
A Constraint Sequent Calculus for
First-Order Logic with Linear Integer

Arithmetic

Philipp Rümmer

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg, Sweden
philipp@chalmers.se

Abstract. First-order logic modulo the theory of integer arithmetic is
the basis for reasoning in many areas, including deductive software ver-
ification and software model checking. While satisfiability checking for
ground formulae in this logic is well understood, it is still an open ques-
tion how the general case of quantified formulae can be handled in an
efficient and systematic way. As a possible answer, we introduce a sequent
calculus that combines ideas from free-variable constraint tableaux with
the Omega quantifier elimination procedure. The calculus is complete for
theorems of first-order logic (without functions, but with arbitrary unin-
terpreted predicates), can decide Presburger arithmetic, and is complete
for a substantial fragment of the combination of both.

1 Introduction

One of the main challenges in automated theorem proving is to combine rea-
soning about full first-order logic (FOL), including quantifiers, with reasoning
about theories like the integers. At the time, there are efficient provers for han-
dling formulae in first-order logic, as well as SMT-solvers that can efficiently
handle ground problems modulo many theories, but the support for the combi-
nation of both is typically weak. In this paper, we develop a novel calculus for
reasoning about first-order logic modulo linear integer arithmetic that is com-
plete for both the first-order part and the theory part, and that can handle a
substantial fragment of the combination of both. Because the calculus is close
to the DPLL(T) architecture, techniques and optimisations used in SMT-solvers
are readily applicable when working on ground problems, but can be combined
with free-variable techniques to treat quantifiers more systematically.

We start from two existing approaches: free-variable tableaux with incremen-
tal closure, following the work by Martin Giese [1], and the Omega quantifier
elimination procedure [2] for deciding Presburger arithmetic (PA) [3]. From the
former method, our calculus inherits the concept of generating constraints that
describe valuations of free variables for which a formula is satisfied. The lat-
ter method provides the basic rules for dealing with linear integer arithmetic,

and the concept of recursive application of a calculus in order to handle nested
and alternating quantifiers. The resulting calculus accepts arbitrary formulae
of PA enriched with arbitrary uninterpreted predicates as input. Uninterpreted
functions are not directly supported, but can be treated by a translation to
uninterpreted predicates and functionality and totality axioms.

Our calculus operates on constrained sequents Γ ` ∆ ⇓ C, which consist of
two sets Γ ,∆ of formulae (the antecedent and the succedent) and one further for-
mula C (the constraint). In this paper, C will always be a formula of PA. The se-
mantics of a constrained sequent is the same as of the implication C ⇒ (Γ ` ∆),
i.e., we call the sequent valid if the constraint C implies the ordinary sequent
Γ ` ∆ (and the ordinary sequent holds iff the formula

∧
Γ → ∨

∆ holds). In
this sense, we can say that the constraint C is an approximation of the sequent
Γ ` ∆. The sequent ∀x.(x .≥ 0 → p(x)) ` p(c) ⇓ c .≥ 0 is valid, for instance,
as are the sequents ∀x.(x .≥ 0 → p(x)) ` p(c) ⇓ c .= 3 and Γ ` ∆ ⇓ false.

In practice, the constraints of sequents will be unknown during the con-
struction of a proof. Proving thus consists of two or more phases: starting with a
problem Γ ` ∆ ⇓ ? with unknown constraint, a proof procedure will first apply
analytic rules to the antecedent and succedent and build a proof tree, similarly
as in a normal Gentzen-style sequent calculus. At some point when it seems ap-
propriate, the procedure will start to close branches by synthesising constraints,
which are subsequently propagated downwards from the leaves to the root of
the tree. If the constraint that reaches the root is found to be valid, the valid-
ity of the input problem Γ ` ∆ has been shown; otherwise, the procedure will
continue to expand the proof tree and later update the resulting constraints.

analytic reasoning
about input formula

x

∗....
Γ ′′ ` ∆′′ ⇓ C
Γ ′ ` ∆′ ⇓ C ′

· · ·

y
propagation

of constraints

If the input problem Γ ` ∆ does not contain uninterpreted predicates (i.e.,
corresponds to a PA formula), it is always possible to find proofs such that the
resulting constraint is equivalent to Γ ` ∆ (we will call such proofs exhaustive).
This allows us to use the calculus as a quantifier elimination procedure for PA.

Our main contributions are: the introduction of the calculus, completeness
results for a number of fragments (including FOL and PA), a complete and
terminating proof strategy for the PA fragment, and the result that fair proof
construction is complete for formulae that are provable at all. Proofs for all
theorems in the paper are given in [4].

The paper is organised as follows: After giving basic definitions in Sect. 2, we
introduce our calculus in three steps: Sect. 3 gives a version for pure first-order
logic, Sect. 4 a minimalist version for first-order logic modulo integer arithmetic,
together with completeness results, and Sect. 5 an equivalent but more refined
calculus. Sect. 6 contains the result that fair proof strategies are complete. Fi-
nally, Sect. 7 summarises related work and Sect. 8 concludes.

2 Preliminaries

We assume that the reader is familiar with classical first-order logic and Gentzen-
style sequent calculi, see [5] for an introduction. Assuming that x ∈ X ranges
over an infinite set of variables, c ∈ A over an infinite set of constants, p ∈ P
over a set of uninterpreted predicates with fixed arity, and α ∈ Z over integers,
the syntactic categories of terms t and formulae φ are defined by:

t ::= α || x || c || αt+ · · ·+ αt

φ ::= φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ || t .= 0 || t
.≥ 0 || t

.≤ 0 || α | t || p(t, . . . , t)
For reasons of simplicity, we only allow 0 as right-hand side of equations and
inequalities, although we deviate from this convention in some places for sake of
clarity. The explicit divisibility operator α | t is added for presentation purposes
only and does not add any expressiveness (divisibility can also be expressed
with an existentially quantified equation). Further, we use the abbreviations
true, false for the equations 0 .= 0, 1 .= 0 and φ→ ψ as abbreviation for ¬φ∨ψ.

Simultaneous substitution of terms t1, . . . , tn for variables x1, . . . , xn is de-
noted by [x1/t1, . . . , xn/tn]φ, whereby we assume that variable capture is avoided
by renaming bound variables when necessary. As short-hand notations, we some-
times also substitute terms for constants (as in [c/t]φ), quantify over constants
(as in ∀c.φ), or quantify over sets of constants (as in ∀U.φ).

Semantics. The only universe considered for evaluation are the integers Z (an
exception is Sect. 3, where we treat normal first-order logic). A variable as-
signment β : X → Z is a mapping from variables to integers, a constant as-
signment δ : A → Z a mapping from constants to integers, and an interpre-
tation I : P → P(Z∗) a mapping from predicates to sets of Z-tuples. The
evaluation function valI,β,δ for terms and formulae is then defined as is common
and gives the arithmetic operations their normal meaning. We call a formula φ
valid if valI,β,δ(φ) is true for all I, β, δ.

Sequents. If Γ ,∆ are finite sets of formulae and C is a formula, all of which do not
contain free variables, then Γ ` ∆ is an (ordinary) sequent and Γ ` ∆ ⇓ C
is a (constrained) sequent. We sometimes identify sequents with the formulae∧
Γ → ∨

∆ (resp.,
∧
Γ ∧ C → ∨

∆). A calculus rule is a binary relation between
finite sets of constrained sequents (the premisses) and constrained sequents (the
conclusion). A sequent calculus rule is called sound, iff, for all instances

Γ1 ` ∆1 ⇓ C1 · · · Γn ` ∆n ⇓ Cn

Γ ` ∆ ⇓ C
it holds that: if all premisses Γ1 ` ∆1 ⇓ C1, . . . , Γn ` ∆n ⇓ Cn are valid,
then Γ ` ∆ ⇓ C is valid. Proof trees are defined as is common as trees growing
upwards in which each node is labelled with a constrained sequent, and in which
each node that is not a leaf is related with the nodes directly above through an
instance of a calculus rule. A proof is closed if it is finite, and if all leaves are
justified by a rule instance without premisses.

Simplification. We denote elementary simplification steps on terms and atomic
formulae in a proof with simp, without showing more details about the applied
transformation (in an implementation, simp might be a part of the datastruc-
tures for formulae). simp normalises terms to the form α1t1 + · · ·+ αntn, in
which α1, . . . , αn are non-zero integers and t1, . . . , tn are pairwise distinct vari-
ables, constants, or 1 (possibly 0 as the empty sum). Further, terms are put into
a canonical form by sorting summands according to a well-founded ordering <r:

– on variables, constants and integers, <r is an arbitrary well-ordering such
that variables are bigger than constants, constants are bigger than integers,
and: 0 <r 1 <r −1 <r 2 <r −2 <r 3 <r · · · .

– on terms with coefficients, <r is defined by αt <r α
′t′ if and only if t <r t

′

or t = t′ and α <r α
′.

– on linear combinations, <r is defined by α1t1 + · · · + αntn <r α
′
1t
′
1 + · · · +

α′kt
′
k if and only if {{α1t1, . . . , αntn}} <r {{α′1t′1, . . . , α′nt′n}} (in the multiset

extension of <r, cf. [6]).

Atomic formulae t .= 0, t
.≥ 0, t

.≤ 0 are normalised by simp such that the coef-
ficients of non-constant terms in t are coprime (do not have non-trivial factors
in common), and such that the leading coefficient is non-negative. This also de-
tects that equations like 2y − 6c+ 1 .= 0 are unsolvable and equivalent to false,
and that an inequality like 2y − 6c+ 1

.≤ 0 can be simplified and rounded to
y − 3c+ 1

.≤ 0 thanks to the discreteness of the integers. All inequalities in the
succedent are moved to the antecedent. A divisibility judgement α | t is nor-
malised like an equation αx+ t

.= 0, and it is ensured that α and the leading
coefficient of t are positive.

3 A Constraint Sequent Calculus for First-Order Logic

We first introduce a very restricted calculus for pure first-order logic, in order to
illustrate how the framework of constrained sequents is related to normal free-
variable tableau calculi. This section is exceptional in that we do not assume
evaluation of formulae over the universe Z of integers, and that we allow equa-
tions s .= t whose right-hand side is not 0. The rules from Fig. 1, together with
the following closure rule, form the calculus PredC :

∗
Γ, p(s1, . . . , sn) ` p(t1, . . . , tn),∆ ⇓ ∧

i si
.= ti

pred-close

Instead of unifying complementary literals, a conjunction of equations about the
predicate arguments is generated and propagated as a constraint.

Example 1. We show a proof for the sequent ∀x.∃y.p(x, y) ` ∃z.p(a, z). In or-
der to instantiate existential and universal quantifiers, fresh constants c, d, e are
introduced. The constraints on the right-hand side are practically filled in af-
ter applying pred-close. Because ∃x.∀y.∃z.(x .= a ∧ y .= z) is valid, also the

Γ ` φ,∆ ⇓ C Γ ` ψ,∆ ⇓ D
Γ ` φ ∧ ψ,∆ ⇓ C ∧D and-right

Γ, φ ` ∆ ⇓ C Γ,ψ ` ∆ ⇓ D
Γ, φ ∨ ψ ` ∆ ⇓ C ∧D or-left

Γ, φ, ψ ` ∆ ⇓ C
Γ, φ ∧ ψ ` ∆ ⇓ C and-left

Γ ` φ, ψ,∆ ⇓ C
Γ ` φ ∨ ψ,∆ ⇓ C or-right

Γ ` φ,∆ ⇓ C
Γ,¬φ ` ∆ ⇓ C not-left

Γ, φ ` ∆ ⇓ C
Γ ` ¬φ,∆ ⇓ C not-right

Γ ` [x/c]φ, ∃x.φ,∆ ⇓ [x/c]C

Γ ` ∃x.φ,∆ ⇓ ∃x.C ex-right
Γ, [x/c]φ, ∀x.φ ` ∆ ⇓ [x/c]C

Γ, ∀x.φ ` ∆ ⇓ ∃x.C all-left

Γ ` [x/c]φ,∆ ⇓ [x/c]C

Γ ` ∀x.φ,∆ ⇓ ∀x.C all-right
Γ, [x/c]φ ` ∆ ⇓ [x/c]C

Γ, ∃x.φ ` ∆ ⇓ ∀x.C ex-left

Fig. 1. The rules for first-order predicate logic (without equality). In all rules, c is
a constant that does not occur in the conclusion: in contrast to the usage of Skolem
functions and free variables in tableaux, the same kinds of symbols (constants) are
used to handle both existential and universal quantifiers. Arbitrary renaming of bound
variables is allowed in the constraints when necessary to avoid variable capture.

validity of the original problem is proven.
∗

. . . , p(c, d) ` . . . , p(a, e) ⇓ c .= a ∧ d .= e
pred-close

. . . , p(c, d) ` ∃z.p(a, z) ⇓ ∃z.(c .= a ∧ d .= z)
ex-right

. . . , ∃y.p(c, y) ` ∃z.p(a, z) ⇓ ∀y.∃z.(c .= a ∧ y .= z)
ex-left

∀x.∃y.p(x, y) ` ∃z.p(a, z) ⇓ ∃x.∀y.∃z.(x .= a ∧ y .= z)
all-left

It is easy to see that a constraint C produced by a proof can only consist of
equations over variables and constants, conjunctions, and quantifiers (because
these are the only constructs that are introduced in constraints by the rules
of PredC). The validity of constraints/formulae of this kind is decidable and
corresponds to simultaneous unification, which makes the calculus effective.

Lemma 2 (Soundness). If a sequent Γ ` ∆ ⇓ C is provable in PredC , then
it is valid (holds in all first-order structures).

Lemma 3 (Completeness). Suppose φ is closed, valid (holds in all first-order
structures), and does not contain constants. Then there is a valid constraint C
such that ` φ ⇓ C is provable in PredC .

4 Adding Integer Arithmetic

Relatively few changes to the calculus PredC from the previous section are
necessary to reason about problems in integer arithmetic. In this section, we

describe a minimalist approach in which all integer reasoning happens during
the constraint solving and investigate fragments on which the resulting method
is complete. Later in the paper, the calculus is refined and optimised. From now
on and in contrast to the previous section, assume that formulae and terms are
evaluated over first-order structures with the universe Z as described in Sect. 2.

In contrast to the previous section, to handle integer arithmetic disjunctive
constraints also need to be considered. We thus split the rule pred-close into
two new rules, one of which (pred-unify) generates unification conditions for
complementary pairs, while the other one (close) allows to synthesise a con-
straint from arbitrary formulae in a sequent:

Γ, p(s1, . . . , sn) ` p(t1, . . . , tn),
∧

i si − ti
.= 0, ∆ ⇓ C

Γ, p(s1, . . . , sn) ` p(t1, . . . , tn),∆ ⇓ C pred-unify

∗
Γ, φ1, . . . , φn ` ψ1, . . . , ψm,∆ ⇓ ¬φ1 ∨ · · · ∨ ¬φn ∨ ψ1 ∨ · · · ∨ ψm

close

(φ1, . . . , φn, ψ1, . . . , ψm do not contain uninterpreted predicates)

Besides these two rules, PresPredC
S contains all rules given in Fig. 1. It is obvious

that any proof in PredC can be translated to a proof in PresPredC
S by replac-

ing applications of pred-close with applications of pred-unify, followed by
close, which means that PresPredC

S is complete for first-order logic.
Because uninterpreted predicates are excluded in close, the constraint re-

sulting from a proof is always a formula in Presburger arithmetic and can in prin-
ciple be handled using any decision procedure for PA (e.g. [2], also see Sect. 5.3).
We come back to this issue later in the paper and assume for the time being
that some procedure is available for deciding the validity of constraints.

As an implication of a more general result (Lem. 13), it can be observed
that PresPredC

S is proof-confluent: if φ is provable, then every partial proof of
` φ ⇓ ? can be extended to a closed proof of a sequent ` φ ⇓ C with valid

constraint C.

Example 4. We show a proof for the following sequent (Fig. 2):

∀x.p(2x), ∀x.¬p(2x+ 1) ` ∀y.(p(y) → p(y + 10))

The sequent is proven by first building the “main proof” (upwards) to a point
where close can be applied. The constraints C1, . . . , C4 are then filled in and
propagated downwards. Because C4 is valid, we have proven the validity of the
original formula. The constraint simplification is explained in more detail later.

Completeness on fragments. Two fragments on which PresPredC
S is complete

are the classes of purely universal and of purely existential formulae. We call
positions in the antecedent/succedent of a sequent positive if they are underneath
an odd/even number of negations. All other positions are called negative.

Lemma 5. If Γ ` ∆ is a valid sequent in which ∃ only occurs in negative and
∀ only in positive positions, then there is a valid PA constraint C such that
Γ ` ∆ ⇓ C has a proof in the calculus PresPredC

S .

∗
. . . ` . . . , 2d− c− 10

.
= 0, c− 2e− 1

.
= 0 ⇓ C1

close

p(2d), . . . , p(c) ` p(c+ 10), p(2e+ 1) ⇓ C1
pred-unify× 2

. . . , p(2d), ∀x.¬p(2x+ 1), p(c) ` p(c+ 10) ⇓ C2

all-left,not-left

∀x.p(2x),∀x.¬p(2x+ 1), p(c) ` p(c+ 10) ⇓ C3
all-left

∀x.p(2x),∀x.¬p(2x+ 1) ` ¬p(c) ∨ p(c+ 10) ⇓ C3

or-right,not-right

∀x.p(2x),∀x.¬p(2x+ 1) ` ∀y.(p(y) → p(y + 10)) ⇓ C4
all-right

The constraints are:

C1 = 2d− c− 10
.
= 0 ∨ c− 2e− 1

.
= 0

C2 = ∃y.[e/y]C1 = ∃y.(2d− c− 10
.
= 0 ∨ c− 2y − 1

.
= 0)

C3 = ∃x.[d/x]C2 = ∃x.∃y.(2x− c− 10
.
= 0 ∨ c− 2y − 1

.
= 0)

≡ 2 | (c+ 10) ∨ 2 | (c− 1)
C4 = ∀x.[c/x]C3 = ∀x.(2 | (x+ 10) ∨ 2 | (x− 1))

≡ true

Fig. 2. An example proof in the calculus PresPred C
S .

Lemma 6. If Γ ` ∆ is a valid sequent (without constants) in which ∃ only
occurs in positive and ∀ only in negative positions, then there is a valid PA
constraint C such that Γ ` ∆ ⇓ C has a proof in the calculus PresPredC

S .

Comparison with ME(LIA). We can also show that the calculus PresPredC
S is

complete on the logic that can be handled by Model Evolution modulo linear
integer arithmetic [7]. Ignoring minor syntactic issues and the fact thatME(LIA)
works on clauses, ME(LIA) is a sound and complete calculus for proving the
unsatisfiability of formulae of the shape ∃ā.(φ ∧ ψ), where ā = (a1, . . . , am) is a
vector of existentially quantified variables, φ is a PA formula over ā that only
has finitely many solutions, and ψ is an arbitrary formula over ā in which ∃/∀
only occurs in negative/positive positions.

Lemma 7. If ∃ā.(φ∧ψ) as above is an unsatisfiable formula that does not con-
tain constants or free variables, then there is a valid constraint C such that the
sequent ∃ā.(φ ∧ ψ) ` ⇓ C has a proof in PresPredC

S .

5 Built-In Handling of Presburger Arithmetic

Although the calculus from the previous section is in principle usable, it prac-
tically has a number of shortcomings: the handling of arithmetic in constraints
provides little guidance for the construction of proofs, so that large constraints
are produced in a very indeterministic manner that cannot be solved efficiently.
Moreover, constraints are even needed to handle ground problems, for which
branch-local reasoning should be sufficient. The main goal when refining the
calculus is, therefore, to reduce the usage of constraints as far as possible.

In this section, we define built-in rules for handling linear integer arithmetic
that can be interleaved with the rules from the previous section. The rules make
it possible to handle ground problems branch-locally: proof trees for ground
problems can be constructed depth-first (non-iteratively), similarly to the way
in which SMT-solvers work. It can be achieved that the only constraints that
can result from a subproof in case of ground problems are true or false (more
details are given in [4]). Branch-local reasoning is also possible for innermost ∀-
quantifiers in positive and ∃ in negative positions. The arithmetic rules also yield
a decision procedure for PA that can be used to decide constraints (Sect. 5.3).

The rules in detail. The calculus PresPredC consists of the rules given in Fig. 3,
together with all rules from the calculus PresPredC

S and the simplification rule
simp. We introduce new rules ex-right-d, all-left-d that instantiate quanti-
fied formulae destructively, because formulae that do not contain uninterpreted
predicates never have to be instantiated twice (also see Lem. 13 below).

The equality handling follows the calculus given in [8] and can solve arbitrary
equations in the antecedent, in the sense that the equations are rewritten until
the leading coefficients are all 1 and the leading terms of equations occur in
exactly one place. Speaking in terms of matrices, red is the rule for performing
row operations, while col-red(-subst) is responsible for column operations.
We define a suitable strategy for guiding the rules below.

The rules div-right and div-left translate divisibility statements to equa-
tions, while div-close synthesises divisibility statements from equations. The
formula C ′ in div-close can be found through pseudo-division (multiplying
equations, inequalities or divisibility statements in C with non-zero factors). For
C = (c+ d

.= 0) and α = 3, for instance, we would choose C ′ = (x+ 3d .= 0).
Inequalities are handled based on the Omega test [2], which is an extension of

the Fourier-Motzkin variable elimination method (cf. [9]) for integer problems.
The central rule is omega-elim for replacing a conjunction of inequalities with
a disjunction over simpler cases (omega-elim is directly based on the main
theorem underlying the Omega test [2]). The literal mi in the rule is defined by:

m = max
j
βj , mi =

⌊
mαi − αi −m

m

⌋

In case there are no upper bounds, we define m = mi = −1. The application
of omega-elim is only meaningful if c does not occur in formulae other than
inequalities. Note, that if there are no lower or no upper bounds, the rule will
replace all inequalities whose leading term is c with true.

Because we avoid the application of omega-elim in certain common situa-
tions (for instance, whenever the constant c occurs as argument of uninterpreted
predicates), we also introduce a rule fm-elim for normal Fourier-Motzkin elim-
ination. fm-elim can be applied with higher priority than omega-elim and is
often able to close proofs faster than omega-elim, reducing the need to resort
to the more complex rule. Further, we define two rules to convert between equa-
tions and inequalities. While the rule split-eq is strictly necessary for certain
problems, anti-symm is introduced only for reasons of efficiency.

Γ ` [x/c]φ,∆ ⇓ [x/c]C

Γ ` ∃x.φ,∆ ⇓ ∃x.C ex-right-d
Γ, [x/c]φ ` ∆ ⇓ [x/c]C

Γ, ∀x.φ ` ∆ ⇓ ∃x.C all-left-d

(c a constant that does not occur in the conclusion,
φ does not contain uninterpreted predicates)

Γ, t
.
= 0 ` φ[s+ α · t],∆ ⇓ C
Γ, t

.
= 0 ` φ[s],∆ ⇓ C red

(α a literal, or t a literal and α an arbitrary term)

Γ, α(u+ c′) + t
.
= 0, c− u− c′

.
= 0 ` ∆ ⇓ [x/c′]C

Γ,αc+ t
.
= 0 ` ∆ ⇓ ∀x.C col-red

(c′ a constant that does not occur in the conclusion or in u)

Γ, α(u+ c′) + t
.
= 0, c− u− c′

.
= 0 ` ∆ ⇓ [x/c′]C

Γ,αc+ t
.
= 0 ` ∆ ⇓ [x/c− u]C

col-red-subst

(c′ a constant that does not occur in the conclusion or in u)

Γ, ∃x.αx+ t
.
= 0 ` ∆ ⇓ C

Γ,α | t ` ∆ ⇓ C div-left

(x an arbitrary variable)

Γ, (α | t+ 1) ∨ · · · ∨ (α | t+ α− 1) ` ∆ ⇓ C
Γ ` α | t,∆ ⇓ C div-right

(α > 0)

Γ, αc− t
.
= 0 ` ∆ ⇓ C

Γ,αc− t
.
= 0 ` ∆ ⇓ [x/t]C′ ∨ α - t div-close

(c does not occur in t or in C′, C′ a PA formula such that C ⇔ [x/αc]C′)

Γ ` t
.≤ 0,∆ ⇓ C Γ ` t

.≥ 0,∆ ⇓ D
Γ ` t

.
= 0,∆ ⇓ C ∧D split-eq

Γ, t
.
= 0 ` ∆ ⇓ C

Γ, t
.≤ 0, t

.≥ 0 ` ∆ ⇓ C
anti-symm

Γ, αc+ s
.≥ 0, βc+ t

.≤ 0, βs− αt
.≥ 0 ` ∆ ⇓ C

Γ,αc+ s
.≥ 0, βc+ t

.≤ 0 ` ∆ ⇓ C
fm-elim

(α > 0, β > 0)

Γ,

V
i,j αibj − aiβj − (αi − 1)(βj − 1)

.≥ 0

∨
W

i

Wmi
k=0

„
αic− ai − k

.
= 0 ∧V

i αic− ai

.≥ 0 ∧Vj βjc− bj
.≤ 0

« ` ∆ ⇓ C

Γ, {αic− ai

.≥ 0}i, {βjc− bj
.≤ 0}j ` ∆ ⇓ C

omega-elim

(αi > 0, βj > 0)

Fig. 3. Rules for equations, inequalities, and divisibility judgements. In red, we write
φ[s] in the succedent to denote that s occurs in an arbitrary formula in the sequent,
which can in particular also be in the antecedent. mi in omega-elim as on page 8.

Lemma 8 (Soundness). If a sequent Γ ` ∆ ⇓ C is provable in PresPredC ,
then it is valid.

5.1 Exhaustive Proofs

The existence of a closed proof for a sequent Γ ` ∆ ⇓ C guarantees that the
implication C ⇒ (Γ ` ∆) holds (this is the soundness of the calculus, Lem. 8).
In the special case that the sequent Γ ` ∆ does not contain uninterpreted pred-
icates, it is possible to distinguish particular closed proofs that also guarantee
the opposite implication (Γ ` ∆) ⇒ C, and thus (Γ ` ∆) ⇔ C. While this can
be achieved in a trivial way by always applying close such that all formulae
in a sequent are selected, it is sufficient to impose a weaker condition on proof
trees that leads to smaller constraints and also makes it possible to eliminate
quantifiers (Sect. 5.3). To this end, it is necessary to remember whether a con-
stant was introduced by an existential rule (like ex-right) or a universal rule
(like all-right). A generalisation of the condition is described in [4].

Assume that a PresPredC-proof is given. We annotate the sequents in the
proof with sets U of “universal” constants that the calculus attempts to elim-
inate. More formally, the proof is called exhaustive iff there is a mapping from
proof nodes (constrained sequents) to sets U of constants that satisfies:

1. The rules and-*, or-*, not-*, pred-unify, red, div-*, split-eq, anti-
symm, fm-elim, and simp keep or reduce the set: if the conclusion is anno-
tated with U , the premisses are annotated with arbitrary subsets of U .

2. The rules ex-right(-d), all-left(-d) erase the set: the premiss is anno-
tated with ∅.

3. The rules ex-left and all-right may add the introduced constant c to
the set: if the conclusion is annotated with U , then the premiss is annotated
with a subset of U ∪ {c}.

4. The rule col-red is only applied if the conclusion is annotated with U such
that c ∈ U . In this case, the premiss is annotated with a subset of U ∪ {c′}.

5. The rule col-red-subst is only applied if the conclusion is annotated with
U such that c 6∈ U , and if u does not contain any constants from U . In this
case, the premiss is annotated with a subset of U .

6. The rule omega-elim is only applied if the conclusion is annotated with U
such that c ∈ U and if c does not occur in Γ or ∆. In this case, the premiss
is annotated with an arbitrary subset of U .

7. The rule div-close is only applied if the conclusion is annotated with U
such that c ∈ U . In this case, the premiss is annotated with a subset of U .

8. The rule close is always applied such that all formulae without uninter-
preted predicates are selected, apart from (possibly) those equations in the
succedent that contain constants from U that exclusively occur in equations
in the succedent.

Lemma 9 (Constraint completeness). Suppose that a PresPredC-proof is
closed and exhaustive. For each sequent Γ ` ∆ ⇓ C in the tree, let Γp, ∆p

denote the subsets of PA formulae in Γ , ∆. Then, for each sequent Γ ` ∆ ⇓ C
that is annotated with a set U , the implication ∀U. (Γp ` ∆p) ⇒ ∀U. C holds.

Example 10. The formula ¬∃x.∃y.(2x− c− 10 .= 0 ∨ 2y − c+ 1 .= 0) from Ex-
ample 4 is simplified by constructing a proof. To see that the proof is exhaustive,
the sequent with constraint D5 is annotated with ∅, the sequent with D1 with
{e}, the sequent with D3 with {d}, and all other sequents with the set {d, e}.
This implies that the original formula is equivalent to D5.

∗
2d− c− 10 .= 0 ` ⇓ D1

close

2d− c− 10 .= 0 ` ⇓ D2
div-close

∗
2e− c+ 1 .= 0 ` ⇓ D3

close

2e− c+ 1 .= 0 ` ⇓ D4
div-close

2d− c− 10 .= 0 ∨ 2e− c+ 1 .= 0 ` ⇓ D2 ∧D4
or-left

∃x.∃y.(2x− c− 10 .= 0 ∨ 2y − c+ 1 .= 0) ` ⇓ D5
ex-left× 2

The constraints resulting from the proof are:

D1 = 2d− c− 10 6 .= 0
D2 = [2d/c+ 10]D1 ∨ 2 - (c+ 10) = (c+ 10)− c− 10 6 .= 0 ∨ 2 - (c+ 10)

≡ 2 - (c+ 10)
D3 = 2e− c+ 1 6 .= 0
D4 = [2e/c− 1]D3 ∨ 2 - (c− 1) = (c− 1)− c+ 1 6 .= 0 ∨ 2 - (c− 1)

≡ 2 - (c− 1)
D5 = ∃x.[d/x]∃y.[e/y](D2 ∧D4) = ∃x.∃y.(2 - (c+ 10) ∧ 2 - (c− 1))

≡ 2 - (c+ 10) ∧ 2 - (c− 1)

5.2 The Construction of Exhaustive Proofs for PA Problems

We define a strategy to apply the PresPredC-rules to a sequent Γ ` ∆ ⇓ ?
that only contains PA formulae. The strategy is guaranteed to terminate and to
produce a closed and exhaustive proof, and it is deterministic in the sense that
no search is required, every ordering of rule applications (that is consistent with
given priorities) leads to an exhaustive proof. In order to guide the proof con-
struction, the strategy maintains a set U of constants (which is initially empty)
and a term ordering <r (as in Sect. 2) that are updated when new constants
are introduced or existing constants need to be reordered. The ordering <r is
always chosen such that the constants in U are bigger than all constants that
are not in U . Both U and <r are branch-local: different branches in a proof tree
can be built using different Us and <rs.

We list the rules that the strategy applies to a proof goal with descending
priority: step 2 will only be carried out if step 1 is impossible, etc.

1. apply simp (if possible).
2. apply red if an α exists such that s+ α · t <r s

(and if s 6= t or φ[s] is not an equation in the antecedent).
3. if the antecedent contains an equation αc+ t

.= 0 with α > 1, then:
– if c 6∈ U , apply col-red-subst. The fresh constant c′ is inserted in the

term ordering <r such that it becomes minimal, and u is chosen such
that (αu+ t) = min<r {αu′ + t | u′ a term}.

– if c ∈ U and t contains at least one further constant from U whose
coefficient is not a multiple of α, apply col-red. The fresh constant c′

is added to U and is inserted in the term ordering<r such that it becomes
smaller than all other constants in U , but bigger than all constants not
in U . u is again chosen such that (αu+ t) = min<r {αu′+ t | u′ a term}.

4. if the antecedent contains an equation αc+ t
.= 0 with c ∈ U , apply div-

close, remove c from U , and update <r such that c becomes minimal.
(This is also possible for α = 1)

5. if possible, apply any of the following rules:
– anti-symm.
– fm-elim, if the result is not subsumed by an inequality in the antecedent.
– any of the rules and-*, or-*, not-*.

6. if possible, apply any of the following rules:
– split-eq: if an equation can be split that contains a constant c ∈ U that

also occurs as leading term of an inequality in the antecedent.
– omega-elim: if inequalities {αic− ai

.≥ 0}i, {βjc− bj
.≤ 0}j occur in

the antecedent and c ∈ U , and if c does not occur in any other formula.
– all-right, ex-left: add the fresh constant c to U and insert it into <r

such that it becomes maximal.
– ex-right-d, all-left-d: set U to ∅ and insert c arbitrarily into <r.
– div-left, div-right.

7. apply close and select exactly those formulae that do not contain constants
from U or uninterpreted predicates.

The steps 1–4 of the strategy work by eliminating all U -constants that occur
in equations in the antecedent. Similarly as in [8], in the antecedent only equa-
tions will be left whose leading coefficient is 1 and whose leading term does not
occur in other places in the sequent anymore. The steps 5–6 handle inequalities
by first applying the Fourier-Motzkin rule exhaustively, and by eliminating con-
stants using the Omega rule whenever possible. Also quantifiers, propositional
connectives and divisibility judgements are treated in step 5–6. A proof that is
constructed using this procedure is shown in Example 10.

Lemma 11 (Termination and exhaustiveness). If a sequent Γ ` ∆ ⇓ ?
does not contain uninterpreted predicates, the strategy from above terminates
and produces a closed exhaustive proof.

5.3 Deciding Presburger Arithmetic by Recursive Proving

The anticipated way to decide constraints in proofs is to eliminate quantifiers
already during the constraint propagation, i.e., at the points where the rules ex-
right(-d), all-left(-d), all-right, ex-left or col-red are applied and
cause quantifiers to occur in constraints. By eliminating such quantifiers right
away, each subproof of the proof can be annotated with a constraint that is
a quantifier-free PA formula. When building proofs incrementally, this makes
it possible to easily distinguish between unsatisfiable subproofs (i.e., subproofs

with an unsatisfiable constraint) that need to be expanded further, and satisfiable
subproofs whose expansion can be postponed. Besides, due to Lem. 11 and as
only quantifier-free constraints occur, the resulting procedure decides PA.

To eliminate quantifiers, the calculus PresPredC can be used (Example 10):

Lemma 12 (Quantifier elimination). Suppose a formula φ does not contain
uninterpreted predicates and ∀ occurs in φ only in positive positions and ∃ only
in negative positions. The strategy from the previous section produces a proof
with root ` φ ⇓ C in which C does not contain quantifiers (more precisely, if
C contains a quantified subformula Qx.ψ, then x does not occur in ψ).

6 Fair Construction of Proofs

We now compare the calculus PresPredC with the more restricted calculus
PresPredC

S from Sect. 4. Because the former calculus is a superset of the latter,
it is a trivial observation that any sequent provable in PresPredC

S is also provable
in PresPredC . It can also be shown that PresPredC cannot prove more sequents
than PresPredC

S [4], which means that the two calculi are equivalent.
Proofs in PresPredC can be found by a backtracking-free fair application

strategy. To define the notion “fair,” it has to be observed that formulae in a
PresPredC-proof can be rewritten by applying red or simp. When this happens,
it is possible to identify a unique successor of the modified formula in the premiss
of the rule application (vice versa, a formula can have multiple predecessors
because distinct formulae could become equal when applying a rule).

A fair PresPredC-proof for a sequent Γ ` ∆ ⇓ ? is a possibly infinite proof
in PresPredC in which all constraints are ? and all branches have the properties:

– Fair treatment of formulae with uninterpreted predicates: whenever at some
point on the branch one of the rules in Fig. 1 is applicable to a formula that
contains uninterpreted predicates, the rule is applied to the formula or to
a successor of the formula at some later point on the branch. (This implies
that all-left and ex-right are applied infinitely often to each universally
quantified formula with uninterpreted predicates).

– Fair unification of complementary literals: if there is a sequent on the branch
of the shape Γ, p(t̄) ` p(s̄),∆ ⇓ ?, the rule pred-unify is applied at least
once on the branch to the pair p(t̄), p(s̄) or to successors of these formulae.

– Exhaustiveness: all proof nodes can be annotated with sets U as in Sect. 5.1.

A constraint C is generated by a fair proof of Γ ` ∆ ⇓ ? if a (finite) proof
for Γ ` ∆ ⇓ C can be obtained by chopping off all branches of the fair proof
at some point, applying close in some way to the leaves and propagating the
resulting constraints through the proof. The next lemma, together with Lem. 9,
implies the completeness of a fair rule, formula, and branch selection strategy.

Lemma 13 (Fair construction). Suppose that a PresPredC
S -proof for the se-

quent Γ ` ∆ ⇓ C exists. Every fair PresPredC-proof of Γ ` ∆ ⇓ ? whose root
is annotated with the set U generates a constraint D with ∀U.C ⇒ ∀U.D.

7 Related Work

ME(LIA) [7] is a recently proposed variant of the Model Evolution calculus that
is similar to our calculus in that it supports PA enhanced with uninterpreted
predicates (and without functions) as input language, and that its architecture
resembles tableau calculi. Model Evolution does not use rigid free variables that
are shared among different branches in the way tableaux do, however, which
means that also constraints can be kept branch-local. Further differences are
that ME(LIA) works on clauses, only supports a restricted form of existential
quantification, and has a more explicit representation of candidate models.

SMT-solvers based on the DPLL(T) architecture [10] can handle ground
problems modulo integer arithmetic (and many other theories) efficiently, but
only offer heuristic quantifier handling. Because of the similarity between DPLL
and sequent calculi, the work presented in this paper can be seen as an alternative
approach to handling quantifiers that should also be applicable to DPLL(T).

The simplification of formulae by the rules in Fig. 3 is roughly comparable
with deduction modulo [11]. The concept is here integrated in a setting that
resembles free-variable tableaux to treat quantifiers more efficiently.

An approach to embed algebraic constraints in tableau calculi is described
in [12], where quantifier elimination tasks in real arithmetic (possibly involving
more than one proof goal) are carried out by an external procedure, in a manner
comparable to the simultaneous solving of constraints from multiple proof goals
described here. Uninterpreted functions or predicates are not handled.

There are a number of approaches to include theories into resolution-based
calculi. [13] works with constraints that are solved in a theory, but requires to
enumerate the solutions of constraints (whereas it is enough to check the validity
of constraints in our work). In [14], while it is enough to check satisfiability of
constraints, no uninterpreted functions or predicates are supported. A recent
calculus to handle rational arithmetic is given in [15], and is similar to our work
in that it has built-in rules to solve systems of equations and inequalities (based
on Fourier-Motzkin). The calculus is complete under restrictions that effectively
prevent quantification over rationals. It remains to be investigated how this
fragment is related to the fragments discussed here.

8 Conclusions and Future Work

We have presented a novel calculus to reason about problems in first-order
logic modulo linear integer arithmetic. The calculus is complete for function-free
first-order logic (on such problems, proofs in the calculus resemble free-variable
tableaux with incremental closure [1]) and can decide Presburger arithmetic (in
a manner that is similar to the Omega test [2]). As further results, we have shown
that the calculus is at least as complete as the calculus ME(LIA), and allows the
fair construction of proofs. An implementation of the calculus is available under
http://www.cs.chalmers.se/~philipp/princess and is described in [4].

Apart from continuing the implementation and benchmarks, there are a num-
ber of concepts that require more research, among others: the encoding and

handling of functions and further theories; the integration of lemma learning;
the integration of connectivity conditions to make proof search more directed;
the elimination of cuts in proofs; an analysis of the complexity of the calculus
as a decision procedure for PA. We also plan to extend our calculus to support
nonlinear arithmetic (following the work in [8]), and possibly rational arithmetic.

Acknowledgements. I want to thank Wolfgang Ahrendt, Nikolaj Bjørner, Richard
Bubel, Reiner Hähnle, Henrik Johansson, and the anonymous referees for dis-
cussions and/or comments during different stages of this work.

References

1. Giese, M.: Incremental closure of free variable tableaux. In Goré, R., Leitsch, A.,
Nipkow, T., eds.: Proceedings, IJCAR, Siena, Italy. Volume 2083 of LNAI, Springer
(2001) 545–560

2. Pugh, W.: The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In: Proceedings, 1991 ACM/IEEE conference on Super-
computing, New York, NY, USA, ACM (1991) 4–13

3. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In:
Sprawozdanie z I Kongresu metematyków slowiańskich, Warszawa 1929, Warsaw,
Poland (1930) 92–101,395

4. Rümmer, P.: Calculi for Program Incorrectness and Arithmetic. PhD thesis,
Chalmers University of Technology (2008) to appear.

5. Fitting, M.C.: First-Order Logic and Automated Theorem Proving. 2nd edn.
Springer-Verlag, New York (1996)

6. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.
ACM 22 (1979) 465–476

7. Baumgartner, P., Fuchs, A., Tinelli, C.: MELIA – model evolution with linear
integer arithmetic constraints. to appear (2008)

8. Rümmer, P.: A sequent calculus for integer arithmetic with counterexample gen-
eration. In Beckert, B., ed.: Proceedings, 4th International Verification Workshop.
Volume 259 of CEUR (http://ceur-ws.org/) (2007)

9. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)
10. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theo-

ries: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM 53 (2006) 937–977

11. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Auto-
mated Reasoning 31 (2003) 33–72

12. Platzer, A.: Differential dynamic logic for hybrid systems. Journal of Automated
Reasoning 41 (2008) 143–189

13. Stickel, M.E.: Automated deduction by theory resolution. Journal of Automated
Reasoning 1 (1985) 333–355

14. Bürckert, H.J.: A resolution principle for clauses with constraints. In Stickel, M.E.,
ed.: Proceedings, 10th International Conference on Automated Deduction. Volume
449 of LNCS, Springer (1990) 178–192

15. Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calcu-
lus. In Duparc, J., Henzinger, T.A., eds.: Proceedings, 21st International Workshop
on Computer Science Logic. Volume 4646 of LNCS, Springer (2007) 223–237

