates for the next invariant,
because they hint to situations where the non-termination proof repeatedly
failed.

3 The filtering of inconsistent invariants is subsumed in this filter. We kept it in the list
of filters, because checking for inconsistency is easier than for closure of the initial
branch. So, for performance reasons it is useful to first check only for consistency
before examining the closability of the first branch.

– Proof Size. We presume that the smaller an open proof is (measured in the
number of open goals) the closer it is to being closed. Therefore we prefer
formulae which come from small open proofs to those from big open proofs.

Experiments have shown that the choice and weighting of the criteria is
extremely important for the search in the space of invariants. In our work, we
ran several experiments to test the impact of different heuristics, the results of
which are given in Sect. 5 and [5].

Examples. We apply our algorithm to the example programs Fib and Lcm, of
which the latter one was introduced in Sect. 3 already. For the sake of simplicity,
we assume that for scoring of the invariants only the criteria of complexity is
applied.

Example Lcm. Fig. 5 shows how the algorithm works on Lcm. In this case all
presented creation methods are used.

Example Fib. Given a Fibonacci number n as input, Fib calculates how many
calculation steps are necessary in the series of Fibonacci numbers to reach n. The
result is stored in variable c. In case n is not a Fibonacci number, the program
does not terminate.

Fib =


i = 0 ; j = 1 ; t = 0 ; c = 2 ;
while (j 6= n) {

t = j + i ; i = j ; j = t ; c = c+ 1
}

In contrast to Lcm, the algorithm needs several refinement steps (Fig. 6)
to prove the non-termination of Fib. The input variable n is associated with
the free logical variable xn. This time, we used only the creation methods Add,
NegAdd, Ineq, together with the complexity scoring criterion. We abstained
from showing the creation method IneqVar, because it increases the number of
necessary iterations too much to be shown here. However, we did run the same
experiment with IneqVar and will present the results in the following section.

Properties of the algorithm We would like to have a closer look at the
properties of the algorithm which we presented here.

– Soundness. The algorithm is sound for non-termination: it will never iden-
tify a terminating program as non-terminating. This is an immediate conse-
quence of the soundness of the calculus from Sect. 3, because non-termination
is only reported if it was possible to construct a proof for it. Applied to a
terminating program, the algorithm will fail to find such a proof and will
output that it was not able to prove non-termination.

– Incompleteness. Unfortunately, but expectedly, both our calculus and the
algorithm are not complete for non-termination: there are programs that
do not terminate for some inputs, but there is no proof of this fact in the
calculus from Sect. 3. This is implied by the soundness, because the set of
programs that do not terminate for some inputs is not recursively enumer-
able.4 Because the algorithm is based on heuristics, it might also fail to find
existing non-termination proofs for a program, of course.

– Automation. The algorithm works fully automatic, in the sense that no man-
ual “human” actions are necessary to obtain the results.

– Determinism. The algorithm is deterministic, because for the same input it
always produces the same results. The indeterministic calculus which forms
the base of the prover is made deterministic by choice of heuristics and
prioritisation.

– Termination. Our algorithm itself always terminates. This is ensured by
setting an upper limit for the number of iterations, and by limiting the size
of proofs in the calculus from Sect. 3 that are constructed. Of course these
limits have to be chosen carefully, because the lower they are the fewer non-
terminating programs can be identified.

5 Experiments

We implemented the algorithm, which we presented in Sect. 4 in particular we
wrote the part of the invariant generator and used the software KeY [8] as the-
orem prover. Both are written in Java. Since there was no publicly available
standardised example set of non-terminating programs, we built up one to esti-
mate the quality of our approach and test different heuristics.

Example Set. Our example set consists of 55 programs, of which 53 are known to
be non-terminating for all or some input values, one whose termination behavior
is not fully known and one which is terminating. All programs are written in a
fragment in Java, which captures the functionality of the While language which
we described in Sect. 2. They have between one and five variables and up to 25
lines of code. We chose them either because they represent typical programming
errors or because they reveal very tricky non-termination behavior.

Results of the Experiments. We tested different settings concerning creation and
scoring of invariants in several experiments [5]. Our software could solve 41 of
the 55 examples automatically, but not more than 37 with one setting. This fact
shows how sensitive the algorithm’s heuristics are.

Some of the experiments were used to estimate the usefulness of the different
creation methods of Sect. 4, in particular the method IneqVar. Experiments
who included free logical variables as invariant templates could solve about 20%
more problems than those who did not. Free variables are obviously a strong tool
4 Note that the set of programs that terminate for all possible inputs is not recursively

enumerable either.

It. cur. Inv. Open goals

1 Inv1 ≡ true j = x `
2 Inv2 ≡ j > x x ≥ 1 ` , j ≤ x− i, i ≤ −1, j ≥ 1 + x `
3 Inv3 ≡ j < x x ≤ 1 ` , i ≥ 1, j ≥ x− i, j ≤ −x `
4 Inv4 ≡ j 6= x x = 1 ` , j = x− i, i = 0 `
5 Inv5 ≡ j > x ∧ x < 1 x ≥ 1 ` , j ≤ x− i, x ≤ 0, i ≤ −1, j ≥ 1 + x `
6 Inv6 ≡ j > x ∧ x > −1 none

The next invariants to be tried:

Inv7 ≡ j < x ∧ x > 1 Inv14 ≡ j 6= x ∧ j > x− i
Inv8 ≡ j < x ∧ i < 1 Inv15 ≡ j > x ∧ x < 1 ∧ x > 0
Inv9 ≡ j 6= x ∧ i = 0 Inv16 ≡ j > x ∧ j > x− i
Inv10 ≡ j 6= x ∧ x > 1 Inv17 ≡ j < x ∧ j < x− i
Inv11 ≡ j 6= x ∧ x < 1 Inv18 ≡ j 6= x ∧ j 6= x− i
Inv12 ≡ j 6= x ∧ x 6= 1 Inv19 ≡ j > x ∧ x < 1 ∧ j > x− i
Inv13 ≡ j > x ∧ x < 1 ∧ i > −1

Fig. 6. Application of the algorithm on example Fib. Again, technically, i and j in
the open goals are Skolem terms like fa(xa, xb) in Fig. 4. In iteration no. 6, the non-
termination proof can be closed with the constraint [xn < 1 ∧ −2 < xn] for the free
variables. This result expresses that for n being 0 or −1, Fib does not terminate. The
following invariants were dismissed by the filters because of inconsistency: j > xn∧j <
1 + xn, j < xn ∧ j > xn − 1, and j > xn ∧ xn < 1 ∧ j < 1 + xn.

(and sometimes the only one) which leads to successful non-termination proofs.
Unfortunately, they increase the complexity of proofs in case they do not lead
to a closed proofs. In some cases this led to the situation that the algorithm
reached the limit of iterations before a suitable invariant was found. This is also
the case when the target program is actually terminating for all initial states. The
average number of iterations in successful cases (that means a suitable invariant
was found) lay between 1.5 and 3.5 depending on the heuristics.

The example Lcm of Sect. 4 was solved in all experiments. The number
of necessary iterations lay between 2 and 8 iterations. The example Fib was
solved by some of the experiments and their number of iterations was between
6 and 39 iterations. The best run is illustrated in Fig. 6. Using the creation
method IneqVar, the number of iteration raises (depending on the heuristics).
An invariant which was found in this case is j > Lj∧i > Li, where the proof was
closed with the (simplified) constraint [Lj = −1 ∧ Li = −1 ∧ x < 0]. Invariant
and constraint describe the situation where the input value n is negative and
the variables j and i are non-negative (which is always the case).

The example set and the implementation of the software is publicly available
at http://www.key-project.org/nonTermination/.

6 Related Work

Although the development of termination checkers is a flourishing research sub-
ject, we only know of two methods (and implementations) that are directly
comparable to the non-termination analysis presented in this paper:

The more similar approach is [11], which uses concolic program execution to
search for lassos (loops) in a program, and constraint solving for proving the
feasibility of lassos. The latter part is similar to the invariant generation method
shown in the present paper, but it does not make use of counterexamples to refine
invariant candidates. Because we use purely symbolic reasoning to determine
critical initial program states, it can also be expected that our approach is able
to derive more general descriptions of such input states than [11], at the cost of
being less scalable.

Secondly, the AProVE system [12] is able to prove both the termination and
non-termination of term rewrite systems [13] and is in principle also applicable to
imperative programs: such programs can be analysed after a suitable translation
to rewrite systems [2]. So far, existing translations are incomplete, however,
which means that the resulting rewrite system might be non-terminating even
if the original program is terminating.

Construction of invariants using invariant templates and constraint solving
is an approach that is employed in many contexts, e.g., [14, 15]. The principle is
usually not embedded in a program logic as it is done in the present paper.

The iterative refinement of invariants described in this paper has some sim-
ilarities to iterative backwards-propagation of assertions, which is described in
[16] but can, in some form or another, be found in many static program analysis
techniques.

7 Conclusion and Future Work

We have introduced a novel approach to automated detection of non-termination
defects in software programs. The approach is built on the basis of a sequent
calculus for dynamic logic and works by generating invariants that prove the
unreachability of terminating states. In experiments, the majority of our example
programs could automatically be proven non-terminating. Furthermore, when
experimenting with more complex non-terminating Java programs [5], we found
that also here it is often possible to find small and simple invariants that witness
non-termination. The intuitive explanation for this is that (i) the usage of the
invariant rule While (with anonymising updates) allows to ignore those parts
of the program state that are not changed in the loop, and that (ii) the precise
character of state changes caused by a loop can be ignored in the invariant as
well, as long as non-termination is preserved. Although further investigations
concerning such programs are necessary, this indicates that our method is also
applicable to programs that operate on heap data structures.

When moving from the while-language to actual Java-like programs, one
modification of the algorithm that appears helpful is to automatically add heap-

wellformedness conditions to the invariant candidates. Partly, this is a conse-
quence of using dynamic logic for Java [8, Sect. 3], in which properties like
“attributes of allocated objects only point to allocated objects” are non-trivial
and can be difficult to synthesise for the invariant generator. Another aspect
that becomes more central with Java programs is the detection of the variables
and heap locations that a loop can assign to. It might be useful to determine
also these locations incrementally and simultaneously with the loop invariant,
based on failed proof attempts.

As a prerequisite for more extensive experiments, we want to develop an
implementation of our non-termination checker that is more tightly integrated
with the program verification tool used. This way, we expect to achieve a signif-
icantly higher performance. On the more theoretic level, we are in the process
of investigating the usage of closure constraints (Sect. 3) more systematically in
order to define fragments of first-order logic with integer arithmetic for which
the calculus is complete, and in order to further develop the approach.

Acknowledgements

We like to thank the following people for constructive feedback and support:
Richard Bubel, Prof. Reiner Hähnle, Mattias Ulbrich, Benjamin Weiss and all
others of the KeY-group. Besides we like to thank Prof. Giesl for supporting the
diploma thesis which was the base for this paper.

References

1. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond safety. In: CAV ’06,
Proceedings of the 18th International Conference on Computer-Aided Verification.
LNCS, Springer (2006) 415–418

2. Sondermann, M.: Automatische Terminierungsanalyse von imperativen Program-
men. Master’s thesis, RWTH Aachen University, Aachen, Germany (2006)

3. Rümmer, P., Shah, M.A.: Proving programs incorrect using a sequent calculus for
Java Dynamic Logic. In Gurevich, Y., Meyer, B., eds.: Tests and Proofs, First
International Conference, TAP 2007, Zurich, Switzerland. Revised Papers. Volume
4454 of LNCS., Springer (2007) 41–60

4. Fitting, M.C.: First-Order Logic and Automated Theorem Proving. 2nd edn.
Springer-Verlag, New York (1996)

5. Velroyen, H.: Automatic non-termination analysis of imperative programs. Mas-
ter’s thesis, Chalmers University of Technology, Aachen Technical University,
Göteborg, Sweden and Aachen, Germany (2007)

6. Winskel, G.: The Formal Semantics of Programming Languages. MIT Press,
Cambridge, Massachusetts (1993)

7. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
8. Beckert, B., Hähnle, R., Schmitt, P.H., eds.: Verification of Object-Oriented Soft-

ware: The KeY Approach. Volume 4334 of LNCS. Springer (2007)
9. Rümmer, P.: A sequent calculus for integer arithmetic with counterexample gen-

eration. In: Proceedings of 4th International Verification Workshop (VERIFY’07).
Volume 259 of CEUR (http://ceur-ws.org/). (2007)

10. Giese, M.: Incremental closure of free variable tableaux. In Goré, R., Leitsch,
A., Nipkow, T., eds.: Proceedings, IJCAR, Siena, Italy. Volume 2083 of LNAI.,
Springer (2001) 545–560

11. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.G.: Proving
non-termination. In Necula, G.C., Wadler, P., eds.: ACM Symposium on Principles
of Programming Languages (POPL), San Francisco, USA, ACM (2008) 147–158

12. Giesl, J., Schneider-Kamp, P., Thiemann, R.: Aprove 1.2: Automatic termination
proofs in the dependency pair framework. In: Proceedings, IJCAR, Seattle, USA.
Volume 4130 of LNAI., Springer (2006) 281–286

13. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination
of higher-order functions. In Gramlich, B., ed.: FroCos. Volume 3717 of LNCS.,
Springer (2005) 216–231

14. Kapur, D.: Automatically generating loop invariants using quantifier elimination.
In Baader, F., Baumgartner, P., Nieuwenhuis, R., Voronkov, A., eds.: Deduc-
tion and Applications. Number 05431 in Dagstuhl Seminar Proceedings, Schloss
Dagstuhl, Germany (2006)

15. Colón, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using
non-linear constraint solving. In Jr., W.A.H., Somenzi, F., eds.: CAV. Volume
2725 of LNCS., Springer (2003) 420–432

16. Bjørner, N., Browne, A., Manna, Z.: Automatic generation of invariants and in-
termediate assertions. Theor. Comput. Sci. 173(1) (1997) 49–87

