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Abstract

We describe a uniform and efficient framework for check-

ing the satisfiability of a large class of string constraints.

The framework is based on the observation that both sat-

isfiability and unsatisfiability of common constraints can

be demonstrated through witnesses with simple patterns.

These patterns are captured using flat automata each of

which consists of a sequence of simple loops. We build

a Counter-Example Guided Abstraction Refinement (CE-

GAR) framework which contains both an under- and an

over-approximation module. The flow of information be-

tween the modules allows to increase the precision in an au-

tomatic manner. We have implemented the framework as a

tool and performed extensive experimentation that demon-

strates both the generality and efficiency of our method.

CCS Concepts • Security and privacy → Logic and ver-

ification; • Software and its engineering → Formal meth-

ods

Keywords String Equation; Formal Verification; Automata

Theory

1. Introduction

Background. There has been a substantial amount of re-

search in recent years on the development of solvers for

string constraints [3, 25, 38, 43, 50]. This has been moti-

vated by numerous application areas such as security, web

programming, and model checking. For instance, cross-site

scripting (XSS), one of the most common types of web vul-

nerabilities, may be used by attackers to bypass access con-

trols and is typically caused by improper handling of strings

by web applications [27]. Verification techniques such as

regular model checking [1], use string constraints as sym-

bolic encodings of infinite sets of program states.

A major difficulty in the analysis of string manipulating

programs is that any reasonably comprehensive theory over

strings is either undecidable or difficult to the degree that the

decidability problem has been open for many years [8, 17,

18, 31]. Therefore, existing string solver tools handle only

fragments of the theory of strings and regular languages,

sometimes with strong restrictions on the expressiveness

and the input language. Another source of difficulty is the

diversity of the application areas which means that string

constraints come in very different forms.

It is not trivial to combine solutions for different types of

constraints in a single framework. In fact, many classes of

constraints, such as membership in context-free grammars

and transducers are not supported by current tools. This rep-

resents an important limitation for several applications. In-

deed, to mention a few examples, the ability to reason about

context-free grammars and transducers is crucial for pre-

cisely detecting SQL and command injections in web ap-
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plications [41, 47], for comparing grammars or reasoning

about the ambiguities or correctness of parsers [29], or for

enabling deeper symbolic testing [22]. For instance, SQL in-

jections occur when valid SQL queries (i.e. words belonging

to a specific context-free grammar) are built from subwords

with a meaning that is different from the one intended by

the programmer (which could also be expressed in terms of

a context-free membership constraint [41]). In addition, pre-

cisely tracking all possible queries requires the ability to cap-

ture the effect of string-manipulating operations using trans-

ducers, word equations, and length constraints.

Framework. We propose a novel technique, called flatten-

ing, to solve the satisfiability problem for string constraints.

A flat automaton is defined by an abstraction parameter con-

sisting of a pair α = ⟨p,q⟩ of natural numbers. A run of a flat

automaton iterates a sequence of q loops each corresponding

to a fixed word of length at most p (see Fig. 2). Flattening of

a constraint means that we perform an under-approximation

in which we restrict the search for solutions to only those

strings that are generated by a flat automaton.

We build our framework using a classical concept from

language theory, namely that of Parikh images [33]. The

Parikh image of a word over a given alphabet counts the

number of occurrences of each symbol in the word with-

out regard to their order. The Parikh image of a language is

the set of Parikh images of the words in the language. We

say that a language is Parikh-definable, if its Parikh image

is computable as a quantifier-free Presburger formula (linear

arithmetic). If a language is Parikh-definable, then we can

use an SMT-solver to check its emptiness. More precisely,

we first compute its Parikh image as a quantifier-free Pres-

burger formula. Since SMT-solvers can check the satisfia-

bility of such formulas, we can feed the generated formula

to the SMT-solver. The language is empty if and only if the

SMT-solver concludes that the formula is unsatisfiable.

The framework is applicable to any class of constraints

satisfying a sufficient condition which states that the flat-

tening of any constraint is Parikh-definable. We show that

this condition is satisfied by a wide class of constraints. For

instance, for a constraint φ that requires membership in a

context-free grammar G, we show that we can derive a new

grammar G′ that captures the flattening of φ (i.e., the set of

strings that are accepted by G and by the flat automaton).

Then our sufficient condition follows since context-free lan-

guages are Parikh-definable in general, and hence in partic-

ular (the language of) G′ is Parikh-definable. Furthermore,

we show that the flattening of a word equation can be cap-

tured using a finite-state automaton. This implies our suffi-

cient condition by Parikh-definability of regular languages.

In fact, using a similar pattern, we can cover all kinds of

string constraints known to us from applications, including

word equations, length constraints, membership in context-

free grammars, and transducer relations. We show that the

flattening operation can be performed in polynomial time.

It is well-known that computing the Parikh image of con-

straints in the above form can be performed in polynomial

time. Thus, our scheme translates in a uniform way and in

polynomial time the satisfiability of a flat constraint to the

satisfiability of a quantifier-free Presburger formula. This al-

lows the leveraging of available powerful SMT-solvers for

linear arithmetic such as Z3 [11], CVC4 [6], Princess [7],

MathSat [9], or Yices [12].

Flat automata enjoy two properties that make them attrac-

tive for the analysis of string constraints. First, the simplicity

of the structure of flat automata allows efficient computa-

tion of their products with string constraints. Second, as we

demonstrate through our experiments, although solutions to

string constraints may have large sizes, they usually follow

simple patterns that can easily be captured by flat automata

that are small in size, thus making the analysis extremely

efficient compared to existing tools.

Based on flat automata, we have developed a Counter-

Example Guided Refinement (CEGAR) framework in which

two procedures are run in an alternating manner: one that

considers an under-approximation of the input constraints,

based on satisfiability checking; and one that considers an

over-approximation, based on unsatisfiability checking. The

approximations are refined on demand by letting informa-

tion flow between the two modules. More precisely, if the

under-approximation fails to find a solution for a given set of

abstraction parameters, then this information is used for ex-

cluding an infinite set of solutions when performing the next

over-approximation. Furthermore, if the over-approximation

produces a counter-example then it can be used to adjust the

abstraction parameters so that the counter-example is not re-

generated during subsequent iterations of the procedure.

We have implemented our framework in an open source

solver, called TRAU
1, using Z3 [11] as an SMT solver. We

are not aware of other solvers that can handle the same set

of string constraints without restricting the lengths of the so-

lutions. Therefore, we have evaluated TRAU using two sepa-

rate sets of benchmarks. First, we compare TRAU against ex-

isting state-of-the-art solvers for string equations with length

and regular constraints using the Kaluza benchmarks [38].

Then, we use a set of string constraints with CFG queries in

order to verify the absence of SQL injections. The experi-

ments demonstrate both the generality and efficiency of our

method.

Summary of Contributions.

• A fundamentally new method for checking satisfiability

of string constraints based on the concept of flattening.

The method is general and allows the handling of all

classes of constraints known to us from applications.

• An algorithm that translates the satisfiability of flat con-

straints to the satisfiability of quantifier-free Presburger

formulas, thus allowing the use of powerful SMT solvers.

1 TRAU, pronounced /chow/, is a buffalo - a mascot in Vietnamese culture.
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• A CEGAR framework that allows the flow of information

between an under- and over-approximation module, lead-

ing to more and more precise approximations.

• Implementation of an open source tool with experimental

results that demonstrate the efficiency and generality of

our approach on both existing and original benchmarks.

2. Related Work

Already in 1946, Quine [36] showed that the first order the-

ory of string equations is undecidable. An important line

of work has been to identify subclasses for which decid-

ability can be achieved. The pioneering work by Makanin

[30] proposed a decision procedure for quantifier-free word

equations, i.e., Boolean combinations of equalities and dis-

equalities, where the variables may denote words of arbi-

trary lengths. The decidability and complexity of differ-

ent subclasses have been considered by several works, e.g.

[17, 18, 31, 34, 35, 37, 40].

Generalizations of the work of Makanin by adding new

types of constraints have been difficult to achieve. For in-

stance, the satisfiability of word equations combined with

length constraints of the form ∣x∣ = ∣y∣ is open [8]. The prob-

lem of checking satisfiability for the class of constraints we

consider in this paper is undecidable due to having context-

free grammars and transducers.

Over the last years, several SMT solvers for strings and

related logics have been introduced, applying a variety of

calculi and algorithms. A number of tools handle string

constraints, including context-free grammars, by means of

length-based under-approximation and translation to bit-

vectors [24, 38, 39], assuming a fixed upper bound on the

length of the possible solutions. Our under-approximation of

string constraints using flat automata is more powerful since

we can find solutions of unbounded length; in addition, in

our work also over-approximations are used to show unsat-

isfiability.

More recently, also DPLL(T)-based string solvers lift

the restriction to strings of bounded length; this genera-

tion of solvers includes Z3-str2 [50], CVC4 [25], S3 [43],

and Norn [3]. DPLL(T)-based solvers handle a variety of

string constraints, including word equations, regular expres-

sion membership, length constraints, and (more rarely) reg-

ular/rational relations; the solvers are not complete for the

full combination of those constraints though, and often only

decide a (more or less well-defined) fragment of the indi-

vidual constraints. Equality constraints are normally handled

by means of splitting into simpler sub-cases, in combination

with powerful techniques for Boolean reasoning to curb the

resulting exponential search space. A recent paper [27] also

proposes a splitting-based method to solve relational con-

straints defined by transducers. In comparison, our frame-

work handles a larger set of constraints, including context-

free grammars and transducers, and proposes a novel ap-

proximation scheme that avoids splitting of equations alto-

gether. Splitting of equations can cause an explosion in the

number of cases to be investigated by solvers.

A further direction is automata-based solvers for ana-

lyzing string-manipulated programs. Stranger [48] soundly

over-approximates string constraints using regular lan-

guages, and outperforms DPLL(T)-based solvers when

checking single execution traces, according to some eval-

uations [23]. It has recently also been observed [46] that

automata-based algorithms can be combined with model

checking algorithms, in particular IC3/PDR, for more ef-

ficient checking of the emptiness for automata. However,

many kinds of constraints, including length constraints,

word equations, and context-free grammars, cannot be han-

dled by automata-based solvers in a complete manner. Our

framework uses flat automata to define both over- and under-

approximations of constraints, but not to represent string

constraints in their entirety. Thus we remove some of the

main limitations of previous automata-based approaches: a

larger range of constraints can be handled, and satisfying as-

signments can be computed.

Flat automata (or equivalently bounded languages [20,

21]) have been also used in the context of verification of con-

current recursive programs (e.g., [5, 13, 15, 16, 19, 28]). In

particular the work [28] uses a similar CEGAR approach for

the verification of safety properties for concurrent recursive

programs. However, the application of the CEGAR approach

to the case of string constraints raises several new challenges

since it requires (1) new methods for checking satisfiability

of string constraints based on the concept of flattening and

(2) new over-approximation techniques. To the best of our

knowledge, such CEGAR frameworks have not been applied

for string solving.

3. Overview

We give an overview of the framework and illustrate the

main ingredients using a simple example.

Framework. Our procedure for solving string constraints

is depicted in Fig. 1. The procedure inputs a set ψ of string

constraints. If it terminates then it either returns the value �
which means that ψ is unsatisfiable, or it returns a solution v

to ψ. In general, termination is not guaranteed. This is to be

expected since the problem of solving string constraints, in

the general class considered in this paper, is undecidable.

The procedure consists of a sequence of under- and over-

approximation phases, one followed by the other. We main-

tain a set Waiting of abstraction parameters, to be consid-

ered by the under-approximation module in the coming it-

erations. Each iteration of the under-approximation module

selects and removes one such a parameter α from the set.

The parameter α is moved to the set Covered that contains

all the abstraction parameters that have already been con-

sidered by the under-approximation. The procedure flattens

the input set ψ wrt. α, and computes its Parikh image as a

quantifier-free Presburger formula ρ which is given to the
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Figure 1. Overview of Framework

SMT solver. If ρ is satisfiable, then the SMT solver will out-

put a satisfying assignment that is translated to a satisfying

assignment v of ψ. The assignment v is output to the user

and the procedure terminates. On the other hand, if the SMT

solver concludes that there is no satisfying assignment then

the under-approximation module fetches the next parameter

from the set Waiting and repeats the loop. This continues un-

til either a satisfying assignment is found or the set Waiting

becomes empty. In the latter case, we have run out of param-

eters. This ends the current under-approximation phase, and

triggers an over-approximation phase.

The over-approximation procedure uses the set Covered

to prune the search space of solutions. More precisely, at this

stage, we know that the under-approximation has checked

satisfiability for all the current elements of Covered. There-

fore, we know that ψ is not satisfiable for any one of them.

Consequently, the over-approximation needs only to search

for solutions outside the languages of the corresponding flat

automata. If the over-approximation does not find a solution,

then we know that ψ is unsatisfiable, and the procedure can

terminate. However, if the over-approximation finds a solu-

tion v, then we need to check whether v is a spurious or

genuine solution of ψ. This can be done by simply running

the under-approximation on v. However, in order to increase

efficiency, we use v to accelerate the under-approximation.

To that end, we generate the minimal elements of the set

of all abstraction parameters whose corresponding automata

accept v, and put them in the set Waiting. Our experiments

indicate that these minimal elements have often small values

even for long strings. Now, the over-approximation phase

terminates and the next under-approximation phase starts.

Notice that parameters that have been added to the set

Waiting ensure the potential solution v will be considered by

the under-approximation. In fact, if v is a genuine solution

then this will be detected by the under-approximation in the

next phase. If the under-approximation fails to find a solution

even during the next phase, then since we move all the new

parameters to the set Covered, v will not be re-generated in

the subsequent phases by the over-approximation.

Observe that the flow of information between the two

modules is carried out using the sets Waiting and Covered.

The parameters considered by the under-approximation are

used to prune an infinite set from the state space searched

by the over-approximation. Also, spurious counter-examples

provided by the over-approximation generate new sets of

parameters on which the under-approximation can be per-

formed.

The framework is not dependent on the particular over-

approximation scheme used. In fact, any algorithm which re-

turns a potential solution to ψ is sufficient for our purposes.

In this paper, we considered a simple over-approximation

scheme which consists in: (1) Replacing a membership con-

straint in a context-free grammar G by a membership con-

straint in a regular language . The regular language may be

the upward closure of the language of G [4, 45], the down-

ward closure [10, 44], or some other over-approximation,

e.g., the one in [32]. (2) Replacing a transducer constraint

by a conjunction of membership constraints in regular lan-

guages where each regular language captures the projection

of the transducer language on one of its tapes, and (3) En-

suring that there are no cyclic dependencies among variables

that appear in the set of (dis-)equality constraints [2]. This is

done by replacing any occurrence of a variable x by a fresh

copy that satisfies the same membership and length con-

straints as x. The resulting set of string constraints ψ falls

in the decidable fragment of the theory of strings with reg-

ular and length constraints on which a similar technique to

that of Norn [2, 3] can be applied.

Example. Consider the grammar G ∶ S → a S b ∣ S b ∣ ǫ
containing the start symbol S and two terminals a and b.

Consider the set of constraints φ1 ∶ x ∈ G, φ2 ∶ y ∈ G,

φ3 ∶ x = a ● y ● z, and φ4 ∶ x = y ● t, i.e., we have two

grammar constraints and two word equations. We apply our

CEGAR framework on the example as follows:

Step 1: Over-approximation. We over-approximate the

grammar constraints φ1 and φ2 and the equality constraints

φ3 and φ4. In the current example, we use the downward

closure [10, 44] as an over-approximation scheme for gram-

mars. As mentioned above, other over-approximations such

as taking upward closures are also possible to use. Applying

the method of [10] transforms G to the regular expression

a∗b∗. Furthermore, the constraints φ3 and φ4 build a cyclic

dependency in the sense of [2], since they imply a●y●z = y●t
in which the variable y appears in both sides of the equality.

Such a cycle causes existing string solvers such as Norn [3],

Z3-str [49], or S3P [42] to run forever. Therefore, we rewrite

the equalities using four fresh copies x1, x2, y1 and y2 of

the variables x and y. Thus, we obtain a new set of con-

straints φ′
1,1 ∶ x1 ∈ a

∗b∗, φ′
1,2 ∶ x2 ∈ a

∗b∗ φ′
2,1 ∶ y1 ∈ a

∗b∗,

φ′
2,2 ∶ y2 ∈ a

∗b∗, φ′
3
∶ x1 = a ● y1 ● z, and φ′

4
∶ x2 = y2 ● t.
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We check the satisfiability of these constraints using one of

above mentioned external solvers, and obtain the satisfying

assignment v1 where v1(x1) = aa, v1(x2) = aa, v1(y1) = a,

v1(y2) = aa, v1(z) = ǫ, and v1(t) = ǫ. The strings aa, a,

and ǫ can all be generated by flat automata each with one

loop whose length is one. Therefore, from v1 we compute

the minimal abstraction parameter α1 = ⟨p1,q1⟩ = ⟨1,1⟩.
We add α1 to the set Waiting.

Step 2: Under-approximation. Currently, the set Waiting

contains one element namely α1. We fetch α1 from Waiting

and add it to the set Covered. We under-approximate the

constraints with ⟨1,1⟩. First, we flatten G with ⟨1,1⟩ obtain-

ing x ∈ b∗ and y ∈ b∗. The under-approximation is unsat-

isfiable since, in the flattening of φ3, the string assigned to

x must start with a. This will be detected by the procedure

since the Parikh image of b∗ captures the fact that we can

have any number of b:s and no a:s, while the Parikh image

of the flattening of φ3 requires at least one occurrence of a.

Step 3: Over-approximation. We run the over-

approximation again, but now we refine it by adding

the complement of x, y ∈ b∗, z, t ∈ a∗ + b∗. We run a

solver again and obtain a new satisfying assignment v2
where v2(x1) = aaab, v2(x2) = aaab, v2(y1) = aab,

v2(y2) = aaab, v1(z) = ǫ, and v1(t) = ǫ. From

v2, we compute the minimal abstraction parameters

α2 = ⟨p2,q2⟩ = ⟨1,2⟩ and α′
2
= ⟨p′

2
,q′

2
⟩ = ⟨4,1⟩, and add

them to the set Waiting.

Step 4: Under-approximation. The set Waiting now con-

tains two elements, namely α2 and α′
2
. We select one of

them, say α2, and move it from the set Waiting to the set

Covered. We under-approximate the constraints with ⟨1,2⟩.
When we flatten G with ⟨1,2⟩ we obtain x ∈ b∗ + ab+ and

y ∈ b∗ + ab+. The under-approximation gives the satisfying

assignment v3 where v3(x) = ab, v3(y) = ǫ, v3(z) = b, and

v3(t) = ab. Thus, the procedure terminates after two itera-

tions.

4. Preliminaries

Sets and Strings. We use N and Z to denote the sets of

natural numbers and integers respectively. For a set A, we

use ∣A∣ to denote the size of A. Let Σ be a finite alphabet.

We use Σ∗ to denote the set of finite strings over Σ, and

use ǫ to denote the empty string. We define Σǫ ∶= Σ ∪ {ǫ}.
For a string w ∈ Σ∗, we use length (w) to denote the

length of w. A language L over Σ is a set L ⊆ Σ∗. For

strings w and w′, we write w ⪯ w′ to denote that w is a

(not necessarily contiguous) substring of w′. For a string

w = a1a2⋯an ∈ Σ
∗ and Σ′ ⊆ Σ, we define [w]

Σ′
to be the

largest (not necessarily contiguous) substring ai1ai2⋯aim of

w such that aij ∈ Σ
′, i.e., we remove from w the elements

that are not members of Σ′.

For a set X, an X-indexed string over Σ is a mapping

v ∶ X ↦ Σ∗, i.e., it assigns to each x ∈ X, a string v(x)
over Σ. An X-indexed language K over Σ is a set of X-

indexed strings over Σ. For X-indexed languages K1,K2,

we use K1 ∩K2 to denote their intersection.

For alphabets Σ1,Σ2, a renaming from Σ1 to Σ2 is a

mapping R ∶ Σ1 ↦ Σ2. For a string w ∈ Σ∗
1
, we define

R (w) to be the string over Σ2 we obtain by replacing each

symbol a inw byR (a). For an X-indexed string v ∶ X↦ Σ∗
1
,

we define R (v) ∶= v′ where v′ (x) = R (v (x)) for all

x ∈ X. For a language L over Σ1, we define R (L) ∶=
{R (w) ∣ w ∈ L}. For an X-indexed languageK over Σ1, we

defineR (K) ∶= {R (v) ∣ v ∈K}.

Automata and Grammars. A Finite-State Automaton

(FSA) is a tupleA = ⟨Q,Σ,∆, qinit , qacc⟩, whereQ is a finite

set of states, Σ is a finite alphabet, ∆ ⊆ Q×Σǫ ×Q is a finite

set of transitions, qinit ∈ Q is the initial state, and qacc ∈ Q

is the accepting state. A Regular Expression (RE) R over Σ

is built inductively by including the empty expression ∅, the

members of Σǫ, and closing under union +, concatenation

●, and the Kleene star operator ∗. A Context-Free Grammar

(CFG) is a quadruple G = ⟨N,T,P,S⟩, where N is a finite

set of non-terminals, T is a finite set of terminals, P is a

finite set of productions, and S ∈ N is the start symbol. A

production p ∈ P is of the form A → α, where A ∈ N , and

α ∈ (N ∪ T )∗. We call α the rhs of p. The languages JAK,

JRK, JGK of A,R, G are defined in the standard manner.

A transducer T is of the same form as an FSA, the only

difference being that now ∆ ⊆ Q ×Σǫ ×Σǫ ×Q. For strings

w1, w2 ∈ Σ∗, we write w2 ∈ T (w1) to denote that there

is a sequence q0 ⟨a1, b1⟩ q1 ⟨a2, b2⟩⋯ ⟨an, bn⟩ qn such that

q0 = qinit , qn = qacc , ⟨qi, ⟨ai+1, bi+1⟩ , qi+1⟩ ∈ ∆ for all

i ∶ 0 ≤ i < n, w1 = a1a2⋯an, and w2 = b1b2⋯bn.

Presburger Formulas. Presburger arithmetic is the first-

order theory of the natural numbers with addition. Here, we

introduce a subset of its formulas as follows. A linear con-

straint is of the form ∑1≤i≤n ki ⋅ xi ∼ k where ki ∈ Z for

i ∶ 1 ≤ i ≤ n, and k ∈ Z. We define FV (̺) ∶= {x1, . . . , xn},
i.e., it is the set of (free) variables that occur in ̺. A

quantifier-free Presburger formula is a Boolean combina-

tion of a set {̺1, . . . , ̺n} of linear constraints. We define

FV (̺) ∶= ∪1≤i≤nFV (̺i). For a valuation θ ∶ FV (̺) ↦ N, we

write θ ⊧ ρ to denote that ̺ evaluates to true when the linear

constraints are evaluated under θ, and the results are com-

bined using the Boolean combinators in ρ. An existentially

quantified Presburger formula ρ is of the form ∃y1y2⋯ym.̺
where ̺ is a quantifier-free Presburger formula. For a val-

uation θ ∶ FV (̺) − {y1, y2, . . . , ym} ↦ N, we write θ ⊧ ̺
to denote that there are a1, a2 . . . , am ∈ N such that θ′ ⊧ ̺′

where θ′ (x) = θ (x) if x ∈ FV (̺) − {y1, y2, . . . , ym}, and

θ′ (x) = aj if x = yj for some j ∶ 1 ≤ j ≤ m. We de-

fine JρK ∶= {θ ∣ θ ⊧ ρ}. Sometimes we use a set notation

for the existential quantifiers, and write ρ as ∃A.̺ where

A = {y1, y2, . . . , ym}. We assume a function SMT which,

given a conjunction ρ = ρ1 ∧ ⋯ ∧ ρn of existentially quan-

tified Presburger formulas, either SMT (ρ) = θ for some

θ ∈ Jρ1K ∩⋯∩ JρnK, or SMT (ρ) = � if Jρ1K ∩⋯∩ JρnK = ∅.
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Figure 2. A ⟨3,2⟩-flat automaton of (ab)∗ ● (baa)∗.

Parikh Images. Consider an alphabet Σ. For a string w ∈
Σ∗, we define #w ∶ Σ ↦ N to be a function such that, for

each symbol a ∈ Σ, #w (a) gives the number of occurrences

a in w. The Parikh image of a language L ⊆ Σ∗ is defined by

#L ∶= {#w ∣ w ∈ L}. We will characterize the Parikh image

of some languages using Presburger formulas. To do that,

we define the set Σ● ∶= {a● ∣ a ∈ Σ}, where a● is a numerical

variable that will be used in the Presburger formula to encode

the number of occurrences of a. We say that L is Parikh-

definable if there is a quantifier-free Presburger formula over

Σ●, denoted CompP (L) (for Compute Parikh image), that

characterizes the Parikh image of L. More precisely, for any

θ ∶ Σ● ↦ N, we have θ ⊧ CompP (L) iff there is a stringw ∈ L

such that θ (a●) = #w (a) for all symbols a ∈ Σ. It is well-

known that any context-free (and therefore also any regu-

lar) language is Parikh-definable. In fact, given a context-

free grammar G, we can compute CompP (JGK) in polyno-

mial time [14, 33]. Notice that this implies that we can also

compute CompP (JRK) for a regular expressionR in polyno-

mial time. For simplicity, we sometime write CompP (G) and

CompP (R) instead of CompP (JGK) and CompP (JRK) .

We extend the notion of Parikh images to indexed lan-

guages as follows. For an indexed string v ∶ X ↦ Σ∗, we

define the mapping #v ∶ X↦ Σ↦ N such that, for each vari-

able x ∈ X and symbol a ∈ Σ, #v(x)(a) gives the number of

occurrences of a in v (x). The Parikh image of an X-indexed

language K over Σ is defined by #K ∶= {#v ∣ v ∈K}. We

consider the set (X ×Σ)● ∶= {⟨x, a⟩● ∣ (x ∈ X) ∧ (a ∈ Σ)},
and say that K is Parikh-definable if there is a quantifier-

free Presburger formula over (X ×Σ)● such that, for any

θ ∶ (X ×Σ)● ↦ N, we have θ ⊧ CompP (K) iff there is an

X-indexed string w ∈ K such that θ (⟨x, a⟩●) = #v(x)(a)
for all variables x ∈ X and symbols a ∈ Σ.

5. String Constraints

Fix a finite alphabet Σ and a finite set of variables X rang-

ing over Σ∗. Below we define a set of string constraints

over Σ and X. Each constraint φ characterizes an X-indexed

language JφK over Σ. The set of terms Terms (Σ,X) over

Σ and X is the smallest set such that (i) (Σ ∪X ∪ {ǫ}) ⊆
Terms (Σ,X), and (ii) if t1, t2 ∈ Terms (Σ,X) then t1 ● t2 ∈
Terms (Σ,X). Given an X-indexed string v ∶ X ↦ Σ∗ over

Σ, we extend it to terms by defining v ∶ Terms (Σ,X) ↦ Σ∗

with v (a) ∶= a if a ∈ Σ, and v (t1 ● t2) ∶= v (t1) ● v (t2).
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Figure 3. The generic ⟨3,2⟩-flat automaton.

An equality constraint (also called a word equation) φ is

of the form t1 = t2 where t1, t2 ∈ Terms (Σ,X). We define

JφK ∶= {v ∣ v (t1) = v (t2)}. A disequality constraint is of the

form t1 ≠ t2 and is interpreted analogously.

A transducer constraint φ is of the form y ∈ T (x)
where x, y ∈ X and T is a transducer. We define JφK ∶=
{v ∣ v (y) ∈ T (v (x))}.

A grammar constraint φ is of the form x ∈ G, where x ∈ X

and G = ⟨N,T,P,S⟩ is a CFG with T = Σ. We define JφK ∶=
{v ∣ v (x) ∈ JGK}. The special case of regular constraints, of

the form x ∈ R where R is a regular expression over Σ is

interpreted in a similar manner.

A length constraint φ is of the form ∑1≤i≤n ki ⋅
length (xi)∼k, where ∼ ∈ {<,≤,>,≥,=}, xi ∈X, and ki, k ∈

Z. We define JφK ∶= {v ∣ ∑1≤i≤n ki ⋅ length (v (xi)) ∼ k}.
A string constraint is of one of the above forms. A set ψ

of constraints is interpreted as JψK ∶= ∩φ∈ψ JφK.

6. Flat Languages

In this section, we define flat languages and flat FSAs. The

languages will be defined over an alphabet Σ, and their

forms will be decided by two parameters p,q ∈ N. For the

rest of the section, we fix Σ, p, and q. We define α ∶= ⟨p,q⟩,
and call α the abstraction parameter. We introduce generic

automata that recognize whole classes of flat languages.

6.1 Flat Languages

A language L over Σ is said to be α-flat if there are strings

w1, w2, . . . , wq ∈ Σ
∗ such that length (wi) ≤ p, for each

i ∶ 1 ≤ i ≤ q, and L = (w1)
∗ ● (w2)

∗ ● ⋯ ● (wq)
∗
. We call

w1, w2, . . . , wn the loops of L. We can recognize an α-flat

language over Σ using a special class of automata, which

we call α-flat automata. A ⟨3,2⟩-flat automaton is shown

in Fig. 2. The automaton recognizes the ⟨3,2⟩-flat language

(ab)∗ ● (baa)∗. The automaton contains two loops (cycles),

each with three states. Below, we define formally the no-

tion of an α-flat automaton. We define S (α) ∶= p ⋅ q, to

give the number of states in the automaton (q loops each

with p states), and define S (α) ∶= {i ∣ 1 ≤ i ≤ S (α)}, i.e.,

we enumerate the states from 1 to S (α). We define the set

Entries (α) ∶= {i ∣ (i ∈ S (α)) ∧ (i mod p = 1)} which

gives the states that are entries of loops in the automaton;
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LastEntry (α) ∶= S (α) − (p − 1), which gives the entry

of the last loop in the automaton. We introduce functions

that give different types of successors of a state i. Con-

sider i ∈ S (α). We define LoopSucc (α) (i) ∶= {i + 1}
if i mod p ≠ 0, and LoopSucc (α) (i) ∶= {i − p + 1} if

i mod p = 0, i.e., the function gives the (single) succes-

sor of the state that lies within the same loop. We de-

fine EntrySucc (α) (i) ∶= {i + p} if i ∈ Entries (α) −
{LastEntry (α)}, and EntrySucc (α) (i) ∶= ∅ other-

wise, i.e., for a loop entry, the function gives the next

loop entry. We define succ (α) (i) ∶= LoopSucc (α) (i) ∪
EntrySucc (α) (i). Notice that, if i is the entry of a

loop (except the last one) then it has two successors, oth-

erwise it has a single successor. We use succ∗ (α) (⋅)
to denote the reflexive transitive closure of succ (α) (⋅).
For example, we have S (3,2) = 6, Entries (3,2) =
{1,4}, LastEntry (3,2) = 4, LoopSucc (3,2) (1) = {2},
EntrySucc (3,2) (1) = {4}, succ (3,2) (1) = {2,4},
succ (3,2) (2) = {3}, and succ∗ (3,2) (4) = {4,5,6}. For-

mally, an α-flat automatonA is a tuple ⟨Q,Σ,∆, qinit , qacc⟩,
where (i) Q = S (α). (ii) ∆ = ∆′ ∪∆′′. The set ∆′ contains

for each i, j with j ∈ LoopSucc (α) (i), one (and only one)

transition of the form ⟨i, a, j⟩ where a ∈ Σǫ. The set ∆′′

contains for each i, j with j ∈ EntrySucc (α) (i), one (and

only one) transition of the form ⟨i, ǫ, j⟩, i.e., transitions be-

tween two consecutive loop entries are always labeled with

ǫ. (iii) qinit = 1, and (iv) qacc = LastEntry (α), i.e., the ac-

cepting state is the entry of the last loop. Notice that, for a

given parameter α, all α-flat automata have the same struc-

ture, i.e., they are of the same form except that they may

differ on the labels of the transitions inside the loops. Also,

notice that, since we allow ǫ-transitions, we essentially al-

low loops of sizes up to p (rather than equal to p), and al-

low up to q loops (rather than exactly q loops). Given p and

q, there are ∣Σǫ∣
p⋅q

different α-flat automata over Σ (since

each such an automaton contains p ⋅ q transitions inside its

loops, each of which may be labeled by some element in

Σǫ). We define the complete α-flat language over Σ, by

F (α) ∶= ⋃{L ∣ L is an α-flat language over Σ}, i.e., it is the

union of all α-flat languages over Σ. For a set X of variables,

we define the complete X-indexed α-flat language over Σ by

FX (α) ∶= {v ∶ X↦ Σ∗ ∣ ∀x ∈ X.v(x) ∈ F (α)}, i.e., it is the

set of X-indexed strings over Σ such that each variable is

mapped to a string in F (α).

6.2 Generic Flat Automata

Given the identical structure of all α-flat automata (for a

given value of α), we will define a generic automaton that

collects the behaviors of all such automata in one.

We will consider the alphabet Σ (α) ∶=
{a(i) ∣ (a ∈ Σǫ) ∧ (i ∈ S (α))} ∪ {ǫ}. We define the generic

α-flat automaton over Σ, B (α) ∶= ⟨Q,Σ (α) ,∆, qinit , qacc⟩
(Fig. 3), where Q, qinit , and qacc are of the same

form as for α-flat automata, and ∆ = ∆′ ∪ ∆′′ with

∆′ = {⟨i, a(i), j⟩ ∣ (a ∈ Σǫ) ∧ (j ∈ LoopSucc (α) (i))}, and

∆′′ = {⟨i, ǫ, j⟩ ∣ j ∈ EntrySucc (α) (i)}. In other words,

for each state i inside a loop and each symbol a ∈ Σ, we

add a transition, labeled with a(i) to the next state in the

loop. In addition, we put back the ǫ-transitions between the

consecutive loop entries. We define the α-generic language

G (α) ∶= JB (α)K, i.e., it is the language of B (α). A string

w over Σ (α) is said to be α-generic (or simply generic)

if w ∈ G (α). The generic α-flat automaton encodes the

behaviors of all α-flat automata. More precisely, given an

α-flat automaton A, then traversing a transition labeled

with (say) a between the two states i and j in a loop, can

be simulated by taking the transition labeled with a(i) in

the generic automaton. However, the generic automaton

also contains additional behaviors that are not exhibited by

any individual flat automaton. The reason is that transitions

labeled by different symbols may be chosen between the

same pair of states inside a loop during a single run of

the generic automaton. We define the X-indexed language

GX (α) ∶= {v ∶ X↦ (Σ (α))∗ ∣ ∀x ∈ X. v (x) ∈ G (α)}. An

X-indexed string v is (α-)generic if v ∈ GX (α).
To avoid the problem of choosing different symbols be-

tween identical pairs of states, we will intersect the language

of a generic automaton with a language whose words encode

a purity condition, in the sense they guarantee that at most

one outgoing transition of each state is chosen during the it-

erations of the loops in the automaton. Formally, for a string

w ∈ (Σ (α))∗ we say thatw is pure if for all i ∈ S (α) and all

a, b ∈ Σ with a ≠ b, it is the case that #w(a(i)) > 0 implies

#w(b(i)) = 0. An indexed string v ∶ X↦ (Σ (α))∗ is said to

be pure if v (x) is pure for all x ∈ X. We define the language

PX (α) ∶= {v ∶ X↦ (Σ (α))∗ ∣ v is pure}. A X-indexed lan-

guageK over Σ (α) is said to be (α-)generic ifK ⊆ GX (α),
and it is called pure if K ⊆ PX (α).

LEMMA 1. For X-indexed strings v1, v2 ∈ (GX (α) ∩
PX (α)), if (#v1) = (#v2) then v1 = v2.

Lemma 1 follows from the fact that if (#v1) = (#v2)
then v1 and v2 correspond to identical runs of the generic

automaton on each variable, i.e., the loops are iterated an

identical number of times, and, for each state, the same

outgoing transition is chosen inside the relevant loop.

Lemma 1 allows us to define a partial function GetS

such that for any θ ∶ (X ×Σ (α))● ↦ N, the value of

GetS (θ) is the unique X-string v ∈ GX (α) ∩ PX (α) with

θ (⟨x, a(i)⟩●) = #v(x)(a(i)) for all variables x ∈ X, sym-

bols a ∈ Σ, and i ∶ 1 ≤ i ≤ S (α). Notice that GetS (θ) may

not exist. However, if it exists then, by Lemma 1, it is unique.

We get the following Corollary.

COROLLARY 1. For an X-indexed language K ⊆ (GX (α)∩
PX (α)), if θ ∈#K then GetS (θ) ∈K.

Also, Lemma 1 implies the following lemma.
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LEMMA 2. For X-indexed languages K1,K2 ⊆ (GX (α) ∩
PX (α)), it is the case that (#K1)∩(#K2) =#(K1 ∩K2).

Informally, for two pure and generic languages, the Parikh

images of their intersection can be computed by computing

the Parikh images individually and taking the intersection.

7. Flattening

Fix a set of variables X, an alphabet Σ, parameters p,q ∈ N,

and α = ⟨p,q⟩. We will describe how to construct the flat-

tening of a string constraint φ. The constraint φ may be in of

the forms described in Section 5. The flattening of φ corre-

sponds to taking the intersection of JφK with the generic α-

flat automaton. We will take the flattening of φ and intersect

it with the set of pure languages thus obtaining a particular

X-indexed language ⟪φ⟫α that satisfies two important prop-

erties. First, ⟪φ⟫α characterizes the intersection of φ and flat

languages in the sense that any indexed string in ⟪φ⟫α can

be renamed to an indexed string that is in the intersection

of JφK and flat languages. (ii) ⟪φ⟫α is Parikh definable (see

Section 8.)

7.1 Flattening Grammar Constraints

Consider a grammar constraint φ of the form x ∈ G with

G = ⟨N,T,P,S⟩, T = Σ, and a parameter α = ⟨p,q⟩. We

will define a new grammar Flatten (α) (φ) which encodes

running G “in parallel” with the α-generic automaton. We

define Flatten (α) (φ) ∶= ⟨N ′, T ′, P ′, S′⟩, where T ′ ∶=
Σ (α), and define the set N ′ ∶= N ′

1
∪N ′

2
∪N ′

3
as the union

of three sets of nonterminals:

• For each nonterminal A ∈ N and i, j ∈ S (α)
with j ∈ succ∗ (α) (i), the set N ′

1
contains

a corresponding nonterminal A⊕(i, j), i.e.,

N ′
1
∶= {A⊕(i, j) ∣ (A ∈ N) ∧ (j ∈ succ∗ (α) (i))}.

Intuitively, the next segment of the input string expected

by G corresponds to A, while the automaton is currently

in state i. We use A⊕ to allow the automaton to perform

a number of transitions to consume the same part of the

input string, after which the automaton reaches state j.

• For each a ∈ T and i, j ∈ S (α) with

j ∈ succ∗ (α) (i), the set N ′
2

contains a cor-

responding nonterminal a⊕(i, j), i.e., N ′
2

∶=
{a⊕(i, j) ∣ (a ∈ T ) ∧ (j ∈ succ∗ (α) (i))}. Intuitively,

the next terminal expected by G is a. The automaton is

currently in the state i, and may perform an arbitrary

number of ǫ-transitions both before and after performing

a transition labeled with a, ending up in the state j.

• For each i, j ∈ S (α) with j ∈ succ∗ (α) (i), the set N ′
3

contains a corresponding nonterminal ǫ⊕(i, j), i.e.,N ′
3
∶=

{ǫ⊕(i, j) ∣ j ∈ succ∗ (α) (i)}. This allows the automaton

to perform an arbitrary number of ǫ-transitions.

We define the start symbol S′ ∶= S(1,LastEntry (α)), and

define the set P ′ ∶= P ′
1
∪ P ′

2
∪ P ′

3
∪ P ′

4
as follows:

• For each production p ∈ P of the formA→X1 ⋅X2⋯Xn,

and i, j ∈ S (α) with j ∈ succ∗ (α) (i), the set P ′
1

con-

tains all productions of the form A⊕(i, j)→X⊕
1
(i0, i1) ⋅

X⊕
2
(i1, i2)⋯X⊕n (in−1, in), where i0 = i, in = j, ik ∈

succ∗ (α) (ik−1), for k ∶ 1 ≤ k ≤ n. The next segment of

the input string can be consumed by G and (in parallel)

by the automaton. This is done by dividing the segment

into sub-segments according to the rhs of p, by letting G

and the automaton run in parallel on each sub-segment.

• For each terminal a ∈ T and i, j ∈ S (α) with j ∈

succ∗ (α) (i), the set P ′
2

contains all productions of the

form a⊕(i, j)→ ǫ⊕(i0, i1)⋅a(i1)⋅ǫ⊕(i2, i3), where i0 = i,

i3 = j, i1 ∈ succ∗ (α) (i0), i2 ∈ LoopSucc (α) (i1),
and i3 ∈ succ∗ (α) (i2). The automaton is allowed to

perform an arbitrary number of ǫ-transitions, before and

after a transition labeled by a. The latter is part of a loop.

• The set P ′
3

contains the following sets of productions

(that allow the automaton to perform an arbitrary number

of ǫ-transitions)

All productions that are of the form ǫ⊕(i, j) → ǫ(i) ⋅
ǫ⊕(k, j), where i, j, k ∈ S (α), k ∈ LoopSucc (α) (i),
and j ∈ succ∗ (α) (k), i.e., the automaton performs

one ǫ-transition from the state i and then takes some

number of ǫ-transitions to the state j.

All productions that are of the form ǫ⊕(i, i) → ǫ,

where i ∈ S (α), i.e., stop generating ǫ-transitions.

• For all i, j ∈ S (α) with j ∈ EntrySucc (α) (i), the set

P ′
4

contains the production A(i, j) → ǫ. The automaton

is allowed to cross from one loop entry to the next.

We define ⟪φ⟫α to be the X-indexed language over

Σ (α) such that v ∈ ⟪φ⟫α iff (i) v is pure, (ii) v (x) ∈
JFlatten (α) (φ)K, and (iii) v (y) ∈ G (α) for all y ∈ X −
{x}. Intuitively, the variable x is mapped to a pure string

in the language of G, while any other variable is mapped to

any pure α- generic string. Notice that ⟪φ⟫α is pure and α-

generic.

7.2 Flattening Equality Constraints

We consider an equality constraint φ of the form

x1x2⋯xm = xm+1xm+2⋯xn, and a parameter α = ⟨p,q⟩.
A constant c in an equality constraint can be replaced by a

fresh variable x with a regular constraint x ∈ JcK. There-

fore, we assume, without loss of generality, that equality

constraints do not contain any constants. We will define an

FSA Flatten (α) (φ) that will run the concatenation of the

generic flat automata for the variables x1, x2, . . . , xm, in

parallel with the concatenation of the generic flat automata

for xm+1, xm+2, . . . , xn. Essentially, it traverses the prod-

uct of the two concatenations, and enforces synchroniza-

tion on common alphabet symbols. We define the alphabet

Σ (n,α) ∶= {a(k, i) ∣ (a ∈ Σǫ) ∧ (1 ≤ k ≤ n) ∧ (i ∈ S (α))}.
We define Flatten (α) (φ) ∶= ⟨Q,Σ (n,α) ,∆, qinit , qacc⟩
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as follows. We define the set Q ∶= Q1 ∪Q2 as the union of

two sets of states:

• For each k ∶ 1 ≤ k ≤ m, ℓ ∶ m + 1 ≤ ℓ ≤ n, and

i1, i2 ∈ S (α), the set Q1 contains the state ⟨k, i1, ℓ, i2⟩.
Each state in Q1 encodes (i) an index k showing which

automaton, among the ones of x1, x2, . . . xm, we are cur-

rently simulating, (ii) the current state i1 of that automa-

ton, (iii) an index ℓ showing which automaton, among the

ones of xm+1, xm+2, . . . xn, we are currently simulating,

and (iv) the current state i2 of that automaton.

• For each k ∶ 1 ≤ k ≤ m, ℓ ∶ m + 1 ≤ ℓ ≤ n, i1, i2 ∈ S (α),
and a ∈ Σ, the set Q2 contains the state ⟨k, i1, ℓ, i2, a⟩.
This state encodes that the automaton of xk has just

performed a transition labeled by a. The automaton of

xℓ will follow by performing a transition labeled by a.

We define the set ∆ ∶=∆1∪∆2∪∆3∪∆4∪∆5∪∆6∪∆7∪∆8

as the union of eight sets of transitions:

• For each a ∈ Σ, and k, i1, ℓ, i2, j with 1 ≤ k ≤

m, m + 1 ≤ ℓ ≤ n, i1, i2, j ∈ S (α), and j ∈

LoopSucc (α) (i1), the set ∆1 contains the transition

⟨⟨k, i1, ℓ, i2⟩ , a(k, i1), ⟨k, j, ℓ, i2, a⟩⟩. This corresponds

to the case where the automaton of xk performs a tran-

sition labeled with a.

• For each a ∈ Σ, and k, i1, ℓ, i2, j with 1 ≤ k ≤

m, m + 1 ≤ ℓ ≤ n, i1, i2, j ∈ S (α), and j ∈

LoopSucc (α) (i2), the set ∆2 contains the transition

⟨⟨k, i1, ℓ, i2, a⟩ , a(ℓ, i2), ⟨k, i1, ℓ, j⟩⟩. This corresponds

to the case where the automaton of xℓ performs a transi-

tion labeled with a (answering the previous move of the

automaton of xk).

• For each k, i1, ℓ, i2, j with 1 ≤ k ≤ m, m +
1 ≤ ℓ ≤ n, i1, i2, j ∈ S (α), and j ∈

LoopSucc (α) (i1), the set ∆3 contains the transition

⟨⟨k, i1, ℓ, i2⟩ , ǫ(k, i1), ⟨k, j, ℓ, i2⟩⟩. This corresponds to

the case where the automaton of xk makes an ǫ-transition,

while the automaton of xℓ does not move.

• For each k, i1, ℓ, i2, j with 1 ≤ k ≤ m, m +
1 ≤ ℓ ≤ n, i1, i2, j ∈ S (α), and j ∈

LoopSucc (α) (i2), the set ∆4 contains the transition

⟨⟨k, i1, ℓ, i2⟩ , ǫ(ℓ, i2), ⟨k, i1, ℓ, j⟩⟩. This case is symmet-

ric to the previous one.

• For each k, i1, ℓ, i2, j with 1 ≤ k ≤ m, m + 1 ≤ ℓ ≤ n,

i1, i2, j ∈ S (α), and j ∈ EntrySucc (α) (i1), the set

∆5 contains the transition ⟨⟨k, i1, ℓ, i2⟩ , ǫ, ⟨k, j, ℓ, i2⟩⟩.
This corresponds to the case where the automaton of xk
crosses from one loop entry to the next.

• For each k, i1, ℓ, i2, j with 1 ≤ k ≤ m, m + 1 ≤ ℓ ≤ n,

i1, i2, j ∈ S (α), and j ∈ EntrySucc (α) (i2), the set ∆6

contains the transition ⟨⟨k, i1, ℓ, i2⟩ , ǫ, ⟨k, i1, ℓ, j⟩⟩. This

case is symmetric to the previous one.

• For each k, i1, ℓ, i2, j with 1 ≤ k < m, m + 1 ≤

ℓ ≤ n, i1, i2, j ∈ S (α), i1 = LastEntry (α),
and j = 1, the set ∆7 contains the transition

⟨⟨k, i1, ℓ, i2⟩ , ǫ, ⟨k + 1, j, ℓ, i2⟩⟩. The automaton of xk is

in its accepting state; the simulation continues from the

initial state of the automaton of xk+1. The automaton of

xℓ does not move.

• For each k, i1, ℓ, i2, j with 1 ≤ k ≤ m, m + 1 ≤ ℓ < n,

i1, i2, j ∈ S (α), and i2 = LastEntry (α), the set ∆8

contains the transition ⟨⟨k, i1, ℓ, i2⟩ , ǫ, ⟨k, i1, ℓ + 1, j⟩⟩.
This case is symmetric to the previous one.

We define the initial state as qinit ∶= ⟨1,1,1,1⟩, i.e., we start

from the initial state of the automaton of x1, and the initial

state of the automaton of xm+1. We define the accepting state

as qacc ∶= ⟨m,LastEntry (α) , n,LastEntry (α)⟩, i.e., we

are in the accepting states (i.e., last loop entries) of the

automata of xm and xn respectively.

To derive the indexed language ⟪φ⟫α we need to give

some definitions. First we formulate some conditions on

the strings generated by Flatten (α) (φ). A string w ∈

(Σ (n,α))∗ is said to be rational if #a(k, i) = #a(ℓ, i)
whenever xk = xℓ. In other words, different occurrences

of the same variable will run the corresponding generic au-

tomaton in the same manner (it picks the same outgoing

transition from each state and runs the same loop an iden-

tical number of times.) We say that w is pure if a ≠ b

and #w(a(k, i)) > 0 implies #w(b(k, i)) = 0. We will

use the purity of strings in Flatten (α) (φ) to guarantee

the purity of ⟪φ⟫α. Next, we take the strings generated by

Flatten (α) (φ) and project them on the variables that oc-

cur in φ. For a k ∶ 1 ≤ k ≤ n, we define the alphabet

Σk ∶= {a(k, i) ∣ (a ∈ Σ) ∧ (1 ≤ i ≤ S (α))}, i.e., it is the sub-

set of Σ(n,α) containing only the elements in the alphabet

of the generic flat automaton of xk. We define the renaming

R ∶ Σ (n,α) ↦ Σ (α) such thatR (a(k, i)) = a(i).
The language ⟪φ⟫α contains all X-indexed strings v ∶

X ↦ Σ (α) such that there is a string w ∈ Flatten (α) (φ)
satisfying the following properties: (i)w is rational and pure.

(ii) v (x) = R ([w]
Σk
) if x = xk for some k ∶ 1 ≤ k ≤ n.

In other words, we extract the substring of w corresponding

to xk and rename it according to R so that we obtain a

string over Σ (α). Notice that by the rationality condition,

the particular choice of k is not important (we can choose

any k provided that xk = x.) Also, observe thatR ([w]
Σk
) is

α-generic. (iii) v (x) ∈ G (α)∩P (α) if x ∈ X−{x1, . . . , xn}.
Such a variable is not restricted by φ and hence it may be

assigned any pure string in the generic α-flat automaton.

Notice that ⟪φ⟫α is pure and α-generic.

7.3 Other Constraints

The flattening of a transducer constraint y ∈ T (x) is done

by constructing a FSA that runs T in parallel with the flat

automata of x and y. The construction is similar to the

case of equality constraints. A disequality constraint can be

610



done in a similar way as in the case of equality constraints.

In contrast, here we make that eventually one side cannot

follow the other. Finally, flattening is not needed for the case

of length constraints.

7.4 Properties

Lemma 3 and Lemma 4 below follow from the flattening

construction. They explain the relation between ⟪φ⟫α and

the intersection of φwith flat languages. Define the renaming

Rα ∶ Σ (α) ↦ Σ where Rα (a(i)) = a for all a ∈ Σ and

i ∶ 1 ≤ i ≤ S (α).

LEMMA 3. Rα (⟪φ⟫α) ⊆ JφK ∩ FX (α).

LEMMA 4. v ∈ JφK ∩ FX (α) implies that v′ ∈ ⟪φ⟫α for all

v′ withRα (v′) = v.

For a set ψ of constraints, we define ⟪ψ⟫α ∶= ⋂φ∈ψ⟪φ⟫α.

From Lemma 3 and Lemma 4, we get the following theorem.

THEOREM 1. ⟪ψ⟫α = ∅ iff JψK ∩ FX (α) = ∅.

From Corollary 1 and Lemma 3 we get the following.

THEOREM 2. If θ∈#⟪ψ⟫α thenRα(GetS (θ))∈JψK∩FX (α).

8. Under-Approximation

In this section, we describe the under-approximation mod-

ule. Fix a finite alphabet Σ, and a finite set of variables X

ranging over Σ∗. Suppose that we are given a set ψ of string

constraints over X and Σ, together with an abstraction pa-

rameter α = ⟨p,q⟩. We introduce an algorithm UAprx which

checks the emptiness of the set JψK ∩ FX (α), and returns

a member of the set in case the set is non-empty. We de-

fine UAprx in several steps. By Theorem 1 we know that to

check the emptiness of JψK∩FX (α), it is sufficient to check

the emptiness of ⟪ψ⟫α. Notice that the emptiness of the lat-

ter is equivalent to the emptiness of its Parikh image. Since

⟪ψ⟫α is by construction pure and α-generic for each φ ∈ ψ,

it follows by Lemma 2 that the Parikh image of ⟪ψ⟫α is

equal to the intersection of the Parikh images of ⟪φ⟫α for all

φ ∈ ψ. First, we describe how to compute the Parikh image

of ⟪φ⟫α. Then, we collect the Parikh images for all φ ∈ ψ,

and feed them into an SMT solver. If the SMT solver an-

swers that the Parikh image is empty then UAprx answers

that JψK ∩ FX (α) is empty. On the other hand, if the SMT

solver returns a satisfying assignment θ then we know by

Theorem 2 that Rα (GetS (θ)) ∈ JψK ∩ FX (α). Therefore,

we will also present a method for computingRα (GetS (θ)).

8.1 Computing Parikh Images

We give an algorithm for computing the Parikh image of

⟪φ⟫α for a string constraint φ. The form of the algorithm

depends on the type of φ. In each case, the Parikh image

will be defined as a conjunction of existentially quantified

Presburger formulas over the alphabet (X ×Σ (α))●. The

algorithms are defined based on the construction of ⟪φ⟫α,

described in Section 7. We present the method for the cases

of grammars and equalities. The other cases are similar.

Grammars. Algorithm 1 shows the case where φ is a

grammar constraint (of the form x ∈ G). We compute the

Algorithm 1: Computing the Parikh Image of a Gram-

mar Constraint.
Input: φ: grammar constraint of the form x ∈ G,

α = ⟨p, q⟩ ∈ N2: abstraction parameter

Output: CompP (⟪φ⟫α)
1 G′ ← Flatten (α) (φ);
2 ρ1 ← CompP (G′);
3 ρ2 ← ⋀

i∈S(α)

⋀
a∈Σ

⟨x, a(i)⟩● = (a(i))●;

4 ρ3 ← ⋀
i∈S(α)

⋀
a≠b∈Σ

(⟨x, a(i)⟩● > 0) Ô⇒ (⟨x, b(i)⟩● = 0);

5 ρ4 ← ∃(Σ (α))
●
. ρ1 ∧ ρ2 ∧ ρ3;

6 return (ρ4)

flattening G′ of the grammar G wrt. the abstraction parameter

α according to the construction of Section 7. We compute the

Parikh image of G′ (this is possible since G′ is a CFG), and

store the result in ρ1. Notice that ρ1 is defined over the set

(Σ (α))●. We define the formula ρ2 that renames each vari-

able (a(i))● to the corresponding variable ⟨x, a(i)⟩●. This

is done by equating each pair of variables of the above form,

and putting all the equalities in ρ2. The formula ρ3 encodes

the purity condition. The returned formula ρ4 is the conjunc-

tion of the previous three formulas. Furthermore, we quan-

tify away all the variables in (Σ (α))● thus ensuring that ρ3
is defined over the alphabet (X ×Σ (α))●. Notice that ρ4 is

an existentially quantified Presburger formula.

Equalities. Algorithm 2 shows the case where φ

is an equality constraint (of the form x1x2⋯xm =

xm+1xm+2⋯xn). In a similar manner to the case of gram-

Algorithm 2: Computing the Parikh Image of an Equal-

ity Constraint.

Input: φ: equality constraint of the form

x1x2⋯xm = xm+1xm+2⋯xn,

α = ⟨p, q⟩ ∈ N2: abstraction parameter

Output: CompP (⟪φ⟫α)
1 A← Flatten (α) (φ);
2 ρ1 ← CompP (A);
3 ρ2 ← ⋀

1≤k≤n

⋀
i∈S(α)

⋀
a∈Σ

⟨xk, a(i)⟩
● = (a(k, i))●;

4 ρ3 ← ⋀
i∈S(α)

⋀
a≠b∈Σ

(⟨x, a(i)⟩● > 0) Ô⇒ (⟨x, b(i)⟩● = 0);

5 ρ4 ← ∃(Σ (n,α))
●
. ρ1 ∧ ρ2 ∧ ρ3;

6 return (ρ4)

mar constraints, we compute the flattening A of the equality

wrt. the abstraction parameter α, and then compute the

Parikh image of the automaton A, and store the result in ρ1.

Here, ρ2 serves two purposes. First, it renames the variables
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as in the case of a grammar constraint. More precisely, the

formula ρ1 is defined over the set (Σ (n,α))●. Therefore,

we rename each variable (a(k, i))● to the corresponding

variable ⟨xk, a(i)⟩
●

by equating them. The second purpose

is to ensure the rationality condition. The reason is that,

for any two variables of the forms a(k, i) and a(ℓ, i), the

formula ρ2 will contain both ⟨xk, a(i)⟩
●
= (a(k, i))● and

⟨xℓ, a(i)⟩
●
= (a(ℓ, i))●. This implies that if xk = xℓ then

⟨xk, a(i)⟩
●
= ⟨xℓ, a(i)⟩

●
. Finally, we add the purity condi-

tion and abstract away the variables of the set (Σ (n,α))●

in a similar manner to the case of grammar constraints.

8.2 SMT Solving

In Algorithm 3, we are given a set ψ of constraints together

with an abstraction parameter α. We construct, for each

φ ∈ ψ, the Parikh image of ⟪φ⟫α as described in Section 8.1.

We collect the conjunction of the Parikh images in ρ. We

check the satisfiability of ρ using the available SMT solver.

Algorithm 3: Parikh Image Analysis.

Input: ψ: set of string constraints,

α = ⟨p, q⟩ ∈ N2: abstraction parameter

Output: Solution for CompP (⟪ψ⟫α).
1 ρ← ⋀

φ∈ψ

CompP (⟪φ⟫α);

2 Result← SMT (ρ);

3 return (Result)

8.3 Constructing a Solution

Algorithm 4 constructs the X-indexed string v =

Rα (GetS (θ)). More precisely, the algorithm goes through

Algorithm 4: Translating to a Solution.

Input: θ ∶ (X ×Σ (α))● ↦ N,

α = ⟨p, q⟩ ∈ N2: abstraction parameter

Output:Rα (GetS (θ))
1 for all x ∈ X do

2 for k from 1 to q do

3 nk ← 0;

4 wk ← ǫ;

5 for i from (k ⋅ p − p + 1) to (k ⋅ p) do

6 for all a ∈ Σǫ do

7 if θ (⟨x, a(i)⟩●) > 0 then

8 nk ← θ (⟨x, a(i)⟩●);

9 wk ← wk ● a;

10 v (x) ← w
n1

1
●w

n2

1
● ⋯ ●w

nq

q ;

11 return (v)

the variables one by one. For each variable x ∈ X it consid-

ers the generic automaton of x and finds out (i) for each loop

k ∶ 1 ≤ k ≤ q, the number nk of times the loop is iterated, and

(ii) for each state i ∶ k ⋅ p − p + 1 ≤ i ≤ k ⋅ p inside the loop,

the label of the outgoing transition that is chosen. In fact, the

algorithm builds the stringwk which corresponds to one iter-

ation of the loop. This is done by recording, for each a ∈ Σ,

the number of times the symbol a(i) is encountered. Recall

that either this number is equal to 0 for all a ∈ Σ or positive

for exactly one a ∈ Σ. In the former case, the loop has not

been iterated, and in the latter case, the loop has been iter-

ated the same number of times as the number of occurrences

of a(i). We build the string wk successively, by concatenat-

ing the symbol a(i) in position i − k ⋅ p + p if a(i) occurs

a positive number of times. Finally, for a variable x ∈ X, we

define the string v (x) by concatenating the strings wnk

k
for

all the loops k ∶ 1 ≤ k ≤ q.

9. Over-Approximation

In this section, we describe the over-approximation mod-

ule. Fix a finite alphabet Σ and a finite set of variables

X ranging over Σ∗. Suppose that we are given a set

ψ = {φ1, φ2, . . . , φk} of constraints together with a set

Covered ⊆ N2 of parameter values that have already been

considered by the under-approximation module. In the fol-

lowing, we will construct a set ψ′ of constraints such that

(JψK − ⋃α∈Covered FX (α)) ⊆ Jψ′K. To construct ψ′ from ψ,

we proceed as follows: (1) we replace any membership con-

straint in a context-free grammar G by a membership con-

straint in a regular language (the regular language may be

the upward closure of the language of G [4, 45], the down-

ward closure [10, 44], or some other over-approximation,

e.g., the one in [32]), (2) we replace a transducer constraint

by a conjunction of membership constraints in regular lan-

guages where each regular language captures the projection

of the transducer language on one of its tapes, and (3) we

replace any occurrence of a variable x by a fresh copy of x

that satisfies the same membership and length constraints as

x. The resulting set of string constraints ψ′ falls in the decid-

able fragment of the theory of strings with regular member-

ship constraints and length constraints [2, 3]. Therefore, we

can apply a similar technique as the one used in Norn [2, 3]

to check the satisfiability of ψ′.

The rest of this section is organised as follows: First, we

define the function Over that takes as input a constraint φ in

ψ and transforms it into a set of constraints Over(φ) in ψ′.

The form of Over(φ) will depend on the type of the con-

straint φ. Then, we formally define the set of constraints ψ′

and show how to address its satisfiability problem. Finally,

we show how to generate a new set of abstraction parameters

that will be used by the under-approximation module in case

that the set of constraints ψ′ is satisfiable.

Transforming (dis-)equality constraints. Let us consider

a constraint φi, with i ∶ 1 ≤ i ≤ k, appearing in

ψ. Let us assume that φi is an (dis-)equality constraint

of the form x1x2⋯xm ∼ xm+1xm+2⋯xn with ∼∈ {=
,≠}. Then Over(φi) will only contain the (dis-)equality

constraint (x1, i,1)(x2, i,2)⋯(xm, i,m) ∼ (xm+1, i,m +
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1)(xm+2, i,m + 2)⋯(xn, i, n) where we replace any occur-

rence of a variable x by a fresh copy of the form (x, i, j).
Let Fresh be a function that maps each variable x in X

to its set of fresh copies. Formally, the set Fresh(x) is the

smallest set containing any variable of the form (x, i, j) such

that φi is a (dis-)equality constraint of the form x1x2⋯xm ∼
xm+1xm+2⋯xn, with ∼∈ {≠,=}, and xj = x.

Transforming grammar constraints. In the following, we

will show how to transform a grammar constraint φ in ψ into

a set of regular constraints Over(φ) in ψ′ using the function

Over. This transformation is based on replacing the context-

free language appearing in φ by a regular language that

accepts its upward closure [4, 45], its downward closure [10,

44], or some other over-approximation, e.g., the one in [32]).

To do that, we define a function Abst that associates for each

context-free grammar G, a regular expression R such that

R recognizes the upward/downward closure (or any other

regular over-approximation) of the language generated by

the context-free grammar G.

Then, let us consider a grammar constraint φi of the

form x ∈ G. The set Over(φi) is then defined to be the

smallest set containing all the regular constraints of the form

(x, ℓ, j) ∈ Abst(G) where (x, ℓ, j) ∈ Fresh(x).

Transforming Regular Constraints. Let us consider a reg-

ular constraint φi of the form x ∈ R. Then Over(φi) is de-

fined as the smallest set containing all the regular constraints

of the form (x, ℓ, j) ∈R where (x, ℓ, j) ∈ Fresh(x).

Transforming transducer constraints. In the following,

we show how to replace a transducer constraint in ψ by a

set of membership constraints in regular languages that cap-

ture an over-approximation of the transducer language. Each

regular language captures the projection of the transducer

language on one of its input tapes.

To compute these regular languages, we define a func-

tion Split that takes as input a transducer T and out-

puts a pair of regular expressions R1 and R2 such that

{(w1, w2) ∣w2 ∈ T (w1)} ⊆ (JR1K × JR2K). Let us assume

a transducer T of the form ⟨Q,Σ,∆, qinit , qacc⟩. We can de-

fine then the automaton A1 = ⟨Q,Σ,∆1, qinit , qacc⟩ (resp.

A2 = ⟨Q,Σ,∆2, qinit , qacc⟩) such that ∆1 (resp. ∆2) is the

smallest transition relation containing ⟨q, a, q′⟩ ∈ ∆1 (resp.

⟨q, b, q′⟩ ∈ ∆2) if there is a transducer transition of the form

⟨q, ⟨a, b⟩ , q′⟩ ∈ ∆. Let R1 (resp. R2) be the regular expres-

sion recognizing the same language as A1 (resp. A2). We

then define Split(T ) = (R1,R2).
Let us consider a transducer constraint φi of the form

y ∈ T (x). The set Over(φi) is defined to be the smallest set

containing all the regular constraints of the form (x, ℓ, j) ∈
R1 where (x, ℓ, j) ∈ Fresh(x) and (y, ℓ′, j′) ∈ R2 where

(y, ℓ′, j′) ∈ Fresh(y).

Transforming length constraints. Let us consider a gram-

mar constraint φi of the form ∑1≤i≤n ki ⋅ length (xi) ∼ ℓ,
where xi ∈ X, ki ∈ Z for i ∶ 1 ≤ i ≤ n, ℓ ∈ Z, and

∼∈ {<,≤,>,≥,=}. Then, we define Over(φi) to be the small-

est set of containing all constraints of the form ∑1≤i≤n ki ⋅
length ((xi, ℓi, ji)) ∼ ℓ where (xi, ℓi, ji) ∈ Fresh(xi).

Constructing the approximate set of constraints ψ′. In

order to construct the set of constraints ψ′, we need first

to construct regular constraints that discard from the set of

solutions any string that is accepted by any α-flat automa-

ton with α ∈ Covered. Let RCovered be the regular expres-

sion that accepts the complement of the regular language

⋃α∈Covered FX (α). We use φCovered to denote the smallest

set of constraints of the form (x, ℓ, j) ∈ RCovered where

(x, ℓ, j) ∈ Fresh(x) for all variable x ∈ X. We define ψ′ as

φCovered∪Over(φ1)∪Over(φ2)∪Over(φ3)∪⋯∪Over(φk).

Satisfiability problem of the approximate set of constraints

ψ′. The set of constraints ψ′ satisfies the acyclicity condi-

tion defined in [2, 3]. Intuitively, the acyclicity condition is

a syntactic condition on the occurrence of variables in the

set of constraints and ensures that no variables appears more

than once in (dis)-equalities during the analysis technique

developed in [2, 3]. Thus, we can use the technique presented

in [2, 3] to decide the satisfiability of the set of constraints

ψ′. Then, let OAprx (Covered) be the algorithm that checks

the satisfiability of ψ′ and returns a satisfying assignment v

for ψ′ if ψ′ is satisfiable, and unsat otherwise.

Generating new set of abstraction parameters. In the fol-

lowing, we describe how to generate new set of abstraction

parameters from an assignment v for ψ′. To do that, we will

first show how to define the abstraction parameters for a

string and then for an indexed string.

Let w ∈ Σ∗ be a string. We define GenPar (w) to be the

set of minimal pairs α = ⟨p,q⟩ ∈ N2 such that there are

words w1, w2, . . . , wq where length (wi) ≤ p for i ∶ 1 ≤
i ≤ q and w ∈ w∗

1
● w∗

2
● ⋯ ● w∗q . Let X′ be the set of

variables appearing in ψ′. For an X′-indexed string v over

Σ, we define GenPar (v) to be the maximal pairs in the set

{α ∣ (x ∈ X′) ∧ (α ∈ GenPar (v (x)))}.

10. CEGAR

In this section we present our CEGAR procedure. Observe

that, due to the undecidability of the considered problem,

our procedure is not guaranteed to terminate.

The procedure inputs a set ψ of string constraints. If the

procedure terminates then it either returns an indexed string

that satisfies ψ, or it concludes that ψ is not satisfiable.

The algorithm maintains a set Covered of parameter val-

ues that have already been considered, and a set Waiting

of parameter values to be considered in the coming itera-

tions. Both sets are initially empty. The procedure performs

alternatively a sequence of over- and under-approximation

phases.

The over-approximation phase is parameterized by the

set Covered. There are two possible outcomes. If the over-

approximation is unsatisfiable then we conclude that ψ is
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Algorithm 5: CEGAR Procedure.

Input: ψ: set of word constraints

Output: ψ satisfiable?

1 Covered← ∅;

2 Waiting← ∅;

3 repeat

4 OAprxResult← OAprx (Covered);

5 if OAprxResult = unsat then

6 return (unsat);

7 else if OAprxResult = v then

8 Waiting← GenPar (v)

9 while Waiting ≠ ∅ do

10 Select and Remove α ∈ Waiting;

11 Covered← Covered ∪ {α};

12 UAprxResult← UAprx (α,ψ);

13 if UAprxResult = v then

14 return (v);

unsatisfiable and we terminate. Otherwise, we get a satisfy-

ing assignment θ. In such a case we use θ to generate a new

set of parameters that we add to the set Waiting. This will

ensure that we at least eliminate θ in the next iteration, pos-

sibly together with an infinite set of other valuations.

In the under-approximation phase, we check the elements

of Waiting one by one, using the while-loop of line 9. Each

time we select and remove a parameter α from Waiting

and move to Covered. We check the under-approximation

ofψ wrt. α. If the under-approximation produces a satisfying

assignment then the procedure terminates.

11. Experimental Results

We have implemented our framework in an open source

solver (called TRAU) using Z3 [11] as an SMT solver. We

are not aware of other solvers that can handle the same

set of string constraints without restricting the lengths of

the solutions. Therefore, we have evaluated TRAU using

two separate sets of benchmarks. First, we used the Kaluza

benchmarks [38] in order to compare TRAU against existing

state-of-the-art solvers for string equations with length and

regular constraints but excluding context-free membership

queries (CFG queries for short). Then, we used a set of string

constraints with CFG queries in order to verify the absence

of SQL injections. All experiments were performed on an

Intel Core i7 2.7Ghz with 8GB RAM.

CFG-Free Benchmarks. The Kaluza suite [38] is an es-

tablished set of benchmarks for string solvers. It was gen-

erated by a JavaScript symbolic execution engine. We use

the SMT-format version provided by the CVC4 [26] team.

The suite consists of approximately 50,000 queries, includ-

ing length, regular and (dis)-equality constraints.

Figure 4a shows the performance of TRAU in comparison

with three other state-of-the-art solvers: Z3-str2 [51], CVC4

[25, 26], and S3P [42]. The row “(un)sat” indicates the num-

ber of benchmarks for which the solvers decided sat/unsat.

The row “0-1s (5s, 10s, 20s)” indicates the number of bench-

marks for which the solvers are able to decide the outcome

within the time limit of 1 (5, 10, 20) second(s). The row

“timeout” indicates the number of benchmarks for which the

solvers were unable to decide within the time limit of 20

seconds. Additionally, Z3-str2 detected “overlapping vari-

ables” on 525 examples and stopped running without giv-

ing a result. These cases are not shown in the figure. Due

to the non-deterministic behavior of some of the other tools,

they may exhibit slightly variable performances. We there-

fore carry out each experiment three times and consider the

average result. As depicted in Figure 4a, TRAU can answer

more queries than any of the three other tools. More impor-

tantly, it can handle hundreds of queries on which the other

solvers timed out. These queries were typically the largest

ones in terms of the number of string variables and the length

of the discovered string solutions.

TRAU needs 5 iterations of CEGAR loop on average to

handle a test in the test suite. The largest needed values

of the abstraction parameter α is ⟨7,8⟩. Furthermore, when

increasing the timeout limit to 100 seconds, TRAU is able to

solve all the cases, including the ones for which a timeout is

reported in the table.

An important hinder for the other solvers on these ex-

amples is their use of the arrangement method for solving

word equations. For a string variable on a left-hand side of

an equality, the arrangement method enumerates all possi-

bilities of what sub-string of the right-hand side the vari-

able could correspond to. Hence, the search space explored

by the arrangement method is exponential in both the num-

ber of variables and the length of satisfying strings. Conse-

quently, the running time grows quickly when the number of

variables in the left-hand side and the length of the string in

the right-hand side increase. Since the running time of our

method is much less dependent on lengths of strings, it can

handle these problematic cases much faster.

Benchmarks with CFG Queries. To our knowledge, all

existing string solvers that allow CFG queries put a bound on

the possible lengths of the string solutions. The HAMPI [24]

solver can handle CFG queries but requires a priori bounding

the length of the candidate string solutions. We have there-

fore generated our own set of benchmarks. The benchmarks

use CFG queries in order to symbolically check for the pos-

sibility of SQL injections in a home made application.

Several web applications allow users to enter and save

nested search queries. For instance, Bugzilla allows users

to build Boolean combinations of simple facts about stored

bug reports. Individual and group permissions are then

typically used to control access to the entries on which the

nested search queries are to be applied. SQL queries, such as

query = "SELECT * FROM records WHERE group=" +

groupID + " AND " + userConjunction; can then be
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CVC4 Z3-str2 S3P TRAU

sat 33191 34459 34829 35202

unsat 11625 11747 12033 12019

0-1s 44562 32765 31321 38710

0-5s 44638 45922 44581 46502

0-10s 44703 46131 45846 47136

0-20s 44816 46249 46862 47221

timeout 2468 553 422 63

(a)

TRAU HAMPI

Input Var Length
Bounded Length Unbouned Length Bounded Length

Result Time(s) Result Times(s) Result Times(s)

cfg01 6 20 sat 1.14 sat 1.24 sat 0.52

cfg02 6 20 unsat 1.02 unsat 1.11 unsat 0.20

cfg03 8 50 sat 1.01 sat 1.45 sat 9.34

cfg04 8 50 unsat 1.56 unsat 1.54 unsat 9.33

cfg05 10 70 sat 1.55 sat 2.00 - timeout

cfg06 10 70 unsat 2.01 unsat 1.12 - timeout

cfg07 14 50 sat 2.13 sat 3.36 - timeout

cfg08 14 50 unsat 1.56 unsat 2.58 unsat 8.85

cfg09 20 70 sat 1.78 sat 2.27 - timeout

cfg10 20 70 unsat 2.46 unsat 1.89 - timeout

(b)

Figure 4. (a) Performance of TRAU in comparison to CVC4, Z3-str2, and S3P on the Kaluza suite. (b) Performance of TRAU in comparison

to HAMPI on the CFG suite.

used to return the entries that match the user supplied con-

junction and her groupID. Without special care, an attacker

can formulate nested conditions that allow her to bypass

restrictions that apply to her groupID, for example by

entering (1 = 1) OR (1 = 1) instead of a conjunction.

Thus, sanitizers are used to parse and modify user inputs.

We have built such a sanitizer for nested SQL conditions.

We use it to ensure that the entered conditions are conjunc-

tions of (arbitrarily nested) SQL conditions. We then build

SQL queries to submit to the underlying database. Follow-

ing [41], we detect an SQL injection when the obtained

query is a valid SQL query although the untrusted input

(here the nested condition) is not derived from a single SQL-

grammar-node (here a node for an arbitrary conjunction). In-

tuitively, in our case, an SQL injection occurs when the en-

tered nested condition entered is not a conjunction (of arbi-

trarily nested conditions) yet yielding an overall valid query.

We have generated benchmarks for our solver by col-

lecting the symbolic path conditions corresponding to walks

through the sanitizer and requiring the obtained walks can-

not be derived as and-conditions (the intended meaning of

the input) when the whole query is a valid SQL condition.

We have introduced “bugs” in our sanitizer in-order to allow

for SQL injections, hence leading to satisfiable benchmarks.

More specifically, we truncated some string terms without

care for the succession of ’ symbols.

The results for some of the benchmarks are described in

Figure 4b. The column Var gives the number of variables in

the test. The column Length gives the bound on the length

of string variables. Such a bound must be provided when

running HAMPI. The column Result gives the answer of the

solver: “(un)sat” means it is (im)possible to find values of

the variables that satisfy the constraints. “-” denotes that the

solver cannot finish the test. The column Time gives running

time of the solver if it returns a result. Note that we supply

two columns for TRAU: one where we fix an upper bound

on the length of the possible solutions, and one where we do

not. TRAU is the only solver we are aware of that can handle

word equations with length constraints and CFG queries. We

compare the performance of TRAU to HAMPI which has

to bound the length of the solutions. Again, observe that

TRAU is much less affected by the number of variables or

by the length of the solutions. On the contrary, HAMPI is

not efficient when the bounded length is larger than 50.

12. Concluding Remarks

We have presented a constraint solver for a rich language

of constraints over unbounded strings, including word equa-

tions, context-free grammar membership, transducer con-

straints, and length constraints. The solver combines an

under- and over-approximation scheme in a CEGAR loop,

and is based on the observation that both satisfiability and

unsatisfiability of common constraints can be demonstrated

through witnesses with simple patterns. These patterns are

captured using flat automata that consist of sequences of

simple loops.
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