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Abstract Regression verification is an approach complementing regression testing
with formal verification. The goal is to formally prove that two versions of a
program behave either equally or differently in a precisely specified way. In this
paper, we present a novel automated approach for regression verification that
reduces the equivalence of two related imperative pointer programs to constrained
Horn clauses over uninterpreted predicates. Subsequently, state-of-the-art SMT
solvers are used to solve the clauses. We have implemented the approach, and our
experiments show that non-trivial programs with integer and pointer arithmetic
can now be proved equivalent without further user input.

1 Introduction

One of the main concerns during software evolution is to prevent the introduction
of unwanted behavior, commonly known as regressions, when implementing new
features, fixing defects, or during optimization. Undetected regressions can have
severe consequences and incur high cost, in particular in late stages of development,
or in software that is already deployed. Currently, the main quality assurance
measure during software evolution is regression testing [3]. Regression testing uses
a carefully crafted test suite to check that a modified version of a program is
equivalent to the original one in relevant behavioral aspects.

Regression verification is a complementary approach that aims to achieve similar
goals as regression testing with techniques from formal verification. This means
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establishing a formal proof of equivalence of the two program versions. In its basic
form, we are trying to prove that the two versions produce the same output for all
inputs. In more sophisticated scenarios, we want to verify that the two versions
are equivalent only on some inputs (conditional equivalence) or differ in a formally
specified way (relational equivalence).

Regression verification is not intended to replace testing, as testing has unique
capabilities. Tests can, for instance, validate non-functional aspects of software
(e.g., performance) or its interactions with the underlying software (and even hard-
ware) layers. On the other hand, regression verification—especially if automated—
is an attractive additional instrument of software quality assurance. If successful, it
offers guaranteed full coverage, while not requiring additional expenses to develop
and maintain a test suite.

At the same time, regression verification offers a more favorable pragmatics
than the verification of functional properties of individual programs. For regression
verification, one does not need to write and maintain complex formal specifications
(which can be a significant bottleneck in the verification process). Furthermore,
given two program versions that are both complex but similar to each other, much
less effort is required to prove their equivalence than to prove that they satisfy an—
also complex—functional specification. The effort for proving equivalence mainly
depends on the difference between the programs and not on their overall size and
complexity. Regression verification can exploit the fact that modifications are often
local and only affect a small portion of a program.

A number of approaches and tools for regression verification exist already (see
Section 8), but the majority of them are not automated, i.e., they require the
user to supply inductive invariants (e.g., [9, 26, 38]). We present an approach and
a tool for automating regression verification of imperative pointer programs. We
use invariant generation techniques to infer sufficiently strong coupling predicates1

between programs—and thus prove behavior equivalence. As we demonstrate in
this paper, automation is possible in many cases where it was unavailable previ-
ously. If it fails (e.g., due to resource exhaustion), the user can still fall back to
supplying the coupling predicates manually.

Our approach is targeted towards showing equivalence of programs with com-
plex control flow and arithmetic on integers and pointers. This kind of programs is
poorly supported by existing automation approaches, as these either require static
(i.e., known at compile time) control flow [37], employ coarse abstractions on pro-
gram computations [21,37], or are overly restrictive (e.g., require small bounds on
loops or that equivalent unbounded loops have equivalent bodies) [33].

Our method works well whenever sufficiently “simple” coupling predicates ex-
ist that prove program equivalence. Simple means here that the inferred predicates
are limited to linear arithmetic, and express heap properties following a certain
quantification pattern. In Section 6 we demonstrate the effectiveness of our tech-
nique using a collection of small but non-trivial benchmarks.

To check larger systems in practice, the technique presented here would, of
course, need to be embedded into a more general change analysis resp. incre-
mental checking framework. An instance of such a framework is part of the RVT

1 A coupling predicate is an inductive two-program invariant that relates the two programs
throughout their execution. We are typically interested in coupling predicates that imply result
equality upon termination of both programs.
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Fig. 1 Architecture of our approach

tool [21], where initially the smallest code block containing the change is checked
for equivalence; only if its equivalence cannot be proven, one procedes with the
block enclosing it, and so on. We plan to extend our approach and tool in this
regard as part of future work.

In detail, the contributions of this paper are:

– A method for automating regression verification for imperative programs em-
ploying complex arithmetic on integer variables and pointers

– As part of the above, a method for computing efficient verification conditions
for program equivalence

– A tool implementing the approach (available at
http://formal.iti.kit.edu/improve/reve1).

This paper is an extension of our previous work [18] in two regards:

1. We introduce support for pointers to data stored on a heap and their manipu-
lation. The corner stone of this development is inference of coupling predicates
(of a certain shape) that contain quantifiers.

2. We improve the performance of the general abstraction-based inference proce-
dure that we use for discovering coupling predicates by seeding the discovery
with predicates that often occur during regression verification.

The architecture of our approach is shown in Figure 1 and can be described
as follows: a frontend translates the two programs into efficient logical verification
conditions (VC) for program equivalence using the algorithm presented in Sec-
tion 3. The translation is completely automatic; the user does not have to supply
the coupling predicates, loop invariants, or function summaries. Instead, place-
holders for these entities are inserted into the VC formulae. The produced VC are
in Horn normal form and are passed to an SMT solver for Horn constraints (such
as Z3 [27] or Eldarica [34]), as presented in Section 5. The solver tries to find a
solution for the placeholders that would make the VC true. If the solver succeeds
in finding a solution and thus inferring, among other things, a coupling predicate,
the programs are equivalent. Alternatively, the solver may show that no solution
exists (i.e., disprove equivalence) or time out; in case of programs with pointers, it
is also possible that a solver terminates with an inconclusive result, since certain
required transformation steps do not preserve completeness (Section 5.4).

1.1 Illustration

We begin with an example where programs operate on local variables only; an
example with pointers will follow.
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int g(int n) {
int r = 0;

if (n <= 0) {
r = 0;

} else {
r = g(n-1) + n;

}
return r;

}

int g(int n, int s) {
int r = 0;

if (n <= 0) {
r = s;

} else {
r = g(n-1, n+s);

}
return r;

}

(a) basic version P 1 (b) optimized version P 2

Fig. 2 Computing the n-th triangular number

Example 1 Consider the function g1 in Figure 2(a).2 The function recursively com-
putes the sum of integers in the interval [1..n] (also known as the n-th triangular

number). The function g2 in Figure 2(b) computes essentially the same result, but
it has been optimized to employ tail recursion. The advantage of tail-recursive
functions is that they can be executed without growing the stack. To enable this
optimization, an accumulator parameter s has been added to the signature of g2

for collecting and passing on intermediate results. As another consequence, g1 per-
forms summation from the end of the interval, while g2 starts from the beginning.

It is our goal to prove automatically using program verification technology that
the two functions are equivalent in the sense that

g1(n) = g2(n,0) for any n. (1)

The conceptually simplest way to achieve this goal is to infer and compare a com-
plete logical specification of each function, such as g1(n) = n(n+1)

2 for n > 0, and 0
otherwise. Yet, such a “brute-force” approach is clearly infeasible at the moment
or in the foreseeable future.

Instead, we exploit the similarities between program versions and attempt to
infer coupling predicates, i.e., a relative specification that only states how the exe-
cutions of two versions relate to each other, but not what they compute in general.
Of course, we demand that the coupling predicate is such that the two executions
terminate in the same state, but in general, it will be a stronger assertion. To deal
with unbounded recursion and loops, the predicate must be inductive: assuming
that it holds at a key point of the computation (i.e., loop iteration, recursive call)
should be sufficient to show that it also holds at the next key point. Conveniently,
the complexity of such a relative specification is often proportional to the difference
between the two program versions and not the program size.

Suppose, we want to calculate g(5). We call g1(5) resp. g2(5,0). The func-
tions descend recursively, proceeding to compute g1(4)+5 resp. g2(4,5), and then
g1(3)+4+5 resp. g2(3,9). At this point, one could suspect that at every recursion
step

g1(n) + s = g2(n,s) . (2)

2 Our approach requires that the two programs which we prove equivalent have disjoint
variable and function names. To distinguish equally named identifiers from the two programs,
we add subscripts indicating the program to which they belong. We may also concurrently use
the original identifiers without a subscript as long as the relation is clear from the context.
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void memcpy(int *dst ,
int *src ,
int size) {

int i = 0;
while(i < size) {

dst[i] = src[i];
i++;

}
}

void memcpy(int *dst ,
int *src ,
int size) {

int *start = src;
while(src - start < size) {

*dst = *src;
dst ++;
src ++;

}
}

(a) basic version P 1 (b) alternative version P 2

void memcpy(int *dst ,
int *src ,
int size) {

src --;
dst --;

while(size > 0) {
*++ dst = *++src;
size --;

}
}

(c) alternative version P 3

Fig. 3 memcpy(): a function for copying memory

A simple induction proof can establish that our suspicion is indeed correct: assum-
ing this relation for the callees in both functions allows us to prove the relation
for the callers. Thus, the formula (2) is a valid coupling predicate. Fortunately,
(2) also implies the desired equivalence for the top-level call (1) with s = 0. Indeed,
if one knows or guesses the formula (2), then the fact that it is a valid coupling
predicate and that it implies equivalence can be proved automatically with existing
verification technology (cf., e.g., [9, 26,38]).

In this paper, we show that it is actually in many cases possible to auto-
matically infer coupling predicates that imply program equivalence. The Horn
encoding of the VCs for the illustrative example is discussed in Section 5, and
can be solved by Eldarica [34] in a fraction of a second, inferring the coupling
predicate n1 = n2 → r1+ s2 = r2, where n1 is the argument of g1, n2 and s2 are
the arguments of g2, and ri denote the respective return values. We note that the
coupling predicate is linear even though the mathematical function computed by
the two programs is non-linear.

Example 2 Consider a function memcpy(int *dst, int *src, int size), which is a
part of the standard C library. The function copies size bytes from the heap
memory area pointed to by src to the heap memory area pointed to by dst. It is
assumed that both areas do not overlap.

A basic implementation of memcpy is given in Figure 3(a), but many imple-
mentations are possible—and indeed used—depending on the target machine ar-
chitecture. Figure 3(c), for instance, shows an implementation optimized for the
PowerPC architecture, where special CPU instructions exist for loading and stor-
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ing data on the heap in conjunction with preincrement of pointers.3 Furthermore,
reformulating the loop with a comparison to zero as loop condition improves the
branch prediction performance of the CPU.

It is now our goal to prove that the different memcpy implementations behave
equally in the sense that the postcondition

heap1 = heap2 (3)

holds, where heap is a state-dependent map from pointers represented as integers
to the heap data they point to. Intuitively, the postcondition states that after the
execution of the two programs, the respective heaps contain identical values at
every location. More details on heap modeling will be given in Section 4.

Since the programs contain loops, in order to prove (3), we need an appropriate
coupling predicate, i.e., an inductive invariant relating both loop executions and
entailing the postcondition upon termination. It is easy to see that (3) itself has
to be part of the coupling predicate. Yet, (3) alone is not sufficient, as it is not
inductive: assuming just (3) will not let us show (3) after one iteration of the loops.

Indeed, a coupling predicate for the equivalence of P1 and P2 is

(3) ∧ dst1 + i1 = dst2 ∧ src1 + i1 = src2 ∧ size1− i1 = size2 − src2 + start2

while for the equivalence of P1 and P3, the following coupling predicate suffices:

(3) ∧ dst1 + i1 = dst2 + 1 ∧ src1 + i1 = src2 + 1 ∧ size1 − i1 = size2

These solutions for the equivalence VCs can be found by Eldarica in under one
second.

2 Program Equivalence

This section introduces the considered programming language, and formalizes our
notion of program equivalence in terms of Dijkstra’s weakest preconditions [15].
The resulting program equivalence condition can be reduced to a program-free
verification condition by applying reduction rules for weakest preconditions. A
set of reduction rules optimized for equivalence proofs is defined in Section 3.
Automation of the procedure is discussed in Section 5.

The Programming Language We consider deterministic imperative programs with
unbounded integer variables (mathematical integers) and pointers, written in ANSI C
notation. Determinism means that two program runs starting in the same state also
terminate in the same state. Sequential programs are deterministic, provided that
all variables are initialized before they are used (which can be efficiently checked
by a compiler).4 Furthermore, we require that all considered programs terminate

3 Our parser currently does not support preincrement expressions, so we rewrite the relevant
code fragment as dst++; src++; *dst = *src; when verifying with our tool.

4 Sometimes, it is desirable to model the behavior of a subroutine using nondeterminism
(e.g., for library functions or memory allocation). This can be done in our approach by pro-
viding according specifications for the subroutines.
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for all inputs; this can be checked with one of the existing termination checkers for
imperative programs, such as, e.g., [17, 19]. For simplicity, we assume that every
function has at most one return statement, and, if it has one, then return is al-
ways the last statement in the function. The supported language fragment features
integer-pointers, pointer dereferences and pointer arithmetic. Higher-dimensional
pointers (i.e., pointers to pointers) are currently disregarded, but they could be
easily added into the presented framework.

Programs may be composed of several functions, yet we assume that all pro-
grams have a distinguished function that is the entry point of the program. The
entry point of the programs in our examples below is clear from the context.

Syntactical Conventions For reasons of presentation, we require that the programs
P1 and P2 checked for equivalence have disjoint sets of variables. To distinguish
equally named variables from the two programs, we add subscripts indicating the
program version (1 or 2) to which they belong. We also establish the syntactic
convention that program inputs (i.e., formal function parameters) are designated
as ī1 resp. ī2, returned result variables as r1 resp. r2, and the vectors of all variables
occurring in the programs as x̄1 resp. x̄2.

Background: Weakest Precondition Calculus Our reasoning about programs is for-
mulated in terms of Dijkstra’s weakest precondition calculus [15]. The weakest

precondition predicate wp(P,ϕ) denotes the weakest condition that needs to hold
before an execution of statement list5 P such that the execution terminates and
the postcondition ϕ holds in the final state. The termination requirement is often
considered optional. Relinquishing it, one obtains the weakest liberal precondition

predicate wlp(P,ϕ), which only demands that ϕ holds after the execution of P if P

terminates. Thus, the formula pre → wlp(P, post) has the same intuitive meaning
as the Floyd-Hoare triple {pre}P{post}.

A weakest precondition calculus is a set of rules which allow the resolution
of wp/wlp predicates into formulae in pure first-order logic. Figure 4(a) lists a
calculus for the wlp predicate for the considered programming language; the rules
are standard, except that, for technical reasons, our calculus performs rewriting
from the beginning of the statement list to its end, while a presentation with
rules operating in the opposite direction is more customary. Reduction in forward
direction is more convenient, however, for identifying structural similarity between
the programs whose equivalence is verified. The calculus in Figure 4(a) is complete

in the sense that every wlp-expression can be reduced to a pure first-order formula.

The rules (??), (7) and (8) allow the direct resolution of assignments, con-
ditional statements and return statements (remember that the latter may only
appear at the end of function bodies). The rule (9) for while loops is parametrized
by a loop invariant I(x̄1), a formula which needs to hold before the loop and must be
preserved by the loop body under assumption of the loop condition. Likewise, the
rule (10) for a (recursive) invocation b = f1(ā) of the function f1 is parametrized
by a function summary predicate Sf1(ā, b) that relates the arguments ā to the result
value assigned to variable b. When the function summary Sf1 is used as abstraction

5 To simplify presentation, we will use the terms “statement list” and “program” inter-
changeably. The exact relation will be clear from the context.
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for the behavior of f1, the correctness of the summary has to be justified globally
by an additional verification condition

wlp(P1, Sf1(̄i1, r1)) , (4)

in which P1 is the function body of f1.
The invariant rule (9) and the recursive invocation rule (10) may approximate

loop or function behavior depending on the chosen invariant or function summary.
In this case, the formula derived by applying the rules will still be a correct pre-
condition, but not necessarily the weakest one. Even when approximating, finding
suitable loop invariants and summaries is in general a difficult task.

Stating Program Equivalence We consider two statement lists (usually the bodies
of two functions) P1 and P2 equivalent, in writing

pre → P1 ' P2 ,

when they behave equally (return the same value) for all inputs for which the
precondition pre holds. We lift this notion to whole programs, by defining it as
equivalence of the two program entry functions. The precondition pre, which can
speak about variables from both P1 and P2, makes our notion of equivalence con-

ditional. It is also possible to relax the equality between results to some other
specified relation, yielding relational equivalence.

These notions can be formalized using the wlp predicate introduced above.
Since we assume that P1 and P2 have disjoint vocabulary, their code can simply
be combined sequentially. We define:

pre → P1 ' P2 := ∀̄i1, ī2. (̄i1 = ī2 ∧ pre → wlp(P1 ; P2, r1 = r2)) . (5)

This kind of construction is known as self-composition [10, 13]. The weakest lib-

eral precondition predicate has been used in this definition, since we deliberately
abstract from termination issues in this paper.

3 Efficient Conditions for Program Equivalence

At this point, one could in theory directly resolve the wlp predicate in (5) by
applying the rules from Figure 4(a) to obtain a first-order verification condition
for equivalence of P1 and P2. However, the sequential composition of the two
programs would require that they be analyzed individually without exploiting
structural similarities between them.

Instead, we devise additional rules for the wlp predicate for the case that the
program code given as the first argument is composed of two pieces with disjoint
vocabulary. The disjointness allows us to use rules that would be unsound other-
wise, as the statements with disjoint data cannot interfere with each other. The
additional rules make use of two forms of coupling predicates that relate the states
of the compared programs: mutual invariants C, which describe reachable states
of two loops in the respective programs, iterating in a synchronized manner, and
mutual function summaries R that express the relative behavior of two functions
in the programs. The result of applying the new rules is a much more efficient
first-order verification condition for equivalence.
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wlp(x = t ; P, ϕ) ; let6 x = t in wlp(P, ϕ) (6)

wlp(if(ψ) T else E ; P, ϕ) ; if ψ then wlp(T ; P, ϕ) else wlp(E ; P, ϕ) (7)

wlp(return r, ϕ) ; ϕ (8)

wlp(while(ψ) B ; P, ϕ) ; I(x̄1) ∧ ∀x̄1.( (I(x̄1) ∧ ψ → wlp(B, I(x̄1)))

∧ (I(x̄1) ∧ ¬ψ → wlp(P, ϕ)))

(9)

wlp(r = f1(t̄) ; P, ϕ) ; ∀r. Sf1(t̄, r)→ wlp(P, ϕ) (10)

(a) Conventional wlp calculus rules

(11)

wlp(P1 ;; P2, ϕ) ; wlp(P2 ;; P1, ϕ) (12)

wlp(return r ;; P2, ϕ) ; wlp(P2, ϕ) (13)

wlp(while(ψ1) B1 ; P1 ;; while(ψ2) B2 ; P2, ϕ) ; C(x̄1, x̄2) ∧ ∀x̄1, x̄2.
(

(14)

(C(x̄1, x̄2) ∧ ψ1 ∧ ψ2 → wlp(B1 ;;B2, C(x̄1, x̄2))

∧(C(x̄1, x̄2) ∧ ¬ψ1 ∧ ψ2 → wlp(B2, C(x̄1, x̄2)))

∧(C(x̄1, x̄2) ∧ ψ1 ∧ ¬ψ2 → wlp(B1, C(x̄1, x̄2)))

∧(C(x̄1, x̄2) ∧ ¬ψ1 ∧ ¬ψ2 → wlp(P1 ;; P2, ψ))
)

wlp(r1 = f1(t̄1) ; P1 ;; r2 = f2(t̄2) ; P2, ϕ) ; (15)

∀r1, r2. Rf1/f2(t̄1, r1, t̄2, r2)→ wlp(P1 ;; P2, ϕ)

(b) Additional wlp calculus rules for independent programs

Fig. 4 Weakest precondition calculus

In Figure 4(b), we present the additional rules. To make the composition of
two programs with disjoint vocabulary explicit, we use ;; instead of ; as separator
between them. Semantically, both are equivalent. In particular, it is always sound
to replace P1 ;;P2 with P1 ;P2. Conversely, it is sound to replace P1 ;P2 with P1 ;;P2

whenever P1 and P2 have disjoint vocabulary.
Rule (12) allows us to swap the two programs, thus enabling resolution of state-

ments from both programs in an alternating fashion. The rule is sound since the
statements of the two programs cannot possibly interfere; they have no common
variables to refer to.

Together with the rules (??) and (7) of Figure 4(a), the swap rule allows us
to resolve all statements but loops or recursion. These are the difficult cases since
they require finding a suitable loop invariant or a function summary. The next two
sections therefore introduce efficient rules for pair-wise loops and function calls.
The wlp calculus can isolate the relevant loop pairs from within their programs
even if they are embedded into enclosing conditionals or loops.

Proposition 1 (Soundness and Completeness)

Let Φ be a purely first-order formula derived from the condition wlp(P1 ;; P2, ϕ) by

6 Here we use let expressions that the reader might be familiar with from functional program-
ming. They allow reassigning existing variables, like let x = x+1 in . . .. Variable substitutions
are thus avoided and readabilty is improved.
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rules from Figure 4(a) and (b). If the program P1 ; P2 is started in a state satisfying

the precondition Φ, and terminates, then ϕ holds in its final state. Furthermore, it

is possible to choose suitable mutual invariants and summaries such that the derived

formula is the weakest such precondition.

We give a justification for the validity of the proposition in the following.

3.1 While loops

We first consider equivalence of programs with loops, but without recursive func-
tion invocations. The loop rule for program equivalence is different from the rules
discussed so far in that it talks about both programs at the same time and actually
connects the two:

wlp(while(ψ1) B1 ; P1 ;; while(ψ2) B2 ; P2, ϕ) ;

C(x̄1, x̄2) ∧ ∀x̄1, x̄2.
(

(C(x̄1, x̄2) ∧ ψ1 ∧ ψ2 → wlp(B1 ;;B2, C(x̄1, x̄2)) ∧
(C(x̄1, x̄2) ∧ ¬ψ1 ∧ ψ2 → wlp(B2, C(x̄1, x̄2))) ∧
(C(x̄1, x̄2) ∧ ψ1 ∧ ¬ψ2 → wlp(B1, C(x̄1, x̄2))) ∧
(C(x̄1, x̄2) ∧ ¬ψ1 ∧ ¬ψ2 → wlp(P1 ;; P2, ψ))

)
.

The rule is parametrized by the mutual loop invariant C(x̄1, x̄2), which is part
of the coupling predicate that we are interested in. Unlike the invariant rule for a
single program (9), which has two cases (loop condition holds or does not hold),
this rule has four possible evaluations of the two loop conditions to consider.

For the justification of this rule, let us look at a particular reordering of the
statements in the two loops. The central idea behind the rearrangement is that
the two loops can be subject to a loop fusion resulting in the following program
equivalence:

while(ψ1) B1 ;; while(ψ2) B2 '
while (ψ1||ψ2) { if(ψ1) B1 ; if(ψ2) B2 } . (16)

Why is the single loop equivalent to the sequential execution of the separate loops?
Running the two loops sequentially results in running the sequence of statements

(B1, B1, . . . , B1︸ ︷︷ ︸
n times

, B2, B2, . . . , B2︸ ︷︷ ︸
m times

) ,

in which the first loop body B1 is repeated n times followed by m repetitions of
the second body B2. Let w.l.o.g. the second loop be executed more often than
the first in this schematic example (i.e., m > n). Due to disjoint vocabulary, loop
body executions from different programs may be swapped. The run may hence be
rearranged to

(B1, B2, B1, B2, . . . , B1, B2︸ ︷︷ ︸
n times

, B2, . . . , B2︸ ︷︷ ︸
m− n times

) (17)

without changing the semantics. One can make out m iterations now, of which the
first n execute both loop bodies B1, B2, while the remaining m − n rounds only



Regression Verification of Pointer Programs 11

execute the second loop body B2. The sequence (17) is a run for the fused loop from
(16). It is the additional if-statements that ensure that bodies are only executed
as often as they would be executed in a sequential execution. The disjunction in
the guard ensures that the fused loop is iterated precisely as often as the maximum
iterations of the individual loops.

Applying the traditional while wlp rule (9) to the fused loop from (16), has
the same effect as applying the two-program rule (14). Since the traditional wlp

calculus is sound and complete, our extension thus inherits these properties.
Mutual loop invariants are simpler than full functional invariants if the two

programs are related. To show equivalence between a while loop and (a copy of)
itself, for instance, the simple invariant x̄1 = x̄2 is sufficient regardless of what the
loop computes.

Unlike for while loops, there is no special relational rule for coupled condi-
tionals. Four cases have to be distinguished like for coupled loops, but since no
invariant predicate is involved, this can also be achieved by consecutive appeals to
the functional rule for conditionals.

3.2 Recursion

We now consider programs that have (recursive) function calls but no loops. Re-
cursive calls of related functions in both programs can be abstracted by a single
predicate, a mutual function summary (a term originated in [25]), that describes
the relation between the arguments and result values of both invocations simulta-
neously and in relation to one another. The calculus rule to handle simultaneous
function invocations is

wlp(r1 = f1(t̄1) ; P1 ;; r2 = f2(t̄2) ; P2, ϕ) ;

∀r1, r2. Rf1/f2(t̄1, r1, t̄2, r2)→ wlp(P1 ;; P2, ϕ) .

The rule is parametrized by the mutual function summary Rf1/f2(t̄1, r1, t̄2, r2).
Abstracting function invocations with a mutual summary requires a (global)

justification that the summary is a faithful abstraction, and we need to add the
proof obligation

∀̄i1, ī2. wlp(P1 ;; P2, Rf1/f2(̄i1, r1, ī2, r2)) (18)

to the verification conditions of equivalence. Here, P1 and P2 are the statement
lists from the function bodies of the invoked functions f1 and f2.

The justification of rule (15) is as follows. Due to the disjointness of the program
vocabulary, the statements in the rule can be reordered:

r1=f1(t̄1) ; P1 ;; r2=f2(t̄2) ; P2 ' r1=f1(t̄1) ; r2=f2(t̄2) ; P1 ; P2 .

Condition (18) guarantees that Rf1/f2(t̄1, r1, t̄2, r2) is a faithful abstraction of P1 ;
P2. Just as in the single-program case, it is thus sound to overapproximate the
two recursive invocations with the mutual function summary.

As with mutual loop invariants, mutual function summaries are simpler than
individual function summaries if the two programs are related. In case a recursive
function is verified against (a copy of) itself, the simple mutual function summary
ī1 = ī2 → r1 = r2 can be used.
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select : array × Integer → Integer
store : array × Integer × Integer → array

∀a, i, j. select(store(a, i, v), j) =

{
v, if i = j

select(a, j), otherwise.
(19)

∀a1, a2. (∀i. select(a1, i) = select(a2, i))→ a1 = a2 (20)

Fig. 5 Theory of arrays [32]

Note that the same mutual summary Rf1/f2(t̄1, r1, t̄2, r2) is used for every oc-
currence of the pair f1/f2 of functions; this is in contrast to the coupling invari-
ant rule (14) for loops, where it is possible to choose different mutual invariants
C(x̄1, x̄2) for every application. While our calculus could in principle be extended
to support multiple mutual summaries per f1/f2 pair, the use of only a single such
summary minimizes the number of required proof obligations (18).

4 Regression Verification for Programs with Pointers

To facilitate presentation, we have so far presented regression verification and our
weakest precondition calculus for programs with integer variables only. We will
now present the part of our method that is concerned with reading and writing
heap data using pointers.

Programming Language We now incorporate pointers and pointer dereferences into
the supported fragment of the programming language. That means that return
values, function parameters, and local variables may now be of type int *, i.e.,
pointers to integer values on the heap.

We support the most important operations on pointers; in particular, the value
at the address pointed to by p can be accessed using the expression *p, for both
reading and writing. In addition, pointer arithmetic is possible: if p is a pointer
expression, then p + t (with t an integer expression) is a pointer expression as
well, and similarly p - q for two pointers p and q represents an integer expression.
The array access notation a[i] can be used instead of *(a+i) both for reading and
writing.

The Theory of Arrays On the logic side, we make use of McCarthy’s theory of
arrays to capture the semantics of memory access and modifications (Figure 5).
The theory defines the operators store and select . Intuitively, store(a, i, v) gives the
array obtained by storing the value v at index i in array a, and select(a, i) returns
the value stored in array a at index i. The interplay of the operators is defined by
the first axiom of the theory (Figure 5). Both Eldarica and Z3 natively support
solving constraints over the theory of arrays, so that the same architecture as
before can be used for regression verification for programs with arrays.

Modeling the Heap Our model of the heap captures the entire memory as a single
one-dimensional array mapping pointers (integers) to the values stored on the
heap (also integers). To model operations on the heap, we introduce an implicit
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program variable heap of type array that holds the current memory state. Any
access/modification of the heap is mapped to array operations on this program
variable. For instance, a pointer dereference *p in the program corresponds to the
selection operation select(heap, p).

The wlp Calculus The wlp calculus in Figure 4 needs to be augmented by one rule
which treats indirect assignment to a memory location and maps them to local
variable assignments to the heap program variable using store:

wlp(*x = t ; P, ϕ) ; let heap = store(heap, x, t) in wlp(P, ϕ) (21)

In the presence of a heap, an invocation of a function may not only give rise to a
return value but may also modify the heap memory. To model this fact within our
framework, we assume that the heap variable is implicitly present as a parameter
of each function, and that each function implicitly returns a tuple of heap and
the explicit return value. This convention allows us to silently lift the rules (10)
and (15) to heap-manipulating functions.

This modeling of the heap as a single array maintains both soundness and
relative completeness of the approach.

Extended Notion of Program Equivalence In presence of heaps, it is no longer suffi-
cient to ensure that the return values of the two functions are equal upon termi-
nation but it is necessary to also ensure that the heap has evolved equivalently as
well, i.e., heap1 = heap2. This equality between maps can be reformulated in the
manner that both heaps evaluate equally at all indexes according to the axiom of
extensionality (20) in Figure 5. Hence, we refine the equivalence proof obligation
(5) to

pre → P1 ' P2 := ∀̄i1, ī2. (̄i1 = ī2 ∧ pre →
wlp(P1 ; P2, r1 = r2 ∧ ∀x. select(heap1, x) = select(heap2, x))) (22)

in which x is an integer variable not occurring anywhere else.

5 Automating Equivalence Proofs

The application of the wlp rules in Figure 4 requires knowledge of specific predi-
cates, namely loop invariants I (̄i1, x̄1) in rule (9), mutual loop invariants C(x̄1, x̄2)
in (14), function summaries Sf1(t̄, s) in (10), and mutual function summaries
Rf1/f2(t̄1, r1, t̄2, r2) in (15). Together, those formulae represent the coupling pred-
icate that witnesses program equivalence. Derivation of summaries and invariants
is in general a complicated process and can require creativity and manual inter-
vention. Thanks to the specialized wlp-rules for program equivalence, however, it
is often possible to carry out equivalence proofs with comparatively simple predi-
cates. In Section 1.1, for instance, it is possible to show the equivalence of programs
computing non-linear functions with the help of just linear predicates; our experi-
ments (Section 6) show that such simple predicates are sufficient for a wide range
of realistic cases from regression verification.

We leverage recent methods for solving fixed-point constraints in order to com-
pute required predicates without user intervention [23, 27, 34]. Such methods are
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in principle incomplete, but they are effective for deriving predicates in practical
cases arising from equivalence proofs.

5.1 Recursive Horn Clauses

In order to derive invariants and coupling predicates, verification conditions are
represented in form of Horn constraints over (uninterpreted) relation symbols, in-
cluding I, C, Sf1, Rf, and then solved with the help of model checking techniques
like predicate abstraction and Craig interpolation. More generally, we fix a set R
of uninterpreted fixed-arity relation symbols, and consider Horn clauses of the form
H ← ϕ ∧B1 ∧ · · · ∧Bn, where:

– ϕ is a constraint over variables occurring in the clause; in our experiments, ϕ
is always a formula in quantifier-free Presburger arithmetic, but extension to
other theories (e.g., arrays) is possible;

– each Bi is an application p(t1, . . . , tk) of a relation symbol p ∈ R to first-order
terms;

– H is similarly either an application p(t1, . . . , tk) of a symbol p ∈ R to first-order
terms, or false.

H is called the head of the clause, ϕ ∧B1 ∧ · · · ∧Bn the body. In case ϕ = true,
we usually leave out ϕ and just write H ← B1 ∧ · · · ∧Bn. First-order variables in a
clause are considered implicitly universally quantified; relation symbols represent
set-theoretic relations over the universe of a first-order semantic structure. A set
of Horn clauses HC over predicates R is called solvable if there is an interpretation
of the predicates R as set-theoretic relations such the universal closure of every
clause h ∈ HC holds.

Example 3 (Example 1 continued) Figure 6 shows the equivalence VC for the pro-
grams from the illustration example (Figure 2) as Horn clauses. Here, R is the
uninterpreted predicate symbol (placeholder) for the coupling predicate (mutual
function summary) of g1 and g2 introduced by application of rule (15). The un-
interpreted predicates Sg1 and Sg2 are the function summaries for the respective
individual functions and are introduced by (10). Clauses with head false result
from equivalence proof obligations (5), whereas the clauses with a head different
from false are due to justification conditions (4) and (18).

5.2 Verification Conditions as Horn Clauses

For the encoding of verification conditions as Horn clauses, we assume that the
set R contains symbols that can act as summaries for individual functions and
function pairs (of appropriate arity), as well as relation symbols I1, I2, I3, . . . and
C1, C2, C3, . . . to represent loop invariants:

R = {Sf, Rf1/f2 | f, f1, f2 functions} ∪ {I1, I2, I3, . . . , C1, C2, C3, . . .} .
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false ← n1 6 0 ∧ n2 6 0 ∧
n1 = n2 ∧ s2 = 0 ∧ 0 6= s2

false ←
n1 > 0 ∧ n2 > 0 ∧
n1 = n2 ∧ s2 = 0 ∧ r1 6= r2 ∧
R(n1 − 1, r1, n2 − 1, n2 + s2, r2)

false ←
n1 > 0 ∧ n2 6 0 ∧
n1 = n2 ∧ s2 = 0 ∧ r1 6= s2 ∧
Sg1(n2 − 1, r1)

false ←
n1 6 0 ∧ n2 > 0 ∧
n1 = n2 ∧ s2 = 0 ∧ 0 6= r2 ∧
Sg2(n2 − 1, n2 + s2, r2)

Sg1(n1, 0) ← n1 6 0

Sg1(n1, r1 + n1) ← n1 > 0 ∧ Sg1(n1 − 1, r1)

Sg2(n2, s2, s2) ← n2 6 0

Sg2(n2, s2, r2) ← n2 > 0 ∧ Sg2(n2 − 1, n2 + s2, r2)

R(n1, 0, n2, s2, s2) ← n1 6 0 ∧ n2 6 0

R(n1, r1+n1, n2, s2, r2) ← n1 > 0 ∧ n2 > 0 ∧
R(n1 − 1, r1, n2 − 1, n2 + s2, r2)

Fig. 6 Program equivalence VC as Horn clauses

We then consider the conjunction of the equivalence statement pre → P1 ' P2

and the correctness of the summaries for all functions reachable from P1 or P2:

∀̄i1, ī2. (̄i1 = ī2 ∧ pre → wlp(P1 ;; P2, r1 = r2))

∧
∧
f a

function

∀̄if. wlp(Pf, Sf(̄if, rf))

∧
∧
f1,f2

functions

∀̄if1, īf2. wlp(Pf1 ;; Pf2, Rf1/f2(̄if1, rf1, īf2, rf2)) .

(23)

Intuitively, any valuation of the relation symbols R that makes (23) valid is a
witness for the equivalence of P1 and P2, assuming pre holds initially.

The next step is the elimination of the wlp transformer from (23), by means
of exhaustive application of the rules in Figure 4. When applying (10) or (15)
to replace function calls f, f1, f2 with the corresponding summary, the relation
symbol Sf or Rf1/f2 is inserted in the formula; similarly, when applying the loop
rules (9) or (14), a fresh relation symbol Ik or Ck is introduced. We explain one
possible strategy for applying the reduction rules below. Once application of the
wlp rules to (23) has terminated, Horn clauses can be extracted from the reduct VC

(a pure first-order formula), thanks to the following lemma:

Lemma 1 Suppose VC resulted from exhaustive application of rules in Figure 4 to

(23). Then the clause normal form VCH of VC is Horn.

The clause normal form VCH is derived by first distributing negations (negation

normal form) in VC , then pulling out all universal quantifiers ∀ (prenex normal

form), and finally transforming to conjunctive normal form [24]. To see that the
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clause normal form VCH is Horn, observe that (23) only contains wlp in positive
positions, and that any two positive occurrences of relation symbols are separated
by a conjunction; both properties are preserved by application of wlp rules, and
entail that each clause in the clause normal form contains at most one positive
relation symbol.

Reduction Strategy In some situations, it can happen that more than one rule in
Figure 4 is applicable to a wlp expression, so that in principle more than one
verification condition VC can be derived from (23). Different VCs can represent
different ways to match up loops and corresponding function calls in the two
programs checked for equivalence, and can therefore make the subsequent solving
of the Horn constraints VCH more or less difficult.

At the moment, we resolve such choice points using a greedy application strat-
egy:

1. as long as possible, rules (??), (7), (8), (13) to eliminate assignments, condi-
tionals, and return statements of the individual programs, possibly together
with (12) to change the order of programs.

2. if no further rules from point 1 are applicable, try to use (14) or (15) for
synchronous handling of loops or function calls; if this succeeds, go back to 1.

3. if no further rules from point 1 or 2 are applicable, use (9) or (10) to eliminate
single loops or function calls; if this succeeds, go back to 1.

This strategy matches up loops and function calls in the order in which they occur
in the considered programs. The strategy produces good results in our experiments,
but can clearly be refined to take more sophisticated similarity measures into
account. Further discussion is given in Section 6.

5.3 Solving Horn Clauses

A number of algorithms exist to solve the Horn clauses VCH , including predicate

abstraction [23,34] and property-directed reachability (PDR, also known as IC3) im-
plemented in Z3 [27]. The procedures attempt to construct a symbolic solution of
VCH in a decidable logic, for instance in (quantifier-free) Presburger arithmetic;
such a solution maps every n-ary relation symbol in R to a symbolic predicate
over n variables.

Example 4 (Example 3 continued) For the clauses in Example 3, the following pred-
icates are found for the uninterpreted symbols:

R(n1, r1, n2, s2, r2) 7→ (n1 = n2 → r1 + s2 = r2)

Sg1(n1, r1) 7→ true

Sg2(n2, s2, r2) 7→ true

which is the solution already discussed in Section 1.1. The function summaries Sg1
and Sg2 can be trivially chosen to be true since the Horn clauses in which they
occur in the body are already valid without them.
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In general, if it terminates, a Horn solver will produce one of two possible results:
(i) a symbolic solution of the processed Horn clauses, or (ii) a concrete counterexam-

ple tree that witnesses that no solution of the Horn clauses exists. The leaves in a
counterexample tree correspond to entry clauses (clauses without relation symbols
in the body), the root of the tree to an assertion clause with head false; the coun-
terexample shows that every attempt to satisfy the Horn clauses has to lead to one
of the assertion clauses being violated.7 Through additional bookkeeping and la-
beling, counterexamples can be translated back to runs of the programs P1, P2 that
are checked for equivalence; the counterexample specifies the path taken through
each program, as well as the values of all program variables.

We summarize by stating the correctness of our procedure, which is based on
the following observation:

Lemma 2 Regardless of the order in which wlp rules are applied, it is the case that

pre → P1 ' P2 holds if and only if VCH is solvable (in the set-theoretic sense).

Good strategies for the wlp rules are crucial to ensure termination of Horn
solvers in practice. As illustrated in Section 1.1, it can (frequently) happen that
linear expressions suffice to prove equivalence when searching for the right set of
mutual invariants or post-conditions, while otherwise non-linear formulas might
be necessary (and Horn solvers would likely diverge and time out).

For programs P1, P2 that are not equivalent—i.e., pre → P1 ' P2 does not
hold—the situation is simpler in the sense that there are always concrete coun-
terexamples of VCH witnessing non-equivalence. This is the case since there have
to be concrete inputs for which P1 and P2 produce distinct results, and the execu-
tions of P1 and P2 could be translated to a counterexample of VCH . A Horn solver
might still fail to find counterexamples in practice, though in principle a simple
enumeration strategy suffices to guarantee completeness for non-equivalence.

Theorem 1 (Correctness) If a Horn solver applied to VCH terminates, then one

of the following holds:

– a solution is found for VCH , and in this case the equivalence pre → P1 ' P2 holds;

– a counterexample is found, and the programs are not equivalent.

5.4 Horn Solving with Arrays

Horn solvers like Z3 or Eldarica directly support the datatype of arrays in Horn
clauses to be solved, but require the user to specify the shape of solutions that
should be derived. Arrays are typically handled with the help of the instantiation
technique introduced in [12], which corresponds to a step-wise reduction to Horn
clauses over simpler datatypes:

1. Literals p(a1, . . . , an, t1, . . . , tm) in Horn clauses that receive array expressions
a1, . . . , an as arguments are transformed to literals in which all arguments are

7 Due to reasons of computability, sets of Horn clauses exist for which neither (i) nor (ii) can
be returned: those are clauses that are solvable in a set-theoretic sense, but no solution can be
expressed in the decidable language used for predicates. In such cases, usually non-termination
occurs.
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scalar (in our case, integer-valued), at the cost of introducing additional quan-
tifiers. For instance, p(a1, . . . , an, t1, . . . , tm) can be replaced with the formula

∀i1, . . . , in. p′(i1, select(a1, i1), . . . , in, select(an, in), t1, . . . , tm) (24)

with a new relation symbol p′ that observes the value of each array aj at a
universally quantified location ij . Occurrences of p are uniformly replaced with
the quantified p′ in all Horn clauses.
Other replacement schemata are possible as well, for instance p′ can be defined
to read multiple locations of each array argument ai, or the same index vari-
able ij can be used for multiple arrays. The transformation can therefore most
meaningfully be done by the user, who often has domain knowledge about the
schema necessary to solve a set of Horn clauses at hand.

2. The formulae obtained after the first reduction are not strictly Horn, since
they can contain additional universally quantified literals in the body. Those
quantified literals can be replaced with a conjunction of instances of the literal
by means of e-matching [12,14]; for example, ∀i. p′(i, select(a, i)) can be replaced
with the conjunction p′(t1, select(a, t1)) ∧ p′(t2, select(a, t2)) if select(a, t1) and
select(a, t2) are relevant existing terms in a clause. After elimination of all
universal quantifiers in this way, we again arrive at a set of Horn clauses, with
the additional property that no relation symbol has array-valued arguments.
Solvers like Eldarica can perform this second reduction step automatically.

3. Finally, occurrences of the array operations select and store can be eliminated
from all clauses using an Ackermann-like encoding, taking the array axioms
(Figure 5) into account. For instance, a clause

q(i, select(store(a, j, 0), i), j)← p(i, select(a, i))

can be replaced by the (equivalent) set of array-free clauses

q(i, x, j)← p(i, x) ∧ i 6= j, q(i, 0, j)← p(i, x) ∧ i = j .

Again, solvers like Z3 and Eldarica can perform this reduction automatically,
producing Horn clauses that do not contain arrays any more and can be solved
using methods like CEGAR (Section 7) or PDR [27].

The three transformations are sound, in the sense that solvability of the clauses
produced in Step 3 implies solvability of the original clauses. Steps 1 and 2 are
in general incomplete, however: even if the original clauses are solvable (over the
theory of arrays), it can happen that the formulae after Step 1 or 2 do not have
any solutions. Due to this overapproximation, the solver may return with a result
of “unknown” in cases of spurious counter examples.

For the case of regression verification, we translate relation symbols with array-
valued arguments to quantified literals in the style of (24), i.e., only one location
is read for every array argument. This restricts the expressiveness in coupling
predicates. Sortedness of an array can, e.g., not be be expressed since that would
inherently involve reading two locations within one array (like a[i] ≤ a[i+ 1]). For
regression verification, this restriction is not severe, however, since the predicates
inferred here are relational and our experiments show that in many cases access to
one location suffices here even if the individual functional contracts would require
reading more than one location.
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5.5 Completeness Properties of the Approach

Our method exploits structural similarities between the compared programs, and
can generally be expected to perform well when applied to programs with a high
degree of similarity. In other situations, for instance when exchanging complete al-
gorithms (e.g., replacing a bubble sort procedure with quicksort), or when chang-
ing the design of a system in a fundamental way, it is a lot less likely that an
equivalence proof can be found automatically. In other words, the method works
well whenever sufficiently “simple” coupling predicates exist that prove program
equivalence, which is typical in the regression verification setting.

When abstracting from the concrete behaviour of Horn solvers (which are
“best-effort,” and might fail to discover the right predicates), we can identify sev-
eral cases where our approach is complete, in the sense that the clauses produced
in Section 5.4 are satisfiable. As a baseline, our procedure will always be able
to prove that a program is equivalent to itself, by applying the greedy reduction
strategy from Section 5.2, and choosing the coupling predicates x̄1 = x̄2 ∧ (i1 =
i2 → select(heap1, i1) = select(heap2, i2)). In addition, for this completeness prop-
erty it is required that Step 2 in Section 5.4 introduces a sufficient set of instances
of quantified literals, covering all accesses to the arrays modelling heap.

A second case in which we can observe completeness of the procedure are pro-
grams with the same control structure and locally equivalent (though not necessar-
ily identical) loop and function bodies. In this case, the same coupling predicates
x̄1 = x̄2 ∧ (i1 = i2 → select(heap1, i1) = select(heap2, i2)) can be chosen for the
entry points of the bodies.

6 Implementation and Experiments

We have implemented our approach for a language close to a subset of ANSI C in a
tool named Rêve. Program data includes local variables and function parameters
of type int, which is interpreted as unbounded (i.e., mathematical) integers, as
well as pointers of type int*. Bounded integers can be simulated by instrumenting
programs with modulo operations, at the cost of increased reasoning complexity.
Supported control structures are if-then-else and while statements, function calls
and returns. For simplicity, the return statement must always be the last statement
of a function and must return a local variable. Recursive function calls may not
occur within the conditions of if or while statements. Checking conditional and
relational equivalence of programs is supported.

The tool (i.e., the wlp calculus) is implemented in Standard ML. As Horn con-
straint solvers we used Z3 (unstable branch as of 2014-11-03, using both PDR and
Duality solver engines) and Eldarica (version v1.1-rc)8. In all cases, the Eldarica

tool is used for clausification, i.e., to convert the result of the wlp calculus into a
set of Horn clauses over integers (eliminating arrays as explained in Section 5.4).

8 https://github.com/uuverifiers/eldarica
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6.1 Experiments

We have evaluated the effectiveness and performance of our tool on a collection
of benchmarks. The benchmarks vary in size from 16–53 lines of code (for both
programs together, excluding comments or empty lines) and are available with the
tool at the URL given in the introduction. Benchmark results are summarized in
Table 1.

We give performance results for Rêve with three different Horn solvers and
also for the Regression Verification Tool (RVT) by Strichman and Godlin [21]
(cf. Section 8), also operated by us. Dash (−) denotes timeout at 30 seconds, and
cross (7) denotes that the tool terminates but cannot prove equivalence . All times
have been measured on a machine with a 2.80 GHz Intel Core i7 860 CPU.9

The programs in the first group in Table 1 are recursive, while the ones in the
second group contain loops. The third group is concerned with pointer programs.
Benchmarks where the two programs were not equivalent are in the fourth group,
and their names end with a bang (!). All other benchmarks contain equivalent
programs; the 7 outcome is in this case a false negative.

Benchmarks limit1 to limit3 were given by Strichman and Godlin as beyond
the limits of their approach to regression verification. Benchmarks barthe2-big and
barthe2-big2 embed the benchmark barthe2 into a larger program that is syntac-
tically identical in both versions. We could not prove equivalent the ackermann

benchmark, as the result of a recursive function call is used as the argument to
another recursive function call. Furthermore, we originally could not prove the
limit1 benchmark, as two steps of the first loop are equivalent to one step of the
second loop, an issue that we solve in Section 6.3 and illustrate with the larger
digits10 benchmark. The triangular-mod benchmark corresponds to the illustrat-
ing example instrumented with modulo operations to simulate integer overflow.

The two pointer programs memcpy and propagate serve as examples in this
paper. A small optimization of a selection sort implementation is considered in
selsort; the swapping of two arrays swaparray is an example of conditional equiv-
alence since the two algorithms are only equivalent if the arguments do not alias.
In cocome, new behavior is added to an existing piece of code and the new revision
behaves equivalently under conditions. The other pointer programs are variations
of smaller algorithms.

As far as we are aware, RVT does not supply additional information to assist
the user in case of a failed proof attempt. While, in theory, the model checker
underlying RVT produces a counterexample, such a counterexample can be spu-
rious due to the fixed abstraction employed. The Eldarica solver that we use, in
contrast, returns a genuine counterexample for many failed proofs (cf. Section 5).
We found these counterexamples useful in diagnosing problems with the programs,
even though we currently do not translate these counterexamples into source code
terms.

9 There are several reasons for the timings being different to those we previously reported
in [18]. These include: different hardware, newer versions of all tools, and in particular Eldar-
ica now used in client-server mode, which avoids JVM startup and warmup costs.
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Table 1 Benchmark results
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ê
v
e
+

Z
3
/
P

D
R

R
ê
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ackermann 30 0.8 0.07 − 3.38 [21]
mccarthy91 22 0.77 0.02 0.78 0.10 [21]
limit1 22 7 − − − [21]
limit2 22 0.79 − 0.15 0.10 [21]
limit3 24 7 − 0.22 0.15 [21]
add-horn 26 7 − 0.02 0.17
triangular 23 7 − − 0.13
triangular-mod 53 7 − − −
inlining 20 7 − − 0.20

L
o
o
p

s

simple-loop 16 7 0.04 0.33 0.10
loop 22 7 − 0.05 0.09
loop2 22 7 − 0.04 0.10
loop3 28 7 − 0.24 0.17
loop4 22 7 − − −
loop5 22 7 − − −
while-if 22 7 − 0.08 0.11
digits10 32 7 − 1.12 1.26 [1]
barthe 28 7 − 0.13 0.12 [9]
barthe2 22 7 − 0.16 0.15 [9]
barthe2-big 32 7 − − 0.29
barthe2-big2 42 7 − − 0.44
bug15 26 1.09 0.10 0.09 0.09 [21]
nested-while 28 1.2 − 0.13 0.19 [21]

P
o
in

te
rs

memcpy-a 15 − 0.26 0.45
memcpy-b 17 − 0.35 0.45
fib 25 0.09 − −
propagate 16 0.27 0.28 1.46
clearstr 18 0.01 0.21 0.68
findmax 24 0.08 0.10 0.53
cocome 24 − 0.50 1.09
selsort 34 − − −
swaparray 20 − 0.62 3.35

N
o
t

eq
u

iv
a
le

n
t

ackermann! 30 7 0.07 0.08 0.24
limit1! 22 7 0.02 0.03 0.07
limit2! 25 7 0.62 0.67 10.72
add-horn! 28 7 0.03 0.02 0.11
triangular-mod! 49 7 3.01 − −
inlining! 20 7 0.01 0.03 0.13
loop5! 22 7 0.02 0.05 0.08
barthe! 31 7 1.20 1.29 16.4
nested-while! 28 7 0.06 0.04 0.17

“−”=timeout, “7”=unknown
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6.2 Discussion of the Experiments

Studying Table 1, we can make a number of observations. The RVT tool does not
perform well on our selection of benchmarks, which is because RVT is designed
for comparison of larger programs, but with fixed coupling predicates expressing
that the two programs are in the same state. Such predicates are not sufficient
for almost all of our examples. On the other hand, as noted previously, for larger
programs, a combination of the two approaches would make sense.

The next three columns (Rêve+X) show that the choice of Horn solver has
drastic impact on the performance of our approach. Z3/PDR turns out to be a
bad choice of back-end for Rêve, while Z3/Duality and Eldarica are effective at
solving the Horn problems resulting from regression verification. Since Z3/PDR
is otherwise known to be a fast and effective Horn solver, we hypothesize that
the effect is due to limited ability of Z3/PDR to discover relational predicates
(predicates relating multiple program variables), which are essential as coupling
predicates. Z3/PDR is very efficient, however, for disproving equivalence (the last
group of benchmarks in Table 1). The generally good performance of Eldarica

can be explained with the range of heuristics for solving fixed-point equations
included in the tool [31].

Several of the benchmarks are hard for all tools. This includes triangular-mod

benchmarks, indicating that an encoding of bit-vectors as integers leads to quite
hard Horn problems, and is probably not an option for larger programs; more
intelligent approaches will have to be developed in the future.

The loop4 and loop5 benchmarks are programs in which loops cannot easily
be synchronized, because the iteration speed or iteration order of the loops is
different. We discuss in the next section how this issue can be overcome, albeit at
the price of manual intervention.

The fib benchmark is a program with non-linear computation (the Fibonacci
sequence), and turns out to be easier for Z3/PDR than for the other Horn solvers,
for reasons not apparent to us. For selsort, although the compared versions of
selection sort are almost identical, a relatively complex quantified mutual invariant
about arrays is necessary to prove equivalence; finding this invariant automatically
is beyond the capabilities of all considered tools.

6.3 An Example for Loop Equivalence

We consider a real-world example from [1]. The program P1 in Figure 6.3(a) com-
putes the number of digits in the decimal expansion of n through a series of integer
divisions by 10. The program P2 in Figure 6.3(c) computes the same result but
(asymptotically) about seven times faster.
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int f(int n) {
int r = 1;
n = n/10;

while (n > 0) {
r++;
n = n / 10;

}
return r;

}

int f(int n) {
int r = 1;
n = n/10;

while (n > 0) {
r++;
n = n / 10;
if (n > 0) {

r++;
n = n / 10;
if (n > 0) {

r++;
n = n / 10;
if (n > 0) {

r++;
n = n / 10;

}
}

}
}
return r;

}

int f(int n) {
int r = 1;
int b = 1;
int v = -1;

while (b != 0) {
if (n< 10) { v = r; b = 0; }
else if (n< 100) { v = r+1; b = 0; }
else if (n< 1000) { v = r+2; b = 0; }
else if (n <10000) { v = r+3; b = 0; }
else {

n = n / 10000;
r = result + 4;

}
}
return v;

}

(a) basic version P1 (b) intermediate version P ′1 (c) optimized version P2

The programs P1 and P2 shown above are reformulations of those given in [1] in order to comply with the input requirements of our tool. The do-while
and for loops have been replaced by while loops. The boolean flag b and the temporary storage variable v in P2 have been introduced to avoid premature
returns from the function.

Fig. 7 Computing the number of digits (digits10) from [1]
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void propagate(int *a, int n) {
int k = 0;
while(k < n) {

a[k+1] = a[k];
k++;

}
}

void propagate(int *a, int n) {
int k = 0;
while(k < n) {

a[k+1] = a[0];
k++;

}
}

(a) version Q1 (b) version Q2

Fig. 8 Propagating the first value a[0] to the entire array a (benchmark propagate)

This speedup is accomplished by reducing the strength of operations. The loop
has been unrolled four times10 and the majority of divisions have been replaced
by pure comparisons.

Unsurprisingly, P1 and P2 cannot be proved equivalent automatically. To do so,
the tool would in the least need to figure out the (very complex) relation between
one iteration of the loop in P1 and four iterations of the same loop. To overcome
this barrier, the software engineer needs to supply to the tool the knowledge that
an unrolling transformation took place. At the moment, we achieve this transfer
by manually carrying out the unrolling on P1 and producing the intermediate
program P ′1 shown in Figure 6.3(b). We then prove automatically that P ′1 and P2

are equivalent. Note that P ′1 is still significantly different from P2, as unrolling
is not the only optimization that has been performed originally. The program P ′1
still performs four times as many divisions as P2. The if-conditions directly follow
the divisions and depend on them, which slows the program down, while the four
if-conditions in P2 are all dependent on the same division result.

After slightly less than a second, Rêve with Eldarica succeeds in proving
equivalence with the following automatically inferred coupling predicate:

(b2 = 1 ∧ r1 = r2 ∧ 10n1 6 n2 ∧ n2 6 10n1 + 9)

∨ (b2 = 0 ∧ r1 = v2 ∧ n2 > 10n1 ∧ n1 6 0) .

Here, n1 and r1 denote the variables of P ′1, and n2, b2, r2 the variables of P2.
The variable b2 indicates whether the loop will (b2 = 1) or will not (b2 = 0) be
executed once more. The coupling predicate is hence a disjunction over these two
cases: While the loop is iterated, r1 and r2 hold the same value and n1 is one
division by 10 ahead of n2, i.e., n1 = n2 div 10. Exactly this fact is expressed by
the linear constraint 10n1 6 n2 ∧n2 6 10n1 + 9. When the loop of P2 has finished,
its negated loop guard n1 6 0 holds and the final results are stored in r1 and v2.

6.4 An Example for Pointer Program Equivalence

Consider the two programs from Figure 8 that both propagate the first value from
the array to all n entries of the array. The original version in Figure 8(a) copies
the previously written element a[k] to the next location a[k + 1]. The developer
has decided to make the propagation of the first element a[0] more explicit and

10 Loop unrolling is a simple transformation, in which the loop body is replicated within
the loop and guarded by the loop guard. This transformation preserves the semantics of the
program.
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changed the code to the one shown in Figure 8(b). They now want to make sure
that the new revision is equivalent to the old one.

The functions are declared void; they do not return a result value, and the
regression proof obligation boils down to showing that the heaps are equal after
termination. A human specifier could come up with the manually crafted inductive
coupling predicate11

k1 = k2 ∧ heap1 = heap2 ∧ select(heap1, a1 + k1) = select(heap2, a2) (25)

for the loops. The first two conjuncts state that the counting variables and the
heaps are always equal between the revisions, and the third links the value of a1[k1]
in the first program to the value of a2[0] in the second program, thus implying
that the propagation always writes the same value in both revisions.

In Section 5.4 we discussed that array arguments in Horn literals need to be
transformed into integer arguments and that the coupling predicate must be in
the shape of (24). And indeed, (25) can be equivalently formulated in this shape
as

∀i1, i2. k1 = k2 ∧ (i1 = i2 → select(heap1, i1) = select(heap2, i2)) ∧
(i1 = a1 + k1 ∧ i2 = a2 → select(heap1, i1) = select(heap2, i2))

which is also the invariant that Rêve with Eldarica finds automatically after
slightly more than two seconds.

7 Tailoring Horn Solvers to Regression Verification

Using the encoding presented in the previous sections, in principle any Horn solver
with support for relevant datatypes can be employed to perform regression verifi-
cation. In practice, the scalability of the approach can be increased drastically by
choosing solver parameters in a suitable way: as we observed, this applies in partic-
ular to the case of regression verification on relatively large programs, containing
relatively few modifications, where it is beneficial to guide solvers towards existing
simple solutions of the Horn clauses. In the following, we consider the case of Horn
solvers that follow the “counterexample-guided abstraction refinement” (CEGAR)
architecture in order to synthesize predicate abstractions of Horn clauses [23, 34];
similar optimizations apply to other algorithms.

7.1 Predicate Abstraction

Tools like Eldarica [34] construct solutions of Horn clauses in disjunctive normal
form by building an abstract reachability graph over a set of given predicates.
When a counterexample is detected (a clause with consistent body literals and
head false), a theorem prover is used to verify that the counterexample is genuine;
spurious counterexamples are eliminated by generating additional predicates by
means of Craig interpolation.

11 For the ease of presentation, we left out the unmodified variables a1, n1, a2, n2 although
they would appear in the predicate.
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In order to define the concept of predicate abstraction, we assume that R is a
set of relation symbols, and that for each predicate p ∈ R a vector x̄p of formal
argument variables has been fixed. Further, Π : R→ Pfin(For) denotes a mapping
from relation symbols p ∈ R to finite sets of formulae over the variables x̄p used
to approximate the relation symbol.

Given a set HC of Horn clauses, we define an abstract reachability graph (ARG)
as a hyper-graph (S,E), where

– S ⊆ {(p,Q) | p ∈ R, Q ⊆ Π(p)} is the set of nodes, each of which is a pair
consisting of a relation symbol and a set of predicates.

– E ⊆ S∗ × HC × S is a hyper-edge relation, with each edge being labelled with
a clause. An edge E(〈s1, . . . , sn〉, h, s), with h = (H ← C ∧B1 ∧ · · · ∧Bn) ∈ HC ,
implies that
– si = (pi, Qi) and Bi = pi(t̄i) for all i = 1, . . . , n, and
– s = (p,Q), H = p(t̄), and Q = {φ ∈ Π(p) | C ∧Q1[t̄1] ∧ · · · ∧Qn[t̄n] |= φ[t̄]},

where we write Qi[t̄i] for the conjunction of the predicates Qi, with the
formal arguments x̄pi replaced by the argument terms ti.

An ARG (S,E) is called closed if the edge relation represents all Horn clauses
in HC : for every clause h = (H ← C ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n)) ∈ HC and every
sequence (p1, Q1), . . . , (pn, Qn) ∈ S of nodes one of the following properties holds:

– C ∧Q1[t̄1] ∧ · · · ∧Qn[t̄n] |= false, or
– there is an edge E(〈(p1, Q1), . . . , (pn, Qn)〉, C, s) such that s = (p,Q), H = p(t̄),

and Q = {φ ∈ Π(p) | C ∧Q1[t̄1] ∧ · · · ∧Qn[t̄n] |= φ[t̄]}.

Lemma 3 A set HC of Horn clauses has a closed ARG (S,E) if and only if HC has

a solution that can be expressed symbolically using formulae.

A Horn solver proceeds starting from some initial mapping Π0; in most cases,
Π0 will map every relation symbol to an empty set. The solver will then attempt
to construct a closed ARG by means of fixed-point computation, which can either
succeed (in which case a solution of the Horn clauses has been derived), or fail
because some assertion clause false ← C ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n) is violated during
the construction. In the latter case, a connected acyclic ARG fragment can be
extracted that leads from entry clauses (clauses H ← C without relation symbols
in the body) to the violated assertion clause. The acyclic fragment represents a
possible counterexample to the solvability of HC , and can be checked for spuri-

ousness using classical SMT technology: if the counterexample is genuine, it has
been shown that HC can in fact not be solved. Otherwise the ARG fragment can
be translated to a Craig interpolation problem [34], and gives rise to new predi-
cates and an extended predicate mapping Π1. Subsequently, ARG construction is
restarted, leading either to further counterexamples or eventually a closed ARG.

7.2 Seeding Predicate Abstraction for Regression Verification

Instead of starting from an empty predicate mapping Π0, a set of meaningful initial
predicates can be chosen as a seed. This can lead to a reduced number of refinement
steps, or prevent sub-optimal predicates from being produced by interpolation. In
the context of regression verification, where typically two programs are compared
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Fig. 10 Efficacy of abstraction seeding for re-
gression verification of loop benchmarks from
Section 6

that are to a large degree identical, likely coupling predicates are equations y1 = y2

that relate corresponding variables y1 and y2 of the programs to each other. It is
meaningful to start the CEGAR process with a predicate mappingΠeq that already
contains such predicates; in particular, we can observe that the equivalence of a
program with itself can in this way be shown without any refinement steps.

For every coupling loop invariant C with arguments x̄1, x̄2, and every cou-
pling function summary Rf1/f2 with arguments ī1, r1, ī2, r2, we choose the initial
predicates as follows:

Πeq(C) =

{y1 = y2 | y1 a variable in x̄1, and y2 corresponding variable in x̄2}
Πeq(Rf1/f2) =

{y1 = y2 | y1 a variable in ī1, r1, and y2 corresponding variable in ī2, r2} .

If an encoding of arrays as in (24) is used, it is usually meaningful to add negated

equations for corresponding quantified variables in i1, . . . , in; this is because for-
mulae i1 = i2 → select(a1, i1) = select(a2, i2) are likely coupling predicates in this
case.

7.3 Efficacy of Abstraction Seeding

Figures 9 to 11 demonstrate the effects of abstraction seeding as presented above.
We have evaluated seeding on three benchmark sets. The first set contains pro-
grams that are to a large extent identical. The set was created by beginning with
the barthe2 benchmark and progressively adding identical loops to both versions
of the function. The biggest benchmark solvable within 60 seconds contains 8
loops and a total of 970 LOC. The results clearly demonstrate the efficacy of
predicate seeding for regression verification of large programs with small changes
(Figure 9).12

12 As explained in the introduction, in practice, one would not be checking the equivalence
of a large system all at once, though.
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Fig. 11 Efficacy of abstraction seeding for regression verification of pointer benchmarks from
Section 6

The second and the third benchmark sets correspond to the loop and the
pointer benchmarks from Section 6 respectively. Figures 10 and 11 show that
seeding can impose an insubstantial penalty (consider that the scale is logarith-
mic), but also can offer significant benefits in individual cases. This behavior is not
surprising as the programs in these benchmark sets contain hardly any identical
code and the initial predicates used as the seed are not as useful to express the
required coupling predicates.

8 Related Work

Research on proving program equivalence is driven by a variety of applications,
including security verification, compiler optimizations, backwards compatibility
and refactoring, cryptographic algorithms, hardware design, and general-purpose
regression verification.

Godlin and Strichman [20–22] present an approach for automating general-
purpose regression verification. In this approach, loops in the programs are trans-
formed to recursive procedures, and matching recursive calls are abstracted by
an uninterpreted function. The equivalence of functions (that no longer contain
recursion) is then checked by the CBMC model checker. In our vernacular, the
approach can be described as an attempt to verify equivalence with the fixed cou-
pling predicate ī1 = ī2 → r1 = r2 for every related pair of recursive functions. This
abstraction imposes the limitation that function calls with different arguments or
a different number of recursions of two matching recursive functions are not sup-
ported. The technique is implemented in the RVT tool and supports a subset of
ANSI C.

A part of the approach by Godlin and Strichman [21] is a technique to deal
with programs manipulating tree-shaped heap structures. A key part of this tech-
nique involves feeding both program versions inputs that point to isomorphic non-
deterministic structures of a limited depth. A conservative sound depth can be
syntactically inferred from the function bodies by counting the number of deref-
erences. This approach does not work in presence of pointer arithmetic, though,
which is given in our case.
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Verdoolaege et al. [36, 37] have developed an automation approach to prove
equivalence of static affine programs. The approach focuses on programs with
array-manipulating for loops and can automatically deal with complex loop trans-
formations such as loop interchange, reversal, skewing, tiling, and others. It is im-
plemented in the isa tool for the static affine subset of ANSI C. Initially, dataflow
analysis is applied to build a dependence graph abstraction of each of the two
programs. Then the equivalence hypothesis for outputs is propagated through the
graphs towards the inputs, in a manner resembling verification condition gen-
eration. The static control flow requirement means that the control flow of the
program must be known already at compile time. Furthermore, arithmetical op-
erations in the loop/function bodies are abstracted. Addition is, e.g., replaced by
an associative and commutative uninterpreted function. The abstraction prevents
proving equivalence of such programs as x=x+1; x=x+1; and x=x+2;.

Barthe et al. [9] present a calculus for reasoning about relations between pro-
grams that is based on pure program transformation. The calculus offers rules to
merge two programs into a single product program. The merging process is guided
by the user and facilitates proving relational properties with the help of existing
verification technology (the Why tool, in that particular case). The verification
process still requires user-supplied annotations though.

Almeida et al. [2] have verified the correctness of the OpenSSL implementa-
tion of the RC4 cipher w.r.t. a reference implementation. The authors use self-
composition of programs together with interactively verified lemmas about partic-
ular program transformations and optimizations.

Sinz and Post [33] prove equivalence of two AES cipher implementations by
means of bounded model checking. The approach unrolls resp. inlines all loops and
recursive calls. Such reasoning is only feasible if the program admits small bounds
on loops or depth of recursive calls. In the case of AES, a complete unrolling of
the main loop was not possible, so the authors proved equivalence of loop bodies
instead.

Backes et al. [5] propose to leverage slicing and impact analysis to improve
scalability of regression verification. The idea is to subject both program versions
to a dependency analysis, then to remove the code present in both versions that
has no data or control dependencies on the introduced change, and to apply an
existing technique (e.g., bounded symbolic execution) to show equivalence of the
reduced programs.

Mutual function summaries have been prominently put forth by Hawblitzel et
al. in [25] and later developed in [26]. The concept is implemented in the equiva-
lence checker SymDiff [29], where the user supplies the mutual summary, and the
verification conditions are discharged by Boogie. Loops are encoded as recursion.
The BCVerifier tool for proving backwards compatibility of Java class libraries
by Welsch and Poetzsch-Heffter [38] has a similar pragmatics.

In [30], the SymDiff tool was combined with the Houdini invariant genera-
tion algorithm to infer coupling predicates for regression verification of memory
safety properties. Houdini attempts to construct a consistent set of inductive con-
junctive invariants by “brute-force” elimination from a pool of candidates built
by instantiating a user-specified template. Time performance data is not reported
in [30].

The Replace Isomorphism with Equality method presented in [39] supports auto-
matic equivalence proving for programs with heaps and memory allocations. It can
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deal with out-of-order coupling of call sites and heap equivalence up to isomor-
phism (similar to [11] for non-interference). The tool uses a fixed mutual summary
and verifies equivalence using Z3 via an encoding to Boogie.

Banerjee and Naumann [6,7] study equivalence of Java-like programs from the
perspective of data encapsulation. They develop a programming discipline and a
static analysis ensuring that changes in an object-oriented data structure’s imple-
mentation are confined and cannot affect its clients other than through specified
public methods.

Several relational program logics (e.g., [4, 8, 35]) have been developed for se-
curity applications. Proving in these logics requires user-supplied inductive invari-
ants.

A large body of work also exists on equivalence checking of hardware logic
circuits; see [28] for an overview. The approaches fall into two major groups. One
group builds the product machine of two circuits and exhaustively traverses the
state space to ensure that the corresponding outputs of the two circuits are iden-
tical in every reachable state. The other group recognizes that the incremental
nature of the design process induces structural similarity between the circuit vari-
ants under verification and tries to exploit them. The techniques to do so include
functional equivalences, indirect implications, permissible functions, and others
(see e.g., [16]).

9 Conclusion and Future Work

In this paper, we have presented a novel approach that uses invariant inference
techniques for automating regression proofs for two imperative pointer programs.
To this end, the two versions of the program are transformed into Horn clauses over
uninterpreted predicate symbols. These clauses constrain equivalence-witnessing
coupling predicates that connect the states of the two programs at key points. A
Horn constraint solver is used to find a solution for the coupling predicates, if one
exists.

The approach is implemented and we have demonstrated its effectiveness on
pointer programs with non-trivial arithmetic and control flow. Future work in-
cludes support of further programming language constructs, as well as improve-
ments to scalability, e.g., by combination with other regression verification tech-
niques.
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