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String analysis is the problem of reasoning about how strings are manipulated by a program. It has numerous

applications including automatic detection of cross-site scripting, and automatic test-case generation. A popular

string analysis technique includes symbolic executions, which at their core use constraint solvers over the

string domain, a.k.a. string solvers. Such solvers typically reason about constraints expressed in theories

over strings with the concatenation operator as an atomic constraint. In recent years, researchers started to

recognise the importance of incorporating the replace-all operator (i.e. replace all occurrences of a string by

another string) and, more generally, finite-state transductions in the theories of strings with concatenation.

Such string operations are typically crucial for reasoning about XSS vulnerabilities in web applications,

especially for modelling sanitisation functions and implicit browser transductions (e.g. innerHTML). Although

this results in an undecidable theory in general, it was recently shown that the straight-line fragment of the

theory is decidable, and is sufficiently expressive in practice. In this paper, we provide the first string solver that

can reason about constraints involving both concatenation and finite-state transductions. Moreover, it has a

completeness and termination guarantee for several important fragments (e.g. straight-line fragment). Themain

challenge addressed in the paper is the prohibitive worst-case complexity of the theory (double-exponential

time), which is exponentially harder than the case without finite-state transductions. To this end, we propose

a method that exploits succinct alternating finite-state automata as concise symbolic representations of string

constraints. In contrast to previous approaches using nondeterministic automata, alternation offers not only

exponential savings in space when representing Boolean combinations of transducers, but also a possibility

of succinct representation of otherwise costly combinations of transducers and concatenation. Reasoning

about the emptiness of the AFA language requires a state-space exploration in an exponential-sized graph, for

which we use model checking algorithms (e.g. IC3). We have implemented our algorithm and demonstrated its

efficacy on benchmarks that are derived from cross-site scripting analysis and other examples in the literature.
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1 INTRODUCTION
Strings are a fundamental data type in many programming languages. This statement is true

now more than ever, especially owing to the rapidly growing popularity of scripting languages

(e.g. JavaScript, Python, PHP, and Ruby) wherein programmers tend to make heavy use of string

variables. String manipulations are often difficult to reason about automatically, and could easily

lead to unexpected programming errors. In some applications, some of these errors could have

serious security consequences, e.g., cross-site scripting (a.k.a. XSS), which are ranked among the

top three classes of web application security vulnerabilities by OWASP [OWASP 2013].

Popular methods for analysing how strings are being manipulated by a program include symbolic
executions [Bjørner et al. 2009; Cadar et al. 2008, 2011; Godefroid et al. 2005; Kausler and Sherman

2014; Loring et al. 2017; Redelinghuys et al. 2012; Saxena et al. 2010; Sen et al. 2013] which at their

core use constraint solvers over the string domain (a.k.a. string solvers). String solvers have been
the subject of numerous papers in the past decade, e.g., see [Abdulla et al. 2014; Balzarotti et al.

2008; Barrett et al. 2016; Bjørner et al. 2009; D’Antoni and Veanes 2013; Fu and Li 2010; Fu et al.

2013; Ganesh et al. 2013; Hooimeijer et al. 2011; Hooimeijer and Weimer 2012; Kiezun et al. 2012;

Liang et al. 2014, 2016, 2015; Lin and Barceló 2016; Saxena et al. 2010; Trinh et al. 2014, 2016; Veanes

et al. 2012; Wassermann et al. 2008; Yu et al. 2010, 2014, 2009, 2011; Zheng et al. 2013] among many

others. As is common in constraint solving, we follow the standard approach of Satisfiability Modulo
Theories (SMT) [De Moura and Bjørner 2011], which is an extension of the problem of satisfiability

of Boolean formulae wherein each atomic proposition can be interpreted over some logical theories

(typically, quantifier-free).

Unlike the case of constraints over integer/real arithmetic (where many decidability and un-

decidability results are known and powerful algorithms are already available, e.g., the simplex

algorithm), string constraints are much less understood. This is because there are many different

string operations that can be included in a theory of strings, e.g., concatenation, length comparisons,

regular constraints (matching against a regular expression), and replace-all (i.e. replacing every

occurrence of a string by another string). Even for the theory of strings with the concatenation

operation alone, existing string solver cannot handle the theory (in its full generality) in a sound

and complete manner, despite the existence of a theoretical decision procedure for the problem

[Diekert 2002; Gutiérrez 1998; Jez 2016; Makanin 1977; Plandowski 2004, 2006]. This situation is

exacerbated when we add extra operations like string-length comparisons, in which case even

decidability is a long-standing open problem [Ganesh et al. 2013]. In addition, recent works in string

solving have argued in favour of adding the replace-all operator or, more generally finite-state

transducers, to string solvers [Lin and Barceló 2016; Trinh et al. 2016; Yu et al. 2010, 2014] in view

of their importance for modelling relevant sanitisers (e.g. backslash-escape) and implicit browser

transductions (e.g. an application of HTML-unescape by innerHTML), e.g., see [D’Antoni and

Veanes 2013; Hooimeijer et al. 2011; Veanes et al. 2012] and Example 1.1 below. However, naively

combining the replace-all operator and concatenation yields undecidability [Lin and Barceló 2016].

Example 1.1. The following JavaScript snippet—an adaptation of an example from [Kern 2014;

Lin and Barceló 2016]—shows use of both concatenation and finite-state transducers:

var x = goog.string.htmlEscape(name);
var y = goog.string.escapeString(x);
nameElem.innerHTML = '<button onclick= "viewPerson(\'' + y + '\')">' + x + '</button>';
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The code assigns an HTML markup for a button to the DOM element nameElem. Upon click, the

button will invoke the function viewPerson on the input namewhose value is an untrusted variable.

The code attempts to first sanitise the value of name. This is done via The Closure Library [co 2015]

string functions htmlEscape and escapeString. Inputting the value Tom & Jerry into name gives
the desired HTML markup:

<button onclick="viewPerson('Tom &amp; Jerry')">Tom &amp; Jerry</button>

On the other hand, inputting value ');attackScript();// to name, results in the markup:

<button onclick="viewPerson('&#39;);attackScript();//')">&#39;);attackScript();//')</button>

Before this string is inserted into the DOM via innerHTML, an implicit browser transduction will

take place [Heiderich et al. 2013; Weinberger et al. 2011], i.e., HTML-unescaping the string inside

the onclick attribute and then invoking the attacker’s script attackScript() after viewPerson.
This subtle DOM-based XSS bug is due to calling the right escape functions, but in wrong order. □

One theoretically sound approach proposed in [Lin and Barceló 2016] for overcoming the

undecidability of string constraints with both concatenation and finite-state transducers is to

impose a straight-line restriction on the shape of constraints. This straight-line fragment can be

construed as the problem of path feasibility [Bjørner et al. 2009] in the following simple imperative

language (with only assignment, skip, and assert) for defining non-branching and non-looping

string-manipulating programs that are generated by symbolic execution:

S ::= y := a | assert(b) | skip | S1; S2, a ::= f (x1, . . . ,xn ), b ::= д(x1)

where f : (Σ∗)n → Σ∗ is either an application of concatenation x1 ◦ · · · ◦ xn or an application

of a finite-state transduction R (x1), and д tests membership of x1 in a regular language. Here,

some variables are undefined “input variables”. Path feasibility asks if there exist input strings that

satisfy all assertions and applications of transductions in the program. It was shown in [Lin and

Barceló 2016] that such a path feasibility problem (equivalently, satisfiability for the aforementioned

straight-line fragment) is decidable. As noted in [Lin and Barceló 2016] such a fragment can express

the program logic of many interesting examples of string-manipulating programs with/without

XSS vulnerabilities. For instance, the above example can be modelled as a straight-line formula

where the regular constraint comes from an attack pattern like the one below:

e1 = /<button onclick=
"viewPerson\(' ( ' | [^']*[^'\\] ' ) \); [^']*[^'\\]' \)">.*<\/button>/

Unfortunately, the decidability proof given in [Lin and Barceló 2016] provides only a theoretical

argument for decidability and complexity upper bounds (an exponential-time reduction to the

acyclic fragment of intersection of rational relations
1
whose decidability proof in turn is a highly

intricate polynomial-space procedure using Savitch’s trick [Barceló et al. 2013]) and does not yield

an implementable solution. Furthermore, despite its decidability, the string logic has a prohibitively

high complexity (EXPSPACE-complete, i.e., exponentially higher than without transducers), which

could severely limit its applicability.

Contributions. Our paper makes the following contributions to overcome the above challenges:

(1) We propose a fast reduction of satisfiability of formulae in the straight-line fragment and in

the acyclic fragment to the emptiness problem of alternating finite-state automata (AFAs).
The reduction is in the worst case exponential in the number of concatenation operations

2
,

1
This fragment consists of constraints that are given as conjunctions of transducers

∧m
i=1

Ri (xi , yi ), wherein the graph G
of variables does not contain a cycle. The graphG contains vertices corresponding to variables xi , yi and that two variables
x, y are linked by an edge if x = xi and y = yi for some i ∈ {1, . . . ,m }.
2
This is an unavoidable computational limit imposed by EXPSPACE-hardness of the problem [Lin and Barceló 2016].
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but otherwise polynomial in the size of a formula. In combination with fast model checking

algorithms (e.g. IC3 [Bradley 2012]) to decide AFA emptiness, this yields the first practical

algorithm for handling string constraints with concatenation, finite-state transducers (hence,

also replace-all), and regular constraints, and a decision procedure for formulae within the

straight-line and acyclic fragments.

(2) We obtain a substantially simpler proof for the decidability and PSPACE-membership of

the acyclic fragment of intersection of rational relations of [Barceló et al. 2013], which was

crucially used in [Lin and Barceló 2016] as a blackbox in their decidability proof of the

straight-line fragment.

(3) We define optimised translations from AFA emptiness to reachability over Boolean transition

systems (i.e. which are succinctly represented by Boolean formulae). We implemented our

algorithm for string constraints in a new string solver called Sloth, and provide an extensive

experimental evaluation. Sloth is the first solver that can handle string constraints that

arise from HTML5 applications with sanitisation and implicit browser transductions. Our

experiments suggest that the translation to AFAs can circumvent the EXPSPACE worst-case

complexity of the straight-line fragment in many practical cases.

An overview of the results. The main technical contribution of our paper is a new method for

exploiting alternating automata (AFA) as a succinct symbolic representation for representing

formulae in a complex string logic admitting concatenation and finite-state transductions. In

particular, the satisfiability problem for the string logic is reduced to AFA language emptiness, for

which we exploit fast model checking algorithms. Compared to previous methods [Abdulla et al.

2014; Lin and Barceló 2016] that are based on nondeterministic automata (NFA) and transducers,

we show that AFA can incur at most a linear blowup for each string operation permitted in the

logic (i.e. concatenation, transducers, and regular constraints). While the product NFA representing

the intersection of the languages of two automata A1 and A2 would be of size O ( |A1 | × |A2 |), the
language can be represented using an AFA of size |A1 | + |A2 | (e.g. see [Vardi 1995]). The difficult

cases are how to deal with concatenation and replace-all, which are our contributions to the paper.

More precisely, a constraint of the form x := y.z ∧ x ∈ L (where L is the language accepted by an

automaton A) was reduced in [Abdulla et al. 2014; Lin and Barceló 2016] to regular constraints on

y and z by means of splitting A, which causes a cubic blow-up (since an “intermediate state” in A
has to be guessed, and for each state a product of two automata has to be constructed). Similarly,

taking the post-image R (L) of L under a relation R represented by a finite-state transducer T gives

us an automaton of size O ( |T | × |A|). A naïve application of AFAs is not helpful for those cases,

since also projections on AFAs are computationally hard.

The key idea to overcome these difficulties is to avoid applying projections altogether, and instead

use the AFA to represent general k-ary rational relations (a.k.a. k-track finite-state transductions

[Barceló et al. 2013; Berstel 1979; Sakarovitch 2009]). This is possible because we focus on formulae

without negation, so that the (implicit) existential quantifications for applications of transducers

can be placed outside the constraint. This means that our AFAs operate on alphabets that are

exponential in size (for k-ary relations, the alphabet is {ϵ, 0, 1}k ). To address this problem, we

introduce a succinct flavour of AFA with symbolically represented transitions. Our definition is

similar to the concept of alternating symbolic automata in [D’Antoni et al. 2016] with one difference.

While symbolic AFA take a transition q →ψ φ from a state q to a set of states satisfying a formula φ
if the input symbol satisfies a formulaψ , our succinct AFA can mix constraints on successor states

with those on input symbols within a single transition formula (similarly to the symbolic transition

representation of deterministic automata in MONA [Klarlund et al. 2002], where sets of transitions

4



are represented as multi-terminal BDDs with states as terminal nodes). We show how automata

splitting can be achieved with at most linear blow-up.

The succinctness of our AFA representation of string formulae is not for free since AFA language

emptiness is a PSPACE-complete problem (in contrast to polynomial-time for NFA). However,

modern model checking algorithms and heuristics can be harnessed to solve the emptiness problem.

In particular, we use a linear-time reduction to reachability in Boolean transition systems similar to

[Cox and Leasure 2017; Wang et al. 2016], which can be solved by state of the art model checking

algorithms, such as IC3 [Bradley 2012], k-induction [Sheeran et al. 2000], or Craig interpolation-

based methods [McMillan 2003], and tools like nuXmv [Cavada et al. 2014] or ABC [Brayton and

Mishchenko 2010].

An interesting by-product of our approach is an efficient decision procedure for the acyclic

fragment. The acyclic logic does not a priori allow concatenation, but is more liberal in the use of

transducer constraints (which can encode complex relations like string-length comparisons, and

the subsequence relation). In addition, such a logic is of interest in the investigation of complex

path-queries for graph databases [Barceló et al. 2013; Barceló et al. 2012], which has been pursued

independently of strings for verification. Our algorithm also yields an alternative and substantially

simpler proof of PSPACE upper bound of the satisfiability problem of the logic.

We have implemented our AFA-based string solver as the tool Sloth, using the infrastructure

provided by the SMT solver Princess [Rümmer 2008], and applying the nuXmv [Cavada et al. 2014]

and ABC [Brayton and Mishchenko 2010] model checkers to analyse succinct AFAs. Sloth is

a decision procedure for the discussed fragments of straight-line and acyclic string formulae, and

is able to process SMT-LIB input with CVC4-style string operations, augmented with operations

str.replace, str.replaceall3, and arbitrary transducers defined using sets of mutually recursive

functions. Sloth is therefore extremely flexible at supporting intricate string operations, including

escape operations such as the ones discussed in Example 1.1. Experiments with string benchmarks

drawn from the literature, including problems with replace, replace-all, and general transducers,

show that Sloth can solve problems that are beyond the scope of existing solvers, while it is

competitive with other solvers on problems with a simpler set of operations.

Organisation. We recall relevant notions from logic and automata theory in Section 2. In Section 3,

we define a general string constraint language and mention several important decidable restrictions.

In Section 4, we recall the notion of alternating finite-state automata and define a succinct variant

that plays a crucial role in our decision procedure. In Section 5, we provide a new algorithm

for solving the acyclic fragment of the intersection of rational relations using AFA. In Section 7,

we provide our efficient reduction from the straight-line fragment to the acyclic fragment that

exploits AFA constructions. To simplify the presentation of this reduction, we first introduce in

Section 6 a syntactic sugar of the acyclic fragment called acyclic constraints with synchronisation

parameters. In Section 8, we provide our reduction from the AFT emptiness to reachability in a

Boolean transition system. Experimental results are presented in Section 9. Our tool Sloth can be

obtained from https://github.com/uuverifiers/sloth/wiki. Finally, we conclude in Section 10. Missing

proofs can be found in the appendix.

2 PRELIMINARIES
Logic. Let B = {0, 1} be the set of Boolean values, and A a set of Boolean variables. We write FA

to denote the set of Boolean formulae over A. In this context, we will sometimes treat subsets A′ of
A as the corresponding truth assignments {s 7→ 1 | s ∈ A′} ∪ {s 7→ 0 | s ∈ A \ A′} and write, for

3str.replaceall is the SMT-LIB syntax for the replace-all operation. On the other hand, str.replace represents the

operation of replacing the first occurrence of the given pattern. In case there is no such occurrence, the string stays intact.
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instance, A′ |= φ for φ ∈ FA if the assignment satisfies φ. An atom is a Boolean variable; a literal is
either a atom or its negation. A formula is in disjunctive normal form (DNF) if it is a disjunction

of conjunctions of literals, and in negation normal form (NNF) if negation only occurs in front

of atoms. We denote the set of variables in a formula φ by var(φ). We use x̄ to denote sequences

x1, . . . ,xn of length |x̄ | = n of propositional variables, and we write φ (x̄ ) to denote that x̄ are the

variables of φ. If we do not fix the order of the variables, we write φ (X ) for a formula with X being

its set of variables. For a variable vector x̄ , we denote by {x̄ } the set of variables in the vector.

We say that φ is positive (negative) on an atom α ∈ A if α appears under an even (odd) number

of negations only. A formula that is positive (negative) on all its atoms is called positive (negative),

respectively. The constant formulae true and false are both positive and negative. We use F+S and

F−S to denote the sets of all positive and negative Boolean formulae over S , respectively.
Given a formula φ, we write φ̃ to denote a formula obtained by replacing (1) every conjunction

by a disjunction and vice versa and (2) every occurrence of true by false and vice versa. Note

that x̃ = x , which means that φ̃ is not the same as the negation of φ.

Strings and languages. Fix a finite alphabet Σ. Elements in Σ∗ are interchangeably called words

or strings, where the empty word is denoted by ϵ . The concatenation of strings u, v is denoted by

u ◦ v , occasionally just by uv to avoid notational clutter. We denote by |w | the lenght of a word
w ∈ Σ∗. For any word w = a1 . . . an , n ≥ 1, and any index 1 ≤ i ≤ n, we denote by w[i] the
letter ai . A language is a subset of Σ∗. The concatenation of two languages L,L′ is the language
L ◦ L′ = {w ◦w ′ | w ∈ L ∧w ′ ∈ L′}, and the iteration L∗ of a language L is the smallest language

closed under ◦ and containing L and ϵ .

Regular languages and rational relations. A regular language over a finite alphabet Σ is a subset of

Σ∗ that can be built by a finite number of applications of the operations of concatenation, iteration,

and union from the languages {ϵ } and {a},a ∈ Σ. An n-ary rational relation R over Σ is a subset of

(Σ∗)n that can be obtained from a regular language L over the alphabet of n-tuples (Σ ∪ {ϵ })n as

follows. Include (w1, . . . ,wn ) in R iff for some (a1

1
, . . . ,a1

n ), . . . , (a
k
1
, . . . ,akn ) ∈ L,wi = a1 ◦ · · · ◦ ak

for all 1 ≤ i ≤ n. Here, ◦ is a concatenation over the alphabet Σ, and k denotes the length of the

wordswi . In practice, regular languages and rational relations can be represented using various

flavours of finite-state automata, which are discussed in detail in Section 4.

3 STRING CONSTRAINTS
We start by recalling a general string constraint language from [Lin and Barceló 2016] that supports

concatenations, finite-state transducers, and regular expression matching. We will subsequently

state decidable fragments of the language for which we design our decision procedure.

3.1 String Language
We assume a vocabulary of countably many string variables x ,y, z, . . . ranging over Σ∗. A string
formula over Σ is a Boolean combination φ of word equations x = t whose right-hand side t might

contain the concatenation operator, regular constraints P (x ), and rational constraints R (x̄ ):

φ ::= x = t | P (x ) | R (x̄ ) | φ ∧ φ | φ ∨ φ | ¬φ, t ::= x | a | t ◦ t .

In the grammar, x ranges over string variables, x̄ over vectors of string variables, and a ∈ Σ over

letters. R ⊆ (Σ∗)n is assumed to be an n-ary rational relation on words of Σ∗, and P ⊆ Σ∗ is a regular
language. We will represent regular languages and rational relations by succinct automata and

transducers denoted as R and A, respectively. The automata and transducers will be formalized in

Section 4. When the transducer R or automaton A representing a rational relation R or regular

language P is known, we write R (x̄ ) or A (x̄ ) instead of R (x̄ ) or P (x̄ ) in the formulae, respectively.
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A formula φ is interpreted over an assignment ι : var(φ) → Σ∗ of its variables to strings over

Σ∗. It satisfies φ, written ι |= φ, iff the constraint φ becomes true under the substitution of each

variable x by ι (x ). We formalise the satisfaction relation for word equations, rational constraints,

and regular constraints, assuming the standard meaning of Boolean connectives:

(1) ι satisfies the equation x = t if ι (x ) = ι (t ), extending ι to terms by setting ι (a) = a and

ι (t1 ◦ t2) = ι (t1) ◦ ι (t2).
(2) ι satisfies the rational constraint R (x1, . . . ,xn ) iff (ι (x1), . . . , ι (xn )) belongs to R.
(3) ι satisfies the regular constraint P (x ), for P a regular language, if and only if ι (x ) ∈ P .

A satisfying assignment for φ is also called a solution for φ. If φ has a solution, it is satisfiable.
The unrestricted string logic is undecidable, e.g., one can easily encode Post Correspondence

Problem (PCP) as the problem of checking satisfiability of the constraint R (x ,x ), for some rational

transducer R [Morvan 2000]. We therefore concentrate on practical decidable fragments.

3.2 Decidable Fragments
Our approach to deciding string formulae is based on two major insights. The first insight is that

alternating automata can be used to efficiently decide positive Boolean combinations of rational

constraints. This yields an algorithm for deciding (an extension of) the acyclic fragment of [Barceló
et al. 2013]. The minimalistic definition of acyclic logic restricts rational constraints and does not

allow word equations (in Section 5.1 a limited form of equations and arithmetic constraints over

lengths will be shown to be encodable in the logic). Our definition of the acyclic logic AC below

generalises that of [Barceló et al. 2013] by allowing k-ary rational constraints instead of binary.

Definition 3.1 (Acyclic formulae). Particularly, we say that a string formula φ is acyclic if it does
not contain word equations, rational constraints R (x1, . . . ,xn ) only appear positively and their

variables x1, . . . ,xn are pairwise distinct, and for every sub-formulaψ ∧ψ ′ at a positive position of

φ (and also every ψ ∨ψ ′ at a negative position) it is the case that |free(ψ ) ∩ free(ψ ′) | ≤ 1, i.e., ψ
andψ ′ have at most one variable in common. We denote by AC the set of all acyclic formulae.

The second main insight we build on is that alternation allows a very efficient encoding of

concatenation into rational constraints and automata (though only equisatisfiable, not equivalent).

Efficient reasoning about concatenation combined with rational relations is the main selling point

of our work from the practical perspective—this is what is most needed and was so far missing

in applications like security analysis of web-applications. We follow the approach from [Lin

and Barceló 2016] which defines so called straight-line conjunctions. Straight-line conjunctions

essentially correspond to sequences of program assignments in the single static assignment form,

possibly interleaved with assertions of regular properties. An equation x = y1◦· · ·◦yn is understood
as an assignment to a program variable x . A rational constraint R (x ,y) may be interpreted as an

assignment to x as well, in which case we write it as x = R (y) (though despite the notation, R is

not required to represent a function, it can still mean any rational relation).

Definition 3.2 (Straight-line conjunction). A conjunction of string constraints is then defined to

be straight-line if it can be written as ψ ∧
∧m

i=1
xi = Pi where ψ is a conjunction of regular and

negated regular constraints and each Pi is either of the form y1 ◦ · · · ◦ yn , or R (y) and, importantly,

Pi cannot contain variables xi , . . . ,xm . We denote by SL the set of all straight-line conjunctions.

Example 3.3. The program snippet in Example 1.1 would be expressed as x = R1 (name) ∧ y =
R2 (x ) ∧ z = w1 ◦ y ◦ w2 ◦ x ◦ w3 ∧ u = R3 (z). The transducers Ri correspond to the string

operations at the respective lines: R1 is the htmlEscape, R2 is the escapeString, and R3 is the

implicit transduction within innerHTML. Line 3 is translated into a conjunction of the concatenation

and the third rational constraint encoding the implicit string operation at the assignment to
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innerHTML. In the concatenation, w1,w2,w3 are words that correspond to the three constant

strings concatenated with x and y on line 3. To test vulnerability, a regular constraint A (u)
encoding the pattern e1 is added as a conjunct.

The fragment of straight-line conjunctions can be straightforwardly extended to disjunctive

formulae. We say that a string formula is straight-line if every clause in its DNF is straight-

line. A decision procedure for straight-line conjunctions immediately extends to straight-line

formulae: instantiate the DPLL(T) framework [Nieuwenhuis et al. 2004] with a solver for straight-

line conjunctions.

The straight-line and acyclic fragments are clearly syntactically incomparable: AC does not have

equations, SL restricts more strictly combinations of rational relations and allows only binary

ones. Regarding expressive power, SL can express properties which AC cannot: the straight-line

constraint x = yy cannot be expressed by any acyclic formula. On the other hand, whether or not

AC formulae can be expressed in SL is not clear. Every AC formula can be expressed by a singlen-ary
acyclic rational constraint (c.f. Section 5), hence acyclic formulae and acyclic rational constraints

are of the same power. It is not clear however whether straight-line formulae, which can use only

binary rational constraints, can express arbitrary n-ary acyclic rational constraint.

4 SUCCINCT ALTERNATING AUTOMATA AND TRANSDUCERS
We introduce a succinct form of alternating automata and transducers that operate over bit vectors,
i.e., functions b : V → B where V is a finite, totally ordered set of bit variables. This is a variant of

the recent automata model in [D’Antoni et al. 2016] that is tailored to our problem. Bit vectors can

of course be described by strings over B, conjunctions of literals over V , or sets of those elements

v ∈ V such that b (v ) = 1. In what follows, we will use all of these representations interchangeably.

Referring to the last mentioned possibility, we denote the set of all bit vectors over V by P (V ).
An obvious advantage of this approach is that encoding symbols of large alphabets, such as UTF,

by bit vectors allows one to succinctly represent sets of such symbols using Boolean formulae. In

particular, symbols of an alphabet of size 2
k
can be encoded by bit vectors of size k (or, alternatively,

as Boolean formulae over k Boolean variables). We use this fact when encoding transitions of our

alternating automata.

Example 4.1. To illustrate the encoding, assume the alphabet Σ = {a,b, c,d } consisting of symbols

a, b, c , and d . We can deal with this alphabet by using the set V = {v0,v1} and representing, e.g., a
as ¬v1 ∧¬v0, b as ¬v1 ∧v0, c as v1 ∧¬v0, and d as v1 ∧v0. This is, a, b, c , and d are encoded as the

bit vectors 00, 01, 10, and 11 (for the orderingv0 < v1), or the sets ∅, {v0}, {v1}, {v0,v1}, respectively.

The set of symbols {c,d } can then be encoded simply by the formula v1. □

4.1 Succinct Alternating Finite Automata
A succinct alternating finite automaton (AFA) over Boolean variablesV is a tupleA = (V ,Q,∆, I , F )
whereQ is a finite set of states, the transition function ∆ : Q → FV∪Q assigns to every state a Boolean

formula over Boolean variables and states that is positive on states, I ∈ F+Q is a positive initial
formula, and F ∈ F−Q is a negative final formula. Letw = b1 . . .bm ,m ≥ 0, be a word where each bi ,

1 ≤ i ≤ m, is a bit vector encoding the i-th letter ofw . A run of the AFA A overw is a sequence

ρ = ρ0b1ρ1 . . .bmρm where bi ∈ P (V ) for every 1 ≤ i ≤ m, ρi ⊆ Q for every 0 ≤ i ≤ m, and

bi ∪ ρi |=
∧

q∈ρi−1
∆(q) for every 1 ≤ i ≤ m. The run is accepting if ρ0 |= I and ρm |= F , in which

case the word is accepted. The language of A is the set L(A) of accepted words.

Notice that instead of the more usual definition of ∆, which would assign a positive Boolean

formula over Q to every pair from Q × P (V ) or to a pair Q × FV as in [D’Antoni et al. 2016], we

let ∆ assign to states formulae that talk about both target states and Boolean input variables. This
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is closer to the encoding of the transition function as used in MONA [Klarlund et al. 2002]. It

allows for additional succinctness and also for a more natural translation of the language emptiness

problem into a model checking problem (cf. Section 8).
4
Moreover, compared with the usual AFA

definition, we do not have just a single initial state and a single set of accepting states, but we

use initial and final formulae. As will become clear in Section 5, this approach allows us to easily

translate the considered formulae into AFAs in an inductive way.

Note that standard nondeterministic finite automata (NFAs), working over bit vectors, can be

obtained as a special case of our AFAs as follows. An AFA A = (V ,Q,∆, I , F ) is an NFA iff (1) I is
of the form

∨
q∈Q ′ q for some Q ′ ⊆ Q , (2) F is of the form

∧
q∈Q ′′ ¬q for some Q ′′ ⊆ Q , and (3) for

every q ∈ Q , ∆(q) is of the form
∨

1≤i≤m φi (V ) ∧ qi wherem ≥ 0 and, for all 1 ≤ i ≤ m, φi (V ) is
a formula over the input bit variables and qi ∈ Q .

Example 4.2. To illustrate our notion of AFAs, we give an example of an AFA A over the

alphabet Σ = {a,b, c,d } from Example 4.1 that accepts the language {w ∈ Σ∗ | |w | mod 35 = 0 ∧

∀i∃j : (1 ≤ i ≤ |w | ∧ w[i] ∈ {a,b}) → (i < j ≤ |w | ∧ w[j] ∈ {c,d })}, i.e., the length of

the words is a multiple of 35, and every letter a or b is eventually followed by a letter c or d .
In particular, we let A = ({v0,v1}, {q0, . . . ,q4,p0, . . . ,p6, r1, r2}},∆, I , F ) where I = q0 ∧ p0, F =
¬q1 ∧ . . .∧¬q4 ∧¬p1 ∧ . . .∧¬p6 ∧¬r1 (i.e., the accepting states are q0, p0, and r2), and ∆ is defined

as follows:

• ∀0 ≤ i < 5 : ∆(qi ) = (¬v1 ∧ q (i+1) mod 5 ∧ r1) ∨ (v1 ∧ q (i+1) mod 5),
• ∀0 ≤ i < 7 : ∆(pi ) = p(i+1) mod 7,

• ∆(r1) = (v1 ∧ r2) ∨ (¬v1 ∧ r1) and ∆(r2) = r2.

Intuitively, the q states check divisibility by 5. Moreover, whenever, they encounter an a or b symbol

(encoded succinctly as checking ¬v1 in the AFA), they spawn a run through the r states, which
checks that eventually a c or d symbol appears. The p states then check divisibility by 7. The desired

language is accepted due to the requirement that all these runs must be synchronized. Note that

encoding the language using an NFA would require quadratically more states since an explicit

product of all the branches would have to be done. □

The additional succinctness of AFA does not influence the computational complexity of the

emptiness check compared to the standard variant of alternating automata.

Lemma 4.3. The problem of language emptiness of AFA is PSPACE-complete.

The lemma is witnessed by a linear-space transformation of the problem of emptiness of an AFA

language to the PSPACE-complete problem of reachability in a Boolean transition system. This

transformation is shown in Section 8.

4.2 Boolean Operations on AFAs
From the standard Boolean operations over AFAs, we will mainly need conjunction and disjunction

in this paper. These operations can be implemented in linear space and time in a way analogous to

[D’Antoni et al. 2016], slightly adapted for our notion of initial/final formulae, as follows. Given

two AFAsA = (V ,Q,∆, I , F ) andA ′ = (V ,Q ′,∆′, I ′, F ′) withQ ∩Q ′ = ∅, the automaton accepting

the union of their languages can be constructed as A ∪ A ′ = (V ,Q ∪ Q ′,∆ ∪ ∆′, I ∨ I ′, F ∧ F ′),
and the automaton accepting the intersection of their languages can be constructed as A ∩A ′ =

(V ,Q ∪Q ′,∆ ∪ ∆′, I ∧ I ′, F ∧ F ′). Seeing correctness of the construction of A ∩A ′ is immediate.

4
[D’Antoni et al. 2016] also mentions an implementation of symbolic AFAs that uses MONA-like BDDs and is technically

close to our AFAs.
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Indeed, the initial condition enforces that the two AFAs run in parallel, disjointness of their state-

spaces prevents them from influencing one another, and the final condition defines their parallel

runs as accepting iff both of the runs accept. To see correctness of the construction of A ∪ A ′,

it is enough to consider that one of the automata can be started with the empty set of states

(corresponding to the formula

∧
q∈Q ¬q for A and likewise for A ′). This is possible since only one

of the initial formulae I and I ′ needs to be satisfied. The automaton that was started with the empty

set of states will stay with the empty set of states throughout the entire run and thus trivially

satisfy the (negative) final formula.

Example 4.4. Note that the AFA in Example 4.2 can be viewed as obtained by conjunction of two

AFAs: one consisting of the q and r states and the second of the p states. □

To complement an AFA A = (V ,Q,∆, I , F ), we first transform the automaton into a form

corresponding to the symbolic AFA of [D’Antoni et al. 2016] and then use their complementation

procedure. More precisely, the transformation to the symbolic AFA form requires two steps:

• The first step simplifies the final condition. The final formula F is converted into DNF, yielding

a formula F1 ∨ . . . ∨ Fk , k ≥ 1, where each Fi , 1 ≤ i ≤ k , is a conjunction of negative literals

overQ . The AFAA is then transformed into a union of AFAsAi = (V ,Q,∆, I , Fi ), 1 ≤ i ≤ k ,
where each Ai is a copy of A except that it uses one of the disjuncts Fi of the DNF form of

the original final formula F as its final formula. Each resulting AFAs hence have a purely

conjunctive final condition that corresponds a set of final states of [D’Antoni et al. 2016].

• The second step simplifies the structure of the transitions. For every q ∈ Q , the transition
formula ∆(q) is transformed into a disjunction of formulae of the form (φ1 (V )∧ψ1 (Q ))∨ . . .∨
(φm (V ) ∧ψm (Q )) where the φi (V ) formulae, called input formulae below, speak about input

bit variables only, while theψi (Q ) formulae, called target formulae below, speak exclusively

about the target states, for 1 ≤ i ≤ m. For this transformation, a slight modification of

transforming a formula into DNF can be used.

The complementation procedure of [D’Antoni et al. 2016] then proceeds in two steps: the

normalisation and the complementation itself. We sketch them below:

• For every q ∈ Q , normalisation transforms the transition formula ∆(q) = (φ1 (V ) ∧ψ1 (Q )) ∨
. . . ∨ (φm (V ) ∧ ψm (Q )) so that every two distinct input formulae φ (V ) and φ ′(V ) of the
resulting formula describe disjoint sets of bit vectors, i.e., ¬(φ (V ) ∧ φ ′(V )) holds. To achieve

this (without trying to optimize the algorithm as in [D’Antoni et al. 2016]), one can consider

generating all Boolean combinations of the original φ (V ) formulae, conjoining each of them

with the disjunction of those state formulae whose input formulae are taken positively in the

given case. More precisely, one can take

∨
I ⊆{1, ...,m } (

∧
i ∈I φi ))∧(

∧
i ∈{1, ...,m }\I ¬φi ))∧

∨
i ∈I ψi .

• Finally, to complement the AFAs normalized in the above way, one proceeds as follows:

(1) The initial formula I is replaced by Ĩ . (2) For every q ∈ Q and every disjunct φ (V ) ∧ψ (Q )

of the transition formula ∆(q), the target formula ψ (Q ) is replaced by ψ̃ (Q ). (3) The final
formula of the form

∧
q∈Q ′ ¬q,Q

′ ⊆ Q , is transformed to the formula

∧
q∈Q\Q ′ ¬q, and false

is swapped for true and vice versa.

Clearly, the complementation contains three sources of exponential blow-up: (1) the simplification

of the final condition, (2) the simplification of transitions and (3) the normalization of transitions.

Note, however, that, in this paper, we will apply complementation exclusively on AFAs obtained

by Boolean operations from NFAs derived from regular expressions. Such AFAs already have the

simple final conditions, and so the first source of exponential blow-up does not apply. The second

and the third source of exponential complexity can manifest themselves but note that it does not
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show up in the number of states. Finally, note that if we used AFAs with explicit alphabets, the

second and the third problem would disappear (but then the AFAs would usually be bigger anyway).

4.3 Succinct Alternating Finite Transducers
In our alternating finite transducers, we will need to use epsilon symbols representing the empty

word. Moreover, as we will explain later, in order to avoid some undesirable synchronization

when composing the transducers, we will need more such symbols—differing just syntactically.

Technically, we will encode the epsilon symbols using a set of epsilon bit variables E, containing one
new bit variable for each epsilon symbol. We will draw the epsilon bit variables from a countably

infinite set E. We will also assume that when one of these bits is set, other bits are not important.

LetW be a finite, totally ordered set of bit variables, which we can split to the set of input

bit variables V (W ) = W \ E and the set of epsilon bit variables E (W ) = W ∩ E. Given a word

w = b1 . . .bm ∈ P (W )∗, m ≥ 0, we denote by ⟩w⟨ the word that arises from w by erasing

all those bi , 1 ≤ i ≤ m, in which some epsilon bit variable is set, i.e., bi ∩ E , ∅. Further,
let k ≥ 1, and letW ⟨k⟩ = W × [k], assuming it to be ordered in the lexicographic way. The

indexing of the bit variables will be used to express the track on which they are read. Finally,

given a word w = b1 . . .bm ∈ P (W ⟨k⟩)
∗
, m ≥ 0, we denote by w ↓i , 1 ≤ i ≤ k , the word

b ′
1
. . .b ′m ∈ P (W )∗ that arises fromw by keeping the contents of the i-th track (without the index i)

only, i.e., b ′j × {i} = bj ∩ (W × {i}) for 1 ≤ j ≤ m.

A k-track succinct alternating finite transducer (AFT) overW is syntactically an alternating

automatonR = (W ⟨k⟩,Q,∆, I , F ), k ≥ 1. LetV = V (W ). The relation Rel (R ) ⊆ (P (V )∗)k recognised
by R contains a k-tuple of words (x1, . . . ,xk ) over P (V ) iff there is a word w ∈ L(R ) such that

xi = ⟩w↓i ⟨ for each 1 ≤ i ≤ k .
Below, we will sometimes say that the wordw encodes the k-tuple of words (x1, . . . ,xk ). More-

over, for simplicity, instead of saying that R has a run over w that encodes (x1, . . . ,xk ), we will
sometimes directly say that R has a run over (x1, . . . ,xk ) or that R accepts (x1, . . . ,xk ).
Finally, note that classical nondeterministic finite transducers (NFTs) are a special case of our

AFTs that can be defined by a similar restriction as the one used when restricting AFAs to NFAs.

In particular, the first track (with letters indexed with 1) can be seen as the input track, and the

second track (with letters indexed with 2) can be seen as the output track. AFTs as well as NFTs

recognize the class of rational relations [Barceló et al. 2013; Berstel 1979; Sakarovitch 2009].

Example 4.5. We now give a simple example of an AFT that implements escaping of every

apostrophe by a backlash in the UTF-8 encoding. Intuitively, the AFT will transform an input string

x'xx to the string x\'xx, i.e., the relation it represents will contain the couple (x'xx,x\'xx). All
the symbols should, however, be encoded in UTF-8. In this encoding, the apostrophe has the binary

code 00100111, and the backlash has the code 00101010. We will work with the set of bit variables

V8 = {v0, . . . ,v7} and a single epsilon bit variable e . We will superscript the bit variables by the

track on which they are read (hence, e.g., v2

1
is the same as (v1, 2), i.e., v1 is read on the second

track). Let api = vi
0
∧ vi

1
∧ vi

2
∧ ¬vi

3
∧ ¬vi

4
∧ vi

5
∧ ¬vi

6
∧ ¬vi

7
∧ ¬ei represent an apostrophe read

on the i-th track. Next, let bci = ¬vi
0
∧ vi

1
∧ ¬vi

2
∧ vi

3
∧ ¬vi

4
∧ vi

5
∧ ¬vi

6
∧ ¬vi

7
∧ ¬ei represent

a backlash read on the i-th track. Finally, let eqi, j = ei ↔ e j ∧
∧

0≤k<8
vik ↔ v jk denote that the

same symbol is read on the i-th and j-th track. The AFT that implements the described escaping can

be constructed as follows: R = ((V8 ∪ {e})⟨2⟩, {q0,q1},∆,q0,¬q1) where the transition formulae are

defined by ∆(q0) = (¬ap1 ∧ eq1,2 ∧ q0) ∨ (ap1 ∧ bc2 ∧ q1) and ∆(q1) = e1 ∧ ap2 ∧ q0. □
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5 DECIDING ACYCLIC FORMULAE
Our decision procedure for AC formulae is based on translating them into AFTs. For simplicity, we

assume that the formula is negation free (after transforming to NNF, negation at regular constraints

can be eliminated by AFA complementation). Notice that with no negations, the restriction AC

puts on disjunctions never applies. We also assume that the formula contains rational constraints

only (regular constraint can be understood as unary rational constraints).

Our algorithm then transforms a formula φ (x̄ ) into a rational constraint Rφ (x̄ ) inductively on

the structure of φ. As the base case, we get rational constraints R (x̄ ), which are already represented

as AFTs, and regular constraints A (x ), already represented by AFAs. Boolean operations over

regular constraints can be treated using the corresponding Boolean operations over AFAs described

in Section 4.2. The resulting AFAs can then be viewed as rational constraints with one variable

(and hence as a single-track AFT).

Once constraints Rφ (x̄ ) and Rψ (ȳ) are available, the induction step translates formulae Rφ (x̄ ) ∧
Rψ (ȳ) and Rφ (x̄ ) ∨Rψ (ȳ) to constraints Rφ∧ψ (z̄) and Rφ∨ψ (z̄), respectively. To be able to describe
this step in detail, let Rφ = ((V ∪ Eφ )⟨|x̄ |⟩,Qφ ,∆φ , Iφ , Fφ ) and Rψ = ((V ∪ Eψ )⟨|ȳ |⟩,Qψ ,∆ψ , Iψ , Fψ )
such that w.l.o.g. Qφ ∩Qψ = ∅ and Eφ ∩ Eψ = ∅.

Translation of conjunctions to AFTs. The construction of Rφ∧ψ has three steps:

(1) Alignment of tracks that ensures that distinct variables are assigned different tracks and

that the transducers agree on the track used for the shared variable.

(2) Saturation by ϵ-self loops allowing the AFTs to synchronize whenever one of them makes

an ϵ move on the shared track.

(3) Conjunction on the resulting AFTs viewing them as AFAs.

Alignment of tracks. Given constraints Rφ (x̄ ) and Rψ (ȳ), the goal of the alignment of tracks is

to assign distinct tracks to distinct variables of x̄ and ȳ, and to assign the same track in both of the

transducers to the shared variable—if there is one (recall that, by acyclicity, x̄ and ȳ do not contain

repeating variables and share at most one common variable). This is implemented by choosing

a vector z̄ that consists of exactly one occurrence of every variable from x̄ and ȳ, i.e., {z̄} = {x̄ } ∪ {ȳ},
and by subsequently re-indexing the bit vector variables in the transition relations. Particularly, in

∆φ , every indexed bit vector variable vi (including epsilon bit variables) is replaced by v j with j
being the position of xi in z̄, and analogously in ∆ψ , every indexed bit variable vi is replaced by v j

with j being the position of yi in z̄. Both AFTs are then considered to have |z̄ | tracks.

Saturation by ϵ-self loops. This step is needed if x̄ and ȳ share a variable, i.e., {x̄ }∩{ȳ} , ∅. The two
input transducers then have to synchronise on reading its symbols. However, it may happen that,

at some point, one of them will want to read from the non-shared tracks exclusively, performing an

ϵ transition on the shared track. Since reading of the non-shared tracks can be ignored by the other

transducer, it should be allowed to perform an ϵ move on all of its tracks. However, that needs

not be allowed by its transition function. To compensate for this, we will saturate the transition

function by ϵ-self loops performed on all tracks. Unfortunately, there is one additional problem

with this step: If the added ϵ transitions were based on the same epsilon bit variables as those

already used in the given AFT, they could enable some additional synchronization within the given

AFT, thus allowing it to accept some more tuples of words. We give an example of this problem

below (Example 5.2). To resolve the problem, we assume that the two AFTs being conjuncted use

different epsilon bit variables (more of such variables can be used due the AFTs can be a result of

several previous conjunctions). Formally, for any choice σ ,σ ′ ∈ {φ,ψ } such that σ , σ ′, and for

every state q ∈ Qσ , the transition formula ∆σ (q) is replaced by ∆σ (q) ∨ (q ∧
∨

e ∈Eσ ′
∧

i ∈[ |z̄ |] e
i ).
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Conjunction of AFTs viewed as AFAs. In the last step, the input AFTs with aligned tracks and satu-

rated by ϵ-self loops are conjoined using the automata intersection construction from Section 4.2.

Lemma 5.1. LetR ′φ andR ′ψ be the AFTs obtained from the input AFTsRφ andRψ by track alignment
and ϵ-self-loop saturation, and let Rφ∧ψ = R ′φ ∩ R

′
ψ . Then, Rφ∧ψ (z̄) is equivalent to Rφ (x̄ ) ∧ Rψ (ȳ).

To see that the lemma holds, note that both R ′φ and R ′ψ have the same number of tracks—namely,

|z̄ |. This number can be bigger than the original number of tracks (|x̄ | or |ȳ |, resp.), but the AFTs
still represent the same relations over the original tracks (the added tracks are unconstrained).

The ϵ-self loop saturation does not alter the represented relations either as the added transitions

represent empty words across all tracks only, and, moreover, they cannot synchronize with the

original transitions, unblocking some originally blocked runs. Finally, due to the saturation, the two

AFTs cannot block each other by an epsilon move on the shared track available in one of them only.
5

Example 5.2. We now provide an example illustrating the conjunction of AFTs, including the

need to saturate the AFTs by ϵ-self loops with different ϵ symbols. We will assume working with

the input alphabet Σ = {a,b} encoded using a single input bit variable v0: let a correspond to ¬v0

and b to v0. Moreover, we will use two epsilon bit variables, namely, e1 and e2. We consider the

following two simple AFTs, each with two tracks:

• R1 = ({v0, e1}⟨2⟩, {q0,q1,q2},∆1,q0,¬q0∧¬q2) with ∆1 (q0) = (a1∧b2∧q1)∨ (a
1∧a2∧q1∧q2),

∆1 (q1) = false, and ∆1 (q2) = e1

1
∧ q1. Note that Rel (R1) = {(a,b)} since the run that starts

with a1 ∧ a2
gets stuck in one of its branches, namely the one that goes to q2. This is because

we require branches of a single run of an AFT to synchronize even on epsilon bit variables,

and the transition from q2 cannot synchronize with any move from q1.

• R2 = ({v0, e2}⟨2⟩, {p0,p1,p2},∆2,p0,¬p0 ∧ ¬p1) such that ∆2 (p0) = (a1 ∧ b2 ∧ p1), ∆2 (p1) =
e1

2
∧ b2 ∧ p2, and ∆2 (p2) = false. Clearly, Rel (R2) = {(a,bb)}.

Let Qi , Ii , Fi denote the set of states, initial constraint, and final constraint of Ri , i ∈ {1, 2},
respectively. Assume that we want to construct an AFT for the constraint R1 (x ,y) ∧ R2 (x , z).
This constraint represents the ternary relation {(a,b,bb)}. It can be seen that if we apply the

above described construction for intersection of AFTs to R ′
1
and R ′

2
, where R ′

1
= R1 and R ′

2

is the same as R2 up to all symbols from track to 2 are moved to track 3, we will get an AFT

R = ({v0, e1, e2}⟨3⟩,Q1 ∪Q2,∆, I1 ∧ I2, F1 ∧ F2) representing exactly this relation. We will not list

here the entire ∆ but let us note the below:

• ∆ will contain the following transition obtained by ϵ-self-loop saturation of R1: ∆(q1) =
(e1

2
∧ e2

2
∧ q1). This will allow R to synchronize its run through q1 with its run from p1 to p2.

Without the saturation, this would not be possible, and Rel (R ) would be empty.

• On the other hand, if a single epsilon bit variable e was used in both AFTs as well as in

their saturation, the saturated ∆1 would include the transition ∆1 (q1) = (e1 ∧ e2 ∧ q1). This
transition could synchronize with the transition ∆1 (q2) = e1∧q1, and the relation represented

by the saturated R1 would grow to Rel (R1) = {(a,b), (a,a)}. The result of the intersection
would then (wrongly) represent the relation {(a,b,bb), (a,a,bb)}. □

Translation of disjunctions to AFTs. The construction of an AFT for a disjunction of formulae

is slightly simpler. The alignment of variables is immediately followed by an application of the

AFA disjunction construction. That is, the AFT Rφ∨ψ is constructed simply as R ′φ ∪ R
′
ψ from the

constraints R ′φ (z̄) and R
′
ψ (z̄) produced by the alignment of the vectors of variables x̄ and ȳ in

5
Note that the same approach cannot be used for AFTs sharing more than one track. Indeed, by intersecting two general

rational relations, one needs not obtain a rational relation.
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Rφ (x̄ ) and Rψ (ȳ). The construction of R ′φ and R ′ψ does not require the saturation by ϵ-self loops

because the two transducers do not need to synchronise on reading shared variables. The vectors x̄
and ȳ are allowed to share any number of variables.

Theorem 5.3. Every acyclic formula φ (x̄ ) can be transformed into an equisatisfiable rational
constraint R (x̄ ) represented by an AFT R. The transformation can be done in polynomial time unless
φ contains a negated regular constraint represented by a non-normalized succinct NFA.

Corollary 5.4. Checking satisfiability of acyclic formulae is in PSPACE unless the formulae contain
a negated regular constraint represented by a non-normalized succinct NFA.

PSPACEmembership of satisfiability of acyclic formulae with binary rational constraints (without

negations of regular constraints and without considering succinct alphabet encoding) is proven

already in [Barceló et al. 2013]. Apart from extending the result to k-ary rational constraints, we

obtain a simpler proof as a corollary of Theorem 5.3, avoiding a need to use the highly intricate

polynomial-space procedure based on the Savitch´s trick used in [Barceló et al. 2013]. Not consid-

ering the problem of negating regular constraints, our PSPACE algorithm would first construct

a linear-size AFT for the input φ. We can then use the fact that the standard PSPACE algorithm for

checking emptiness of AFAs/AFTs easily generalises to succinct AFAs/AFTs. This is proved by our

linear-space reduction of emptiness of the language of succinct AFAs to reachability in Boolean

transition systems, presented in Section 8. Reachability in Boolean transition systems is known to

be PSPACE-complete.

5.1 Decidable Extensions of AC
The relatively liberal condition that AC puts on rational constraints allow us to easily extend

AC with other features, without having to change the decision procedure. Namely, we can add

Presburger constraints about word length, as well as word equations, as long as overall acyclicity

of a formula is preserved. Length constraints can be added in the general form φPres ( |x1 |, . . . , |xk |),
where φPres is a Presburger formula.

Definition 5.5 (Extended acyclic formulae). A string formula φ augmented with length constraints

φPres ( |x1 |, . . . , |xk |) is extended acyclic if every word equation or rational constraint contains each

variable at most once, rational constraints R (x1, . . . ,xn ) only appear at positive positions, and for

every sub-formulaψ ∧ψ ′ at a positive position of φ (and also everyψ ∨ψ ′ at a negative position)
it is the case that |free(ψ ) ∩ free(ψ ′) | ≤ 1, i.e.,ψ andψ ′ have at most one variable in common.

Any extended AC formula φ can be turned into a standard AC formula by translating word

equations and length constraints to rational constraints. Notice that, although quite powerful,

extended AC still cannot express SL formulae such as x = yy, and does not cover practical properties
such as, e.g., those in Example 3.3 (where two conjuncts contain both x and y).

Word equations to rational constraints. For simplicity, assume that equations do not contain

letters a ∈ Σ. This can be achieved by replacing every occurrence of a constraintb by a fresh variable
constrained by the regular language {b}. An equation x = x1 ◦ · · · ◦xn without multiple occurrences

of any variables is translated to a rational constraint R (x ,x1, . . . ,xn ) with R = (W ⟨n + 1⟩,Q =
{q0, . . . ,qn },∆, I = q0, F = qn ). The transitions for i ∈ [n] are

∆(qi−1) = (qi−1 ∨ qi ) ∧
∧

j ∈[n]\{i }

e j ∧
∧

v ∈W ⟨n+1⟩

(vi ↔ v0).

and ∆(qn ) = false. That is, the symbol on the first track is copied to the ith track while all the

other tracks read ϵ . Negated word equations can be translated to AFTs in a similar way.
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Length constraints to rational constraints. The translation of length constraints to rational con-

straints is similarly straightforward. Suppose an extended AC formula contains a length con-

straint φPres ( |x1 |, . . . , |xk |), where φPres is a Presburger formula over k variables y1, . . . ,yk ranging

over natural numbers. It is a classical result that the solution space of φPres forms a semi-linear

set [Ginsburg and Spanier 1966], i.e., can be represented as a finite union of linear sets Lj =

{ȳ0+
∑m

i=1
λiȳi | λ1, . . . , λm ∈ N} ⊆ N

k
with ȳ0, . . . ȳm ∈ N

k
. Every linear setLj can directly be trans-

lated to a succinct k-track AFT recognising the relation {(x1, . . . ,xk ) ∈ (Σ∗)k | ( |x1 |, . . . , |xk |) ∈ Lj },
and the union of AFTs be constructed as shown in Section 4.2, resulting in an AFT RφPres

(x1, . . . ,xk )
that is equivalent to φPres ( |x1 |, . . . , |xk |).

6 RATIONAL CONSTRAINTS WITH SYNCHRONISATION PARAMETERS
In order to simplify the decision procedure for SL, which we will present in Section 7, we introduce

an enriched syntax of rational constraints. We will then extend the AC decision procedure from

Section 5 to the new type of constraints such that it can later be used as a subroutine in our decision

procedure of SL. Before giving details, we will outline the main idea behind the extension.

The AC decision procedure expects acyclicity, which prohibits formulae that are, e.g., of the form

(φ (x )∧φ ′(y))∧ψ (x ,y). Indeed, after replacing the inner-most conjunction by an equivalent rational

constraint, the formula turns into the conjunction Rφ∧φ ′ (x ,y)∧Rψ (x ,y), which is a conjunction of

the form R (x ,y) ∧ S (x ,y). In general, satisfiability of such conjunctions is not decidable, and they

cannot be expressed as a single AFT since synchronisation of ϵ-moves on multiple tracks is not

always possible. However, our example conjunction does not compose two arbitrary AFTs. By its

construction, Rφ∧φ ′ (x ,y) actually consists of two disjoint AFT parts. Each of the parts constrains

symbols read on one of the two tracks only and is completely oblivious of the other part. Due to

this, an AFT equivalent to Rφ∧φ ′ (x ,y) ∧ Rψ (x ,y) can be constructed (let us outline, without so far

going into details, that the construction would saturate ϵ-moves for each track of Rφ∧φ ′ separately).

Indeed, the original formula can also be rewritten as φ (x ) ∧ (φ (y) ∧ψ (x ,y)), which is AC and can

be solved by the algorithm of Section 5.

The idea of exploiting the independence of tracks within a transducer can be taken a step further.

The two independent parts do not have to be totally oblivious of each other, as in the case of Rφ∧φ ′

above, but can communicate in a certain limited way. To define the allowed form of communication

and to make the independent communicating parts syntactically explicit within string formulae,

we will introduce the notion of synchronisation parameters of AFTs. We will then explain how

formulae built from constraints with synchronisation parameters can be transformed into a single

rational constraint with parameters by a simple adaptation of the AC algorithm, and how the

parameters can be subsequently eliminated, leading to a single standard rational constraint.

Definition 6.1 (AFT with synchronisation parameters). An AFT with parameters s̄ = s1, . . . , sn is

defined as a standard AFTR = (V ,Q,∆, I , F ) with the difference that the initial and the final formula

can talk apart from states about so-called synchronisation parameters too. That is, I , F ⊆ FQ∪{s̄ }
where I is still positive on states and F is still negative on states, but the synchronisation parameters

can appear in I and F both positively as well as negatively. The synchronisation parameters put an

additional constraint on accepting runs. A run ρ = ρ0 . . . ρm over a k-tuple of words w̄ is accepting

only if there is a truth assignment ν : {s̄} → B of parameters such that ν |= I and ν |= F . We then

say that w̄ is accepted with the parameter assignment ν .

String formulae can be built on top of AFTs with parameters in the same way as before. We write

φ[s̄](x̄ ) to denote a string formula that uses AFTs with synchronisation parameters from s̄ in its

rational constraints. Such a formula is interpreted over a union ι ∪ ν of an assignment ι : var(φ) →
P (V )∗ from string variables to strings, as usual, and a parameter assignment ν : {s̄} → B. An atomic
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constraint R[s̄](x̄ ) is satisfied by ι ∪ν , written ι ∪ν |= R[s̄](x̄ ), if R accepts (ι (x1), . . . , ι (x |x̄ | )) with
the parameter assignment ν . Atomic string constraints without parameters are satisfied by ι ∪ ν iff

they are satisfied by ι. The satisfaction ι ∪ ν |= φ of a Boolean combination φ of atomic constraints

is then defined as usual.

Notice that within a non-trivial string formula, parameters may be shared among AFTs of several

rational constraints. They then not only synchronise initial and final configuration of a single

transducer run, but provide the aforementioned limited way of communication among AFTs of the

rational constraints within the formula.

Definition 6.2 (ACwith synchronisation parameters—ACsp). The definition of AC extends quite

straightforwardly to rational constraints with parameters. There is no other change in the definition

except for allowing rational constraints to use synchronisation parameters as defined above.

Notice that since we do not consider regular constraints with parameters, constraints with

parameters in ACsp formulae are never negated.

The synchronisation parameters allow for an easier transformation of string formulae into AC.

For instance, consider a formula of the form φ (x ,y)∧ψ (x ,y) where one of the conjuncts, say φ, can
be rewritten as φ1[s̄1](x ) ∧ φ2[s̄2](y). The whole formula can be written as φ1[s̄1](x ) ∧ (φ2[s̄2](y) ∧
ψ (x ,y)), which falls into ACsp. An example of such a formula φ (x ,y), commonly found in the

benchmarks we experimented with as presented later on, is a formula saying that x ◦ y belongs

to a regular language, expressed by an AFA A. This can be easily expressed by a conjunction

R1[s̄](x )∧R2[s̄](y) of two unary rational constraints with parameters. Intuitively, the AFTs R1 and

R2 are two copies of A. R1 nondeterministicaly chooses a configuration where the prefix of a run

of A reading a word x ends, accepts, and remembers the accepting configuration in parameter

values (it will have a parameter per state). R2 then reads the suffix of x , using the information

contained in parameter values to start from the configuration where R1 ended. We explain this

construction in detail in Section 7.

An ACsp formula φ with parameters can be translated into a single, parameter-free, rational

constraint and then decided by an AFA language emptiness check described in Section 8. The

translation is done in two steps:

(1) A generalised AC algorithm translates φ (x̄ ) to Rφ [s̄](x̄ ).
(2) Parameter elimination transforms Rφ [s̄](x̄ ) to a normal rational constraint R ′φ (x̄ ).

Generalised AC algorithm. To enable eliminations of conjunctions and disjunctions from ACsp

formulae, just a small modification of the procedure from Section 5 is enough. The presence

of parameters in the initial and final formulae does not require any special treatment, except

that, unlike for states (which are implicitly renamed), it is important that sets of synchronisation

parameters stay the same even if they intersect, so that the synchronisation is preserved in the

resulting AFT. That is, for□ ∈ {∧,∨}, Rφ [r̄ ](x̄ ), and Rψ [s̄](ȳ), the constraint Rφ□ψ [t̄](z̄) is created
in the same way as described in Section 5, the parameters within the initial and the final formulae

of the input AFTs are passed to the AFA construction □ unchanged, and {t̄ } = {r̄ } ∪ {s̄}.

Lemma 6.3. Rφ [r̄ ](x̄ ) □ Rψ [s̄](ȳ) is equivalent to Rφ□ψ [t̄](z̄).

Elimination of parameters. The previous steps transform the formula into a single rational con-

straint with synchronisation parameters. Within such a constraint, every parameter communicates

one bit of information between the initial and final configuration of a run. The bit can be encoded

by an additional automata state passed from a configuration to a configuration via transitions

through the entire run, starting from an initial configuration where the parameter value is decided

in accordance with the initial formula, to the final configuration where it is checked against the final
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formula. A technical complication, however, is that automata transitions are monotonic (positive

on states). Hence, they cannot prevent arbitrary states from appearing in target configurations

even though their presence is not enforced by the source configuration. For instance, starting

from a single state q1 and executing a transition ∆(q1) = q2 can yield a configuration q2 ∧ q3. The

assignment of 0 to a parameter cannot therefore be passed through the run in the form of absence

of a single designated state as it can be overwritten anywhere during the run.

To circumvent the above, we use a so-called two rail encoding of parameter values: every parameter

s is encoded using a pair of value indicator states, the positive value indicator s+ and the negative

value indicator s−. Addition of unnecessary states into target configurations during a run then cannot
cause that a parameter silently changes its value. One of the indicators can still get unnecessarily set,

but the other indicator will stay in the configuration too (states can be added into the configurations

reached, but cannot be removed). The parameter value thus becomes ambiguous—both s− and s+ are
present. The negative final formula can exclude all runs which arrive with ambiguous parameters

by enforcing that at least one of the indicators is false.

Formally, the parameter elimination replaces a constraint R (x̄ )[s̄] with R = (W ⟨|x̄ |⟩,Q,∆, I , F )
and |s̄ | = n by a parameter free constraint R ′(x̄ ) with R ′ = (W ⟨|x̄ |⟩,Q ′,∆′, I ′, F ′) where

• Q ′ = Q ∪ {s+i , s
−
i | 1 ≤ i ≤ n} (parameters are added to Q), and

• ∆′ = ∆ ∪ {s+i 7→ s+i , s
−
i 7→ s−i | 1 ≤ i ≤ n} (once active value indicators stay active).

• I ′ = I+ ∧Choose where I+ is a positive formula that arises from I by replacing every negative

occurrence of a parameter ¬s by a positive occurrence of its negative indicator s−, and the

positive formula Choose =
∧n

i=1
s+i ∨ s

−
i enforces that every parameter has a value.

• F ′ = F− ∧Disambiguate where F− is a negative formula that arises from F by replacing every

positive occurence of a parameter s by a negative occurrence of its negative indicator ¬s−,
and the negative formula Disambiguate =

∧n
i=1
¬s+i ∨¬s

−
i enforces that indicators determine

parameter values unambiguously, i.e., at most one indicator per parameter is set.

Lemma 6.4. ∃s̄ : R (x̄ )[s̄] is equivalent to R ′(x̄ ).

7 DECIDING STRAIGHT-LINE FORMULAE
Our algorithm solves string formulae using the DPLL(T) framework [Nieuwenhuis et al. 2004]

6
,

whereT is a sound and complete solver for AC and SL. Loosely speaking, DPLL(T) can be construed

as a collaboration between a DPLL-based SAT-solver and theory solvers, wherein the input formula

is viewed as a Boolean formula by the SAT solver, checked for satisfiability by the SAT-solver, and if

satisfiable, theory solvers are invoked to check if the Boolean assignment found by the SAT solver

can in fact be realised in the involved theories. The details of the DPLL(T) framework are not so

important for our purpose. However, the crucial point is that all queries that a DPLL(T) solver asks

a T-theory solver are conjunctions from the CNF of the input formula (or their parts), enabling us

to concentrate on solving SL conjunctions only.

Our decision procedure for SL conjunctions transforms the input SL conjunction into an equisat-

isfiable ACsp formula, which is then decided as discussed in Section 6. The rest of the section is

thus devoted to a translation of a positive SL conjunction φ to an ACsp formula. The translation

internally combines rational constraints and equations into a more general kind of constraints in

which rational relations are mixed with concatenations and synchronisation parameters.

Example 7.1. As a running example for the section, we use an SL conjunction that captures the

essence of the vulnerability pattern from Example 1.1: A sanitizer is applied on an input string to

get rid of symbols c, replacing them by d, hoping that this will prevent a dangerous situation which

6
Also see [Kroening and Strichman 2008] for a gentle introduction to DPLL(T).
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arises when a symbol d apears in a string somewhere behind c. However, the dangerous situation
will not be completely avoided since it is forgotten that the sanitized string will be concatenated

with another string that can still contain c.7

To formalize the example, assume a bit-vector encoding of an alphabet Σ which contains the

symbols c and d. Assume that each a ∈ Σ denotes the conjunction of (negated) bit variables encoding

it. As our running example, we will then consider the formula φ : y = R (x ) ∧ z = x ◦y ∧A (z). The
AFT R = (W ⟨2⟩,Q = {q},∆ = {q 7→ q ∧ ¬d1 ∧ (c1 → d2) ∧

∧
a∈Σ\{c} (a

1 ↔ a2))}, I = q, F = true)
is a sanitizer that produces y by replacing all occurrences of c in its input string x by d, and it also

makes sure that x does not include d. The AFAA = (V ,Q ′ = {r0, r1, r2},∆
′, I ′ = r0, F

′ = ¬r0 ∧¬r1)
where ∆′(r0) = (r0∧¬c)∨ (r1∧c), ∆

′(r1) = (r1∧¬d)∨ (r2∧d), and ∆
′(r2) = true is the specification.

It checks whether the opening symbol c can be later followed by the closing symbol d in the string

z. The formula is satisfiable. □

Definition 7.2 (Mixed constraints). A mixed constraint is of the form x = R[s̄](y1 ◦ · · · ◦yn ) where
R is a binary AFT, with a concatenation of variables as the right-hand side argument, and s̄ is
a vector of synchronisation parameters. Such constraint has the expected meaning: it is satisfied

by the union ν ∪ ι of an assignment ι to string variables and an assignment ν to parameters iff

(ι (x ), ι (y1) ◦ · · · ◦ ι (yn )) is accepted by R[s̄] with the parameter assignment ν .

All steps of our translation of the input SL formulaφ to an ACsp formula preserve the SL fragment,

naturally generalised to mixed constraints as follows.

Definition 7.3 (Generalised straight-line conjunction). A conjunction of string constraints is defined

to be generalised straight-line if it can be written as ψ ∧
∧m

i=1
xi = Fi where ψ is a conjunction

over regular and negated regular constraints and each Fi is either of the form y1 ◦ · · · ◦ yn or

R[s̄](y1 ◦ · · · ◦ yn ) such that it does not contain variables xi , . . . ,xm .

For simplicity, we assume that φ has gone through two preprocessing steps. First, all negations

were eliminated by complementing regular constraints, resulting in a purely positive conjunction.

Second, all the—now only positive—regular constraints were replaced by equivalent rational con-

straints. Particularly, a regular constraint A (x ) is replaced by a rational constraint x ′ = R ′(x )
where x ′ is a fresh variable and R ′ is an AFT with Rel (R ′) = P (V )∗ × L(A). The AFT R ′ is created
from A by indexing all propositions in the transition relation by the index 2 of the second track.

It is not difficult to see that since x ′ is fresh, the replacement preserves SL, and also satisfiability,

since P (x ) ∧ψ is equivalent to ∃x ′ : x ′ = R (x ) ∧ψ for everyψ .

Example 7.4. In Example 7.1, the preprocessing replaces the conjunct A (z) by z ′ = S (z) where
S is the same asA, except occurrences of bit-vector variables in ∆′ are indexed by 2 since z will be
read on its second track. We obtain φ ′

0
: y = R (x ) ∧ z = x ◦ y ∧ z ′ = S (z) where z ′ is free. □

Due to the preprocessing, we are starting with a formula φ ′
0
in the form of an SL conjunction of

rational constraints and equations. The translation to ACsp will be carried out in the following

three steps, which will be detailed in the rest of the section:

(1) Substitution transforms φ ′
0
to a conjunction φ1 of mixed constraints.

(2) Splitting transforms φ1 to a conjunction φ2 of rational constraints with parameters.

(3) Ordering transforms φ2 to an AC conjunction φ3 with parameters.

7
In reality, where one undesirably concatenates a string command(′... with some string ...′); attack(); the situation is, of

course, more complex and sanitization is more sophisticated. However, having a real-life example, such as those used in our

experiments, as a running example would be too complex to understand.
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Substitution. Equations in φ ′
0
are combined with rational constraints into mixed constraints by

a straightforward substitution. In one substitution step, a conjunction x = y1◦· · ·◦yn∧ψ is replaced

by ψ [y1 ◦ · · · ◦ yn/x] where all occurrences of x are replaced by y1 ◦ · · · ◦ yn . The substitution
preserves the generalised straight-line fragment.

Lemma 7.5. If x = y1 ◦ · · · ◦ yn ∧ψ is SL, thenψ [y1 ◦ · · · ◦ yn/x] is equisatisfiable and SL.

The substitution steps are iterated eagerly in an arbitrary order until there are no equations.

Every substitution step obviously decreases the number of equations, so the iterative process

terminates after a finitely many steps with an equation-free SL conjunction of mixed constraints φ1.

Example 7.6. The substitution eliminates the equation z = x ◦ y in φ ′
0
from Example 7.4, trans-

forming it to φ1 : y = R (x ) ∧ u = S (x ◦ y). □

Splitting. We will now explain how synchronisation parameters are used to eliminate concatena-

tion within mixed constraints. The operation of binary splitting applied to an SL conjunction of

mixed constraints, φ : x = R (y1 ◦ · · · ◦ym ◦ z1 ◦ · · · ◦ zn )[s̄]∧ψ , where R = (W ⟨2⟩,Q,∆, I , F ) and
Q = {q1, . . . ,ql } splits the mixed constraint and substitutes x by a concatenation of fresh variables

x1 ◦ x2 inψ . That is, it outputs the conjunction φ
′

: ζ ∧ψ [x1 ◦ x2/x] of mixed constraints, where

the rational constraint was split into the following conjunction ζ of two constraints:

ζ : x1 = R1 (y1 ◦ · · · ◦ ym )[s̄, t̄] ∧ x2 = R2 (z1 ◦ · · · ◦ zn )[s̄, t̄]

The vector t̄ consists of l fresh parameters, x1 and x2 are fresh string variables, and each AFT with

parameters Ri = (W ⟨2⟩,Q,∆, Ii , Fi ), i ∈ {1, 2}, is derived from R by choosing initial/final formulae:

I1 = I , F1 =

l∧
i=1

qi → ti , I2 =
l∧
i=1

ti → qi , F2 = F .

Intuitively, each run ρ of R is split into a run ρ1 of R1, which corresponds to the first part of ρ in

which y1 ◦ · · · ◦ym is read along with a prefix x1 of x , and a run ρ2 of R2, which corresponds to the

part of ρ in which z1 ◦ · · · ◦ zn is read along with the suffix x2 of x . Using the new synchronisation

parameters t̄ , the formulae F1 and I2 ensure that the run ρ1 of R1 must indeed start in the states in

which the run ρ2 of R2 ended, that is, the original run ρ of R can be reconstructed by connecting

ρ1 and ρ2. Every occurrence of x inψ is replaced by the concatenation x1 ◦ x2.

Lemma 7.7. In the above, φ is equivalent to ∃x1x2t̄ : φ ′.

The resulting formula φ ′ is hence equisatisfiable to the original φ. Moreover, φ ′ is still generalised
SL—the two new constraints defining x1 and x2 can be placed at the position of the original

constraint defining x that was split, and the substitution [x1 ◦ x2/x] in the rest of the formula only

applies to the right-hand sides of constraints (since x can be defined only once).

Lemma 7.8. If φ is an SL conjunction of mixed constraints, then so is φ ′.

Moreover, by applying binary splitting steps eagerly in an arbitrary order onφ1, we are guaranteed

that all concatenations will be eliminated after a finite number of steps, thus arriving at the SL

conjunction of rational constraints with parameters φ2. The termination argument relies on the

straight-line restriction. Although it cannot be simply said that every step reduces the number

of concatenations because the substitution x1 ◦ x2 introduces new ones, the new concatenations

x1 ◦ x2 are introduced only into constraints defining variables that are higher in the straight-line

ordering than x . It is therefore possible to define a well-founded (integer) measure on the formulae

that decreases with every application of the binary splitting steps.
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Lemma 7.9. All concatenations in the SL conjunction of mixed constraints φ1 will be eliminated
after a finite number of binary splitting steps.

We note that our implementation actually uses a slightly more efficient n-ary splitting instead of

the described binary. It splits a mixed constraint in one step into the number of conjuncts equal

to the length of the concatenation in its right-hand side. We present the simpler binary variant,

which eventually achieves the same effect.

Example 7.10. The formula from Example 7.6 would be transformed into φ2 : y = R (x ) ∧ u1 =

S1[s̄](x ) ∧ S2[s̄](y) where S1,S2 are as S up to that S1 has the final formula I ′ ∧
∧

2

i=0
(ri → s0)

and S2 has the final formula F ′ ∧
∧

2

i=0
(si → ri ). Notice that u1 = S1[s̄](x ) ∧ u2 = S2[s̄](y) still

enforce that x ◦ y has c eventually followed by d. The parameters remember where S1 ended its

run and force R2 to continue from the same state. □

Reordering modulo associativity. Substitution and splitting transform φ0 to a straight-line con-

junction φ2 of rational constraints with parameters. Before delegating it to the ACsp formulae

solver, it must be reorganized modulo associativity to achieve a structure satisfying the definition

of AC. One way of achieving this is to order the formula into a conjunction

∧m
i=1

xi = R[s̄i ](yi )
satisfying the condition in the definition of SL (the definition of SL only requires that the formula

can be assumed). An simple way is discussed in [Lin and Barceló 2016]. It consists of drawing the

dependency graph of φ, a directed graph with the variables var(φ) as vertices which has an edge

x → y if and only if φ contains a conjunct x = R (y). Due to the straight-line restriction, the graph

must be acyclic. The ordering of variables can be then obtained as a topological sort of the graphs

vertices, which is computable in linear time (e.g. [Cormen et al. 2009], for instance by a depth-first

traversal). The final acyclic formula φ3 then arises when letting

∧m
i=1

associate from the right:

φ3 : (x1 = R1 (y1) ∧ (x2 = R2 (y2) ∧ (. . . ∧ (xm−1 = Rm−1 (ym−1) ∧ xm = Rm (ym )) . . .))).

To see that φ3 is indeed ACsp, observe that every conjunctive sub-formula is of the form (
∧

i<k xi =
Ri (yi )) ∧ xk = Rk (yk ) where xk is by the definition of SL not present in the left conjunct. The left

and right conjuncts can therefore share at most one variable, yk .

Theorem 7.11. The formula φ3 obtained by substitution, splitting, and reordering from φ0 is
equisatisfiable and acyclic.

Example 7.12. The ACsp formula φ3 : y = R (x ) ∧ u1 = S1[s̄](x )) ∧ S2[s̄](y) would be the final

result of the SL to ACsp translation. Let us use φ3 to also briefly illustrate the decision procedure

for ACsp of Section 6. The first step is the transformation to a single rational constraint with

parameters by induction over formula structure. This will produce R ′[s̄](x ,y, z) with states and

transitions consisting of those in R, S1 with indexes of alphabet bits incremented by one (y, and
z are now not the first and the second, but the second and the third track), and a copy S′

2
of S2

with states replaced by their primed variant (so that they are disjoint from that of S1) and also

incremented indexes of alphabet bits. The initial and final configuration will be the conjunctions of

those of R,S1 and S
′
2
. The last step, eliminating of parameters, will lead to the addition of positive

and negative indicator states for parameters s̄ = s1, s2, s3 with the universal self-loops and the

update of the initial and final formula as in Section 6. The rest is solved by the emptiness check

discussed in Section 8. Notice the small size of the resulting AFT. Compared to the original formula

from Example 7.1, it contains only one additional copy of A (the S′
2
), the six additional parameter

indicator states with self-loops and the initial and final condition on the parameter indicators. □

A note on the algorithm of [Lin and Barceló 2016]. We will now comment on the differences of

our algorithm for deciding SL from the earlier algorithm of [Lin and Barceló 2016]. It combines

reasoning on the level NFAs and nondeterministic transducers, utilising classical automata theoretic
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techniques, with a technique for eliminating concatenation by enumerative automata splitting. It

first turns and SL formula into a pure AC formula and then uses the AC decision procedure.

An obvious advantage of our decision procedure described in Section 5 is the use of succinct

AFA. As opposed to the worst case exponentially larger NFA, it produces an AFA of a linear size

(unless the original formula contains negated regular constraints represented as general AFA. See

Section 5 for a detailed discussion). Let us also emphasize the advantages of our algorithm in the

first phase, translation of SL to ACsp. Similarly as in the case of deciding AC, the main advantage

of our algorithm is that, while [Lin and Barceló 2016] only works with NFTs, we propose ways of

utilising the power of alternation and succinct transition encoding.

We will illustrate the difference on an example. The concatenation in the conjunction x =
y ◦ z ∧w = R (x ) would in [Lin and Barceló 2016] be done by enumerative splitting. It replaces the

conjunction by the disjunction

∨
q∈Q w1 = Rq (y) ∧w2 = qR (z). The Q in the disjunction is the set

of states of the (nondeterministic) transducer R, Rq is the same as the NFT R up to that the final

state is q, and qR the same as R up to that the initial state is q. Intuitively, the run of R is explicitly

separated into the part in which y is read along the prefixw1 ofw , and the suffix in which z is red
along the suffixw2 ofw . The variablew would be replaced byw1 ◦w2 in the rest of the formula.

The disjunction enumerates all admissible intermediate states q ∈ Q a run of R can cross, and for

each of them, it constructs two copies of R . This makes the cost of the transformation quadratic in

the number of states of the NFT R . A straightforward generalisation to our setting in which R is an

AFT is possible: The disjunction would have to list, instead of possible intermediate states q ∈ Q ,
all possible intermediate configurations C ⊆ Q a run of the AFA R can cross, thus increasing the

quadratic blow-up of the nondeterministic case to an exponential (due to the enumerative nature

of splitting, the size is without any optimisation bounded by an exponential even from below).

Our splitting algorithm utilises succinctness of alternation to reduce the cost of enumerative

AFA splitting from exponential space (or quadratic in the case of NFAs) to linear. The smaller

size of the resulting representation is payed for by a more complex alternating structure of the

resulting rational constraints. The worst case complexity of the satisfiability procedure thus remains

essentially the same. However, deferring most of the complexity to the last phase of the decision

procedure, AFA emptiness checking, allows to circumvent the potential blow-up by means of

modern model checking algorithms and heuristics and achieve much better scalability in practice.

8 MODEL CHECKING FOR AFA LANGUAGE EMPTINESS
In order to check unsatisfiability of a string formula using our translation to AFTs, it is necessary to

show that the resulting AFT does not accept any word, i.e., that the recognised language is empty.

The constructed AFTs are succinct, but tend to be quite complex: a naïve algorithm that would

translate AFTs to NFAs using an explicit subset construction, followed by systematic state-space

exploration, is therefore unlikely to scale to realistic string problems. We discuss how the problem

of AFT emptiness can instead be reduced (in linear time and space) to reachability in a Boolean

transition system, in a way similar to [Cox and Leasure 2017; Gange et al. 2013; Wang et al. 2016].

Our translation is also inspired by the use of model checkers to determinise NFAs in [Tabakov and

Vardi 2005], by a translation to sequential circuits that corresponds to symbolic subset construction.

We use a similar implicit construction to map AFAs and AFTs to NFAs.

As an efficiency aspect of the construction for AFAs, we observe that it is enough to work with

minimal sets of states, thanks to the monotonicity properties of AFAs (the fact that initial formulae

and transition formulae are positive in the state variables, and final formulae are negative). This

gives rise to three different versions: a direct translation that does not enforce minimality at all; an

intensionally-minimal translation that only considers minimal sets by virtue of additional Boolean
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constraints; and a deterministic translation that resolves nondeterminism through additional system

inputs, but does not ensure fully-minimal state sets.

8.1 Direct Translation to Transition Systems
To simplify the presentation of our translation to a Boolean transition system, we focus on the

case of AFAs A = (Vn ,Q,∆, I , F ) over a single track of bit-vectors of length n + 1. The translation

directly generalises to k-track AFTs, and to AFTs with epsilon characters, by simply choosing n
sufficiently large to cover the bits of all tracks.

We adopt a standard Boolean transition system view on the execution of the AFAA (e.g., [Clarke

et al. 1999]). If A has m = |Q | automaton states, then A can be interpreted as a (symbolically

described) transition system T di
A
= (Bm , Initdi, Transdi ). The transition system has state space Bm ,

i.e., a system state is a bit-vector q̄ = ⟨q0, . . . ,qm−1⟩ of lengthm identifying the active states in Q .
The initial states of the system are defined by Initdi[q̄] = I , the same positive Boolean formula as in

A. The transition relation Transdi of the system is a Boolean formula over two copies q̄, q̄′ of the
state variables, encoding that for each active pre-state qi in q̄ the formula ∆(qi ) has to be satisfied

by the post-state q̄′. Input variables Vn = {x0, ...,xn } are existentially quantified in the transition

formula, expressing that all AFA transitions have to agree on the letter to be read:

Transdi[q̄, q̄′] = ∃v0, . . . ,vn :

m−1∧
i=0

qi → ∆(qi )[q̄/q̄
′
] (1)

To examine emptiness of A, it has to be checked whether T di
A
can reach any state in the target

set Finaldi[q̄] = F , i.e., in the set described by the negative final formula F ofA. Since is well-known

that reachability in transition systems is a PSPACE-complete problem [Clarke et al. 1999], this

directly establishes that fragment AC is in PSPACE (Corollary 5.4).

Lemma 8.1. The language L(A) recognised by the AFA A is empty if and only if T di
A
cannot reach

a configuration in Finaldi[q̄].

In practice, this means that emptiness of L(A) can be decided using a wide range of readily

available, highly optimised model checkers from the hardware verification field, utilising methods

such as k-induction [Sheeran et al. 2000], Craig interpolation [McMillan 2003], or IC3/PDR [Bradley

2012]. In our implementation, we represent T di
A
in the AIGER format [Biere et al. 2017], and then

apply nuXmv [Cavada et al. 2014] and ABC [Brayton and Mishchenko 2010].

The encodingT di
A
leaves room for optimisation, however, as it does not fully exploit the structure

of AFAs and introduces more transitions than strictly necessary. In (1), we can observe that if

Transdi[q̄, q̄′] is satisfied for some q̄, q̄′, then it will also be satisfied for every post-state q̄′′ ⪰ q̄′,
writing p̄ ⪯ q̄ for the point-wise order on bit-vectors p̄, q̄ ∈ Bm (i.e., p̄ ⪯ q̄ if pi implies qi for every
i ∈ {0, . . . ,m− 1}). This is due to the positiveness (ormonotonicity) of the transition formulae ∆(qi ).
Similarly, since the initial formula I of an AFA is positive, initially more states than necessary might

be activated. Because the final formula F is negative, and since redundant active states can only

impose additional restrictions on the possible runs of an AFA, such redundant states can never lead

to more words being accepted.

More formally, we can observe that the transition system T di
A
is well-structured [Finkel 1987],

which means that the state space Bm can be equipped with a well-quasi-order ≤ such that whenever

Transdi[q̄, q̄′] and q̄ ≤ p̄, then there is some state p̄ ′ with q̄′ ≤ p̄ ′ and Transdi[p̄, p̄ ′]. In our case, ≤ is

the inverse point-wise order ⪰ on bit-vectors;
8
intuitively, deactivating AFA states can only enable

more transitions. Since the set Finaldi[q̄] is upward-closed with respect to ≤ (downward-closed with

8
Since the state space Bm of T di

A
is finite, the “well-” part is trivial.
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respect to ⪯), the theory on well-structured transition systems tells us that it is enough to consider

transitions to ≤-maximal states (or ⪯-minimal states) of the transition system when checking

reachability of Finaldi[q̄]. In forward-exploration of the reachable states of T di
A
, the non-redundant

states to be considered form an anti-chain. This can be exploited by defining tailor-made exploration

algorithms [Doyen and Raskin 2010; Kloos et al. 2013], or, as done in the next sections, by modifying

the transition system to only include non-redundant transitions.

8.2 Intensionally-Minimal Translation
We introduce several restricted versions of the transition system T di

A
, by removing transitions to

non-minimal states. The strongest transition systemTmin

A
= (Bm , Initmin, Transmin) obtained in this

way can abstractly be defined as:

Initmin
[q̄] = Initdi[q̄] ∧ ∀p̄ ≺ q̄. ¬Initdi[p̄] (2)

Transmin
[q̄, q̄′] = Transdi[q̄, q̄′] ∧ ∀p̄ ≺ q̄′. ¬Transdi[q̄, p̄] (3)

That means, Initmin
and Transmin

are defined to only retain the ⪯-minimal states. Computing Initmin

and Transmin
corresponds to the logical problem of circumscription [McCarthy 1980], i.e., the com-

putation of the set of minimal models of a formula. Circumscription is in general computationally

hard, and its precise complexity still open in many cases; in (2) and (3), note that eliminating the

universal quantifiers (as well as the universal quantifiers introduced by negation of Transdi) might

lead to an exponential increase in formula size, so thatTmin

A
does not directly appear useful as input

to a model checker.

We can derive amore practical, but weaker systemT im

A
= (Bm , Initim, Transim) by onlyminimising

post-states in Transim with respect to the same input letter Vn :

Initim[q̄] = Initmin
[q̄]

Transim[q̄, q̄′] = ∃Vn .
(
Trans[q̄, q̄′,Vn] ∧ ∀p̄ ≺ q̄′. ¬Trans[q̄, p̄,Vn]

)
with Trans[q̄, q̄′,Vn] =

m−1∧
i=0

qi → ∆(qi )[q̄/q̄
′
]

The formulae still contain universal quantifiers ∀p̄, but it turns out that the quantifiers can now

be eliminated with only polynomial effort, due to the fact that p̄ only occurs negatively in the

scope of the quantifier. Indeed, whenever φ[q̄] is a formula that is positive in q̄, and φ[q̄] holds

for assignments q̄1, q̄3 ∈ B
m
with q̄1 ⪯ q̄3, then φ[q̄] will also hold for any assignment q̄2 ∈ B

m

with q̄1 ⪯ q̄2 ⪯ q̄3 due to monotonicity. This implies that a satisfying assignment q̄1 ∈ B
m

is ⪯-minimal if no single bit in q̄1 can be switched from 1 to 0 without violating φ[q̄]. More

formally, φ[q̄] ∧ ¬∃p̄ ≺ q̄. φ[p̄] is equivalent to φ[q̄] ∧
∧m−1

i=0
qi → ¬φ[q̄][qi/false], where we

write φ[qi/false] for the result of substituting qi with false in φ.
The corresponding, purely existential representation of Initim and Transim is:

Initim[q̄] ≡ Initdi[q̄] ∧

m−1∧
i=0

qi → ¬Initdi[q̄][qi/false] (4)

Transim[q̄, q̄′] ≡ ∃Vn .
(
Trans[q̄, q̄′,Vn] ∧

m−1∧
i=0

q′i → ¬Trans[q̄, q̄
′,Vn][q′i/false]

)
(5)

The representation is quadratic in size of the original formulae Initdi, Transdi, but the formulae

can in practice be reduced drastically by sharing of common sub-formulae, since them copies of

Initdi[q̄][qi/false] and Trans[q̄, q̄′,Vn][q′i/false] tend to be almost identical.
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Lemma 8.2. The following statements are equivalent:

(1) T di
A
can reach a configuration in Finaldi[q̄];

(2) Tmin
A

can reach a configuration in Finaldi[q̄];
(3) T im

A
can reach a configuration in Finaldi[q̄].

Example 8.3. To illustrate the T im
A

encoding, we consider an AFA A that accepts the language

{xwy | |xwy | = 2k,k ≥ 1,x ∈ {a,b},y ∈ {c,d }} using the encoding of the alphabet Σ = {a,b, c,d }
from Example 4.1. We letA = ({v0,v1}, {q0,q1,q2,q3,q4},∆, I , F ) where I = q0, F = ¬q0∧¬q1∧¬q3

(i.e., the accepting states are q2 and q4), and ∆ is defined as ∆(q0) = ¬v1 ∧ q1 ∧ q3, ∆(q1) = q2,

∆(q2) = q1, ∆(q3) = q3 ∨ (v1 ∧ q4), and ∆(q4) = false.
The direct transition system representation is T di

A
= (B5, Initdi, Transdi ), defined by:

Initdi[q̄] = q0, Transdi[q̄, q̄′] = ∃v0,v1.

*......
,

(q0 → ¬v1 ∧ q
′
1
∧ q′

3
) ∧

(q1 → q′
2
) ∧

(q2 → q′
1
) ∧

(q3 → q′
3
∨ (v1 ∧ q

′
4
)) ∧

(q4 → false)

+//////
-︸                              ︷︷                              ︸

Trans[q̄,q̄′,Vn ]

The intensionally-minimal translationT im
A

can be derived fromT di
A
by conjoining the restrictions in

(4) and (5) (Transim[q̄, q̄′] is shown in simplified form for sake of presentation):

Initim[q̄] = q0 ∧ (q0 → ¬false) ∧
4∧
i=1

(qi → ¬q0) ≡ q0 ∧ ¬q1 ∧ ¬q2 ∧ ¬q3 ∧ ¬q4

Transim[q̄, q̄′] ≡ ∃v0,v1.

(
Trans[q̄, q̄′,Vn] ∧ ¬q′

0
∧ (q′

1
→ q0 ∨ q2) ∧ (q′

2
→ q1) ∧

(q′
3
→ q0 ∨ (q3 ∧ ¬(v1 ∧ q

′
4
))) ∧ (q′

4
→ q3 ∧ ¬q

′
3
)

)
□

8.3 Deterministic Translation
We introduce a further encoding of A as a transition system that is more compact than (4), (5), but

does not always ensure fully-minimal state sets. The main idea of the encoding is that a conjunctive

transition formula ∆(q1) = q2 ∧ q3, assuming that q2,q3 do not occur in any other transition

formula ∆(qi ), can be interpreted as a set of deterministic updates q′
2
= q1;q′

3
= q1. For state

variables that occur in multiple transition formulae, the right-hand side of the update turns into

a disjunction. Disjunctions in transition formulae represent nondeterministic updates that can

be resolved using additional Boolean flags. The resulting transition system is deterministic, as

transitions are uniquely determined by the pre-state and variables representing system inputs.

Example 8.4. We illustrate the encoding T det
A
= (Bm , Initdet , Transdet ) using the AFA from Ex-

ample 8.3. While the initial states Initdet[q̄] coincide with Initim[q̄] in Example 8.3, the transition

relation Transdet[q̄, q̄′] now consists of two parts: a deterministic assignment of the post-state q̄′ in
terms of the pre-state q̄, together with an auxiliary variable h3 that determines which branch of

∆(q3) is taken; and a conjunct that ensures that value of h3 is consistent with the inputs Vn . The
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resulting Transdet[q̄, q̄′] is (in this example) equivalent to Transim[q̄, q̄′]:

Initdet[q̄] = q0 ∧ ¬q1 ∧ ¬q2 ∧ ¬q3 ∧ ¬q4

Transdet[q̄, q̄′] ≡ ∃h3.

*......
,

(q′
0
↔ false) ∧

(q′
1
↔ q0 ∨ q2) ∧

(q′
2
↔ q1) ∧

(q′
3
↔ q0 ∨ q3 ∧ h3) ∧

(q′
4
↔ q3 ∧ ¬h3)

+//////
-

∧ ∃v0,v1.
*.
,

(q0 → ¬v1) ∧
(q3 ∧ ¬h3 → v1) ∧
(q4 → false)

+/
-

□

To define the encoding formally, we make the simplifying assumption that there is a unique

initial state q0, i.e., I = q0, and that all transition formulae ∆(qi ) are in negation normal form (i.e.,

in particular state variables in ∆(qi ) do not occur underneath negation). Both assumption can be

established by simple transformation of A. The transition system T det
A
= (Bm , Initdet , Transdet ) is:

Initdet[q̄] = q0 ∧

m−1∧
i=1

¬qi

Transdet[q̄, q̄′] = ∃H . *
,

(m−1∧
i=0

q′i ↔ NewState(qi )
)
∧ ∃Vn .

(m−1∧
i=0

qi → InputInv (∆(qi ), i )
)

+
-

The transition relation Transdet consists of two main parts: the state updates, which assert

that every post-state variable q′i is set to an update formula NewState(qi ); and an input invariant

asserting that the letters that are read are consistent with the transition taken. To determinise

disjunctions in transition formulae ∆(qi ), a set H of additional Boolean variables hl (uniquely
indexed by a position sequence l ∈ Z∗) is introduced, and existentially quantified in Transdet.
The update formulae NewState(qi ) are defined as a disjunction of assignments extracted from

the transition formulae ∆(qj ),

NewState(qi ) =
∨
{φ | there is j ∈ {0, . . . ,m − 1} such that ⟨qi ,φ⟩ ∈ StateAsgn(∆(qj ), j,qj )}

where each StateAsgn(∆(qj ), j,qj ) represents the set of asserted state variables qi in ∆(qj ), together
with guards φ for the case that qi occurs underneath disjunctions. The set is recursively defined

(on formulae in NNF) as follows:

StateAsgn(φ1 ∧ φ2, l ,д) = StateAsgn(φ1, l ,д) ∪ StateAsgn(φ2, l ,д)

StateAsgn(φ1 ∨ φ2, l ,д) = StateAsgn(φ1, l .1, д ∧ hl ) ∪ StateAsgn(φ2, l .2, д ∧ ¬hl )

StateAsgn(qi , l ,д) = {⟨qi ,д⟩}

StateAsgn(ϕ, l ,д) = ∅ (for any other ϕ) .

In particular, the case for disjunctions φ1 ∨ φ2 introduces a fresh variable hl ∈ H (indexed by

the position l of the disjunction) that controls which branch is taken. Input variables vi ∈ Vn are

ignored in the updates.

The input invariants InputInv (∆(qi ), i ) are similarly defined recursively, and include the same

auxiliary variables hl ∈ H , but ensure input consistency:

InputInv (φ1 ∧ φ2, l ) = InputInv (φ1, l ) ∧ InputInv (φ2, l )

InputInv (φ1 ∨ φ2, l ) =
(
hl → InputInv (φ1, l .1)

)
∧

(
¬hl → InputInv (φ2, l .2)

)
InputInv (vi , l ) = vi , InputInv (¬vi , l ) = ¬vi , InputInv (qi , l ) = true, InputInv (ϕ, l ) = ϕ .
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9 IMPLEMENTATION AND EXPERIMENTS
We have implemented our method for deciding conjunctive AC and SL formulae as a solver called

Sloth (String LOgic THeory solver), extending the Princess SMT solver [Rümmer 2008]. The solver

Sloth can be obtained from https://github.com/uuverifiers/sloth/wiki. Hence, Princess provides us

with infrastructure such as an implementation of DPLL(T) or facilities for reading input formulae

in the SMT-LIBv2 format [Barrett et al. 2010]. Like Princess, Sloth was implemented in Scala. We

present results from several settings of our tool featuring different optimizations.

Sloth-1 The basic version of Sloth, denoted as Sloth-1 below, uses the direct translation of the

AFA emptiness problem to checking reachability in transition systems described in Section 8.1.

Then, it employs the nuXmvmodel checker [Cavada et al. 2014] to solve the reachability problem

via the IC3 algorithm [Bradley 2012], based on property-directed state space approximation.

Further, we have implemented five optimizations/variants of the basic solver: four of them are

described below, the last one at the end of the section.

Sloth-2 Our first optimization, implemented in Sloth-2, is rather simple: We assume working

with strings over an alphabet Σ and look for equations of the form x = a0 ◦y1 ◦ a1 . . . ◦yn ◦ an
where n ≥ 1, ∀0 ≤ i ≤ n : ai ∈ Σ∗ (i.e., ai are constant strings), and, for every 1 ≤ j ≤ n,
yj is a free string variable not used in any other constraint. The optimization replaces such

constraints by a regular constraint (a0 ◦ Σ
∗ ◦ a1 . . . ◦ Σ

∗ ◦ an ) (x ). This step allows us to avoid

many split operations. The optimization is motivated by a frequent appearance of constraints

of the given kind in some of the considered benchmarks. As shown by our experimental results

below, the optimization yields very significant savings in practice, despite of its simplicity.

Sloth-3 Our second optimization, implemented in Sloth-3, replaces the use of nuXmv and

IC3 in Sloth-2 by our own, rather simple model checker working directly on the generated

AFA. In particular, our model checker is used whenever no split operation is needed after the

preprocessing proposed in our first optimization. It works explicitly with sets of conjunctive state

formulae representing the configurations reached. The initial formula and transition formulae

are first converted to DNF using the Tseytin procedure. Then a SAT solver—in particular, sat4j

[Berre and Parrain 2010]—is used to generate new reachable configurations and to check the

final condition. Our experimental results show that using this simple model checking approach

can win over the advanced IC3 algorithm on formulae without splitting.

Sloth-4 Our further optimization, Sloth-4, optimizes Sloth-3 by employing the intensionally

minimal successor computation of Section 8.2 within the IC3-based model checking of nuXmv.

Sloth-5 Finally, Sloth-5 modifies Sloth-4 by replacing the use of nuXmv with the property

directed reachability (i.e., IC3) implementation in the ABC tool [Brayton and Mishchenko 2010].

We present data on two benchmark groups (each consisting of two benchmark sets) that demon-

strate two points. First, the main strength of our tool is shown on solving complex combinations

of transducer and concatenation constraints (generated from program code similar to that of

Example 1.1) that are beyond capabilities of any other solver. Second, we show that our tool is

competitive also on simpler examples that can be handled by other tools (smaller constraints

with less intertwined and general combinations of rational and concatenation constraints). All the

benchmarks fall within the decidable straight-line fragment (possibly extended with the restricted

length constraints). All experiments were executed on a computer with Intel Xeon E5-2630v2 CPU

@ 2.60 GHz and 32 GiB RAM.

Complex combinations of concatenation and rational constraints. The first set of our benchmarks

consisted of 10 formulae (5 sat and 5 unsat) derived manually from the PHP programs available

from the web page of the Stranger tool [Yu et al. 2010]. The property checked was absence
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of the vulnerability pattern .*<script.* in the output of the programs. The formulae contain

7–42 variables (average 21) and 7–38 atomic constraints (average 18). Apart from the Boolean

connectives ∧ and ∨, they use regular constraints, concatenation, the str.replaceall operation,

and several special-purpose transducers encoding various PHP functions used in the programs

(e.g., addslashes, trim, etc.).

Table 1. PHP benchmarks from the web of Stranger.

Program #sat (sec) #unsat (sec) #mo #win +/-

Sloth-1 4 (178) 5 (6,989) 1 1/0

Sloth-2 4 (83) 5 (5,478) 1 0/2

Sloth-3 4 (72) 5 (3,673) 1 1/2

Sloth-4 4 (93) 4 (6,168) 2 0/0

Sloth-5 4 (324) 4 (4,409) 2 2/1

Results of running the different ver-

sions of Sloth on the formulae are

shown in Table 1. Apart from the Sloth

version used, the different columns

show numbers of solved sat/unsat for-

mulae (together with the time used),

numbers of out-of-memory runs (“mo”),

as well as numbers of sat/unsat in-

stances for which the particular Sloth version provided the best result (“win +/-”). We can see

that Sloth was able to solve 9 out of the 10 formulae, and that each of its versions—apart from

Sloth-4—provided the best result in at least some case.

Our second benchmark consists of 8 challenging formulae taken from the paper [Kern 2014]

providing an overview of XSS vulnerabilities in JavaScript programs (including the motivating

example from the introduction).

Table 2. Benchmarks from [Kern 2014].

Solver #sat (sec) #unsat (sec) #win +/-

Sloth-1 4 (458) 4 (583) 0/2

Sloth-2 4 (483) 4 (585) 0/1

Sloth-3 4 (508) 4 (907) 2/1

Sloth-4 4 (445) 4 (1,024) 1/0

Sloth-5 4 (568) 4 (824) 1/0

The formulae contain 9–12 variables (av-

erage 9.75) and 9–13 atomic constraints

(average 10.5). Apart from conjunctions,

they use regular constraints, concatena-

tion, str.replaceall, and again several

special-purpose transducers encoding vari-

ous JavaScript functions (e.g., htmlescape,
escapeString, etc.). The results of our exper-
iments are shown in Table 2. The meaning of the columns is the same as in Table 1 except that we

drop the out-of-memory column since Sloth could handle all the formulae—which we consider to

be an excellent result.

These results are the highlight of our experiments, taking into account that we are not aware of

any other tool capable of handling the logic fragment used in the formulae.
9

A Comparison with other tools on simpler benchmarks. Our next benchmark consisted of 3,392

formulae provided to us by the authors of the Stranger tool. These formulae were derived by

Stranger from real web applications analyzed for security; to enable other tools to handle the

benchmarks, in the benchmarks the str.replaceall operationwas approximated by str.replace.
Apart from the ∧ and ∨ connectives, the formulae use regular constraints, concatenation, and the

str.replace operation. They contain 1–211 string variables (on average 6.5) and 1–182 atomic

formulae (on average 5.8). Importantly, the use of concatenation is much less intertwined with

str.replace than it is with rational constraints in benchmarks from Tables 1 and 2 (only about

120 from the 3,392 examples contain str.replace). Results of experiments on this benchmark are

9
We tried to replace the special-purpose transducers by a sequence of str.replaceall operations in order to match the

syntactic fragment of the S3P solver [Trinh et al. 2016]. However, neither Sloth nor S3P could handle the modified formulae.

We have not experimented with other semi-decision procedures, such as those implemented within Stranger or SLOG

[Wang et al. 2016], since they are indeed a different kind of tool, and, moreover, often are not able to process input in the

SMT-LIBv2 format, which would complicate the experiments.
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shown in Table 3. In the table, we compare the different versions of our Sloth, the S3P solver,

and the CVC4 string solver [Liang et al. 2014].
10
The meaning of the columns is the same as in

the previous tables, except that we now specify both the number of time-outs (for a time-out of 5

minutes) and out-of-memory runs (“to/mo”).

Table 3. Benchmarks from Stranger with str.replace.

Solver #sat (sec) #unsat (sec) #to/mo #win +/-

Sloth-1 1,200 (19,133) 2,079 (3,276) 105/8 30/43

Sloth-2 1,211 (13,120) 2,079 (3,338) 97/5 19/0

Sloth-3 1,290 (6,619) 2,082 (1,012) 14/6 263/592

Sloth-4 1,288 (6,240) 2,082 (1,030) 17/5 230/327

Sloth-5 1,291 (6,460) 2,082 (953) 14/5 768/1,120

CVC4 1,297 (857) 2,082 (265) 13/0 –

S3P 1,291 (171) 2,078 (56) 13/0 –

From the results, we can see

that CVC4 is winning, but (1) un-

like Sloth, it is a semi-decision

procedure only, and (2) the for-

mulae of this benchmark are

much simpler than in the previ-

ous benchmarks (from the point

of view of the operations used),

and hence the power of Sloth

cannot really manifest.

Despite that, our solver succeeds in almost the same number of examples as CVC4, and it is

reasonably efficient. Moreover, a closer analysis of the results reveals that our solver won in 16

sat and 3 unsat instances. Compared with S3P, Sloth won in 22 sat and 4 unsat instances (plus

S3P provided 8 unknown and 1 wrong answer and also crashed once). This shows that Sloth can

compete with semi-decision procedures at least in some cases even on a still quite simple fragment

of the logic it supports.

Table 4. Benchmarks from Stranger with str.replaceall.

Program #sat (sec) #unsat (sec) #to/mo #win +/-

Sloth-1 101 (1,404) 13 (18) 6/0 9/1

Sloth-2 104 (1,178) 13 (18) 3/0 8/5

Sloth-3 103 (772) 13 (19) 4/0 10/1

Sloth-4 101 (316) 13 (23) 6/0 24/2

Sloth-5 102 (520) 13 (20) 5/0 52/4

S3P 86 (11) 6 (26) 0/5 –

Our final set of benchmarks is

obtained from the third one by fil-

tering out the 120 examples con-

taining str.replace and replac-

ing the str.replace operations by

str.replaceall, which reflects the
real semantics of the original pro-

grams. This makes the benchmarks

more challenging, although they are

still simple compared to those of Tables 1 and 2. The results are shown in Table 4. The meaning

of the columns is the same as in the previous tables. We compare the different versions of Sloth

against S3P only since CVC4 does not support str.replaceall. On the examples, S3P crashed

6 times and provided 6 times the unknown result and 13 times a wrong result. Overall, although

Sloth is still slower, it is more reliable than S3P (roughly 10 % of wrong and 10 % of inconclusive

results for S3P versus 0 % of wrong and 5% of inconclusive results for Sloth).

As a final remark, we note that, apart from experimenting with the Sloth-1–5 versions, we also

tried a version obtained from Sloth-3 by replacing the intensionally minimal successor computation

of Section 8.2 by the deterministic successor computation of Section 8.3. On the given benchmark,

this version provided 3 times the best result. This underlines the fact that all of the described

optimizations can be useful in some cases.

10 CONCLUSIONS
We have presented the first practical algorithm for solving string constraints with concatenation,

general transduction, and regular constraints; the algorithm is at the same time a decision procedure

for the acyclic fragment AC of intersection of rational relations of [Barceló et al. 2013] and the

10
The S3P solver and CVC4 solvers are taken as two representatives of semi-decision procedures for the given fragment

with input from SMT-LIBv2.
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straight-line fragment SL of [Lin and Barceló 2016]. The algorithm uses novel ideas including

alternating finite automata as symbolic representations and the use of fast model checkers like IC3

[Bradley 2012] for solving emptiness of alternating automata. In initial experiments, our solver

has shown to compare favourably with existing string solvers, both in terms of expressiveness

and performance. More importantly, our solver can solve benchmarking examples that cannot be

handled by existing solvers.

There are several avenues planned for future work, including more general integration of length

constraints and support for practically relevant operations like splitting at delimiters and indexOf.
Extending our approach to incorporate a more general class of length constraints (e.g. Presburger-

expressible constraints) seems to be rather challenging since this possibly would require us to

extend our notion of alternating finite automata with monotonic counters (see [Lin and Barceló

2016]), which (among others) introduces new problems on how to solve language emptiness.
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Appendix
A PROOF OF LEMMA 7.9

Proof. Given an SL conjunction of mixed constraints written in the way

φ :

n∧
i=1

xi = Ri [s̄
i
](yi

1
◦ · · · ◦ yimi

)

which satisfies the condition in the definition of SL, we define its weight as the sum of weights of

its variables

W (φ) =
∑

x ∈var(φ )

W (x )

where the weight of a variable xi , 1 ≤ i ≤ n, is defined as

W (xi ) = (mi − 1) +
mi∑
j=1

W (yij ),

and the weight of a variable x ∈ var(φ) \ {x1, . . . ,xn } asW (x ) = 0. That is, the weight of xi is
derived from its defining constraint as the sum of the weights of the concatenated variables and

the number of concatenation operators used.

Let the binary splitting step replace xi = R (y1 ◦ · · · ◦ ym ◦ z1 ◦ · · · ◦ zl )[s̄
i
] in φ by x ′

1
=

R1 (y1 ◦ · · · ◦ ym )[s̄i , t̄] ∧ x ′
2
= R2 (z1 ◦ · · · ◦ zl )[s̄

i , t̄], while replacing every other occurrence of

xi by x
′
1
◦ x ′

2
, producing the formula φ ′. Let us analyse how the splitting influenced the weights.

First, observe that the weights of variables xk for k < i and of the undefined variables outside

{x1, . . . ,xn } do not change since they do not depend on xi , by the definition of SL. Hence, the

weights of all variables y1, . . . ,ym and z1, . . . , zl that defineW (xi ) do not change. Since xi is in
var(φ ′) replaced by x ′

1
and x ′

2
, the weightW (xi ) of xi from the sum definingW (φ) is in the sum

definingW (φ)′ replaced byW (x ′
1
) +W (x ′

2
). Observe that due to the −1 factor in the definition of

a weight of a variable, the second number is smaller by one:

W (xi ) = (m + l − 1) +
m∑
j=1

W (yj ) +
l∑
j=1

W (zj ) >

>
(
(m − 1) +

m∑
j=1

W (yj )
)
+

(
(l − 1) +

l∑
j=1

W (zj )
)
=W (x ′

1
) +W (x ′

2
)
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In the defining constraints of variables xk , k > i , xi is replaced by x ′
1
◦ x ′

2
; hence, in the sum

definingW (xk ),W (xi ) is replaced byW (x ′
1
) +W (x ′

2
) + 1 (where the +1 is for the one occurrence

of concatenation) which is, by the previous analysis, equal toW (xi ). The weights of variables xk ,
k > i , in φ ′ are therefore the same as in φ. Since weights of all variables in var(φ) are the same for

both formulae, the only difference between the formulae weights is that betweenW (xi ) in φ and

W (x ′
1
) +W (x ′

2
) in φ ′. It must therefore hold thatW (φ) >W (φ ′).

Additionally, observe thatW (φ) can obviously never be smaller than 0 sinceW (x ) ≥ 0 for every

x ∈ var(φ). This can be shown by an easy induction on n. That concludes the proof. □
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