
Characterization of Simulation by
Probabilistic Testing

Philipp Rümmer and Wang Yi

Department of Information Technology
Uppsala University, Sweden

Abstract. Testing of systems naturally has a non-deterministic charac-
ter: on the one hand, internal decisions of the system under test appear as
non-determinism to an observer; on the other hand, the system under test
inevitably receives inputs from the environment that are not controlled
by the tester. To model both aspects, we investigate a probabilistic test-
ing framework in which non-deterministic labelled transition systems are
examined through execution of finite, probabilistic test-cases. We show
that the simulation preorder on labelled transition systems can be tested
probabilistically, elegantly recapturing the notion of conformance testing
in this setting.

1 Introduction

For us, Frank is not only a great friend, but also a great scientist and a great
leader. His contributions in many areas have been a source for inspiration in our
work. His leadership has been a driving force in many large successful collaborat-
ing projects in Europe. Thank you Frank! Congratulations for the first successful
60 years; we look forward to working with you in the coming 60 years! The work
presented in this paper was initiated many years ago when Frank was also a
participant in a venue discussing research issues on concurrency and testing.

To study probabilistic phenomena such as randomisation and failure rates in
distributed computing, significant research effort has been put into the exten-
sion of models and methods that have proven successful for non-probabilistic
systems to the probabilistic setting. In the non-probabilistic setting, transition
systems are well-established as a basic semantic model for sequential, concur-
rent, and distributed systems. This model has been extended in the literature
to the probabilistic case by adding a mechanism for representing probabilistic
choice.

In the work presented in this paper, we consider the specific combination of classi-
cal, non-probabilistic systems, examined with the help of probabilistic tests. More
specifically, we consider tests as finite labelled transition systems that might con-
tain both probabilistic and non-deterministic choice. As the main result, we show



that the (non-probabilistic) simulation preorder can be tested by comparing the
likelihood that probabilistic tests succeed. Probability, in this setting, is mainly
used as a vehicle to examine the branching structure of processes, since prob-
abilistic choice has the effect of copying and duplicating intermediate states of
processes, in such a way that each copy can be examined separately. This con-
cept has been exploited in a number of previous research results, including [1,
2].

We outline how this theoretic result can practically be exploited in the context of
conformance testing, where the relationship of a concrete implementation with
an abstract behavioural specification is checked.

1.1 Related Work

Characterization of Bisimulation by Probabilistic Testing Abramsky presented
the first work in the 80s [1] to characterize bisimulation relations using proba-
bilistic testing, which is the original motivation of this work. The essential idea
of Abramsky is to utilize the ”copying capability” in probability testing to char-
acterize equivalence relations. In this work, we show that the copying feature can
also be used to characterize simulation relation, which is a preorder. A relevant
work along this line is [2], where we have shown that testing preorders can be
characterized by simulation relations over probabilistic systems. The difference
is that here we have probabilistic tests and the systems under test exhibit only
non-deterministic behavior.

Statistical Model Checking An area related to probabilistic testing is statistical
model checking, which has been proposed as an alternative to exhaustive model
checking for analyzing stochastic (e.g., timed or hybrid) systems [6, 3]. In sta-
tistical model checking, the behavior of a system is simulated, thus obtaining
a sample of possible system executions; afterwards, hypothesis testing is used
to check whether the sample represents sufficient statistical evidence that some
specification is satisfied or violated. In contrast to exhaustive methods, statisti-
cal model checking does not provide guarantees, but makes it possible to bound
the likelihood of wrong answers. At the same time, runtime and memory con-
sumption of statistical model checking can be drastically smaller than that of
exhaustive techniques.

The results presented in this paper differ from statistical model checking methods
in two important points: in our setting, it is the tests that are assumed to be
probabilistic, whereas systems under test only exhibit non-deterministic behavior
(in Sect. 3 and later); the situation in statistical model checking is the opposite.
Second, we consider how testing is used to derive simulation relation between
two systems, rather than checking that a system conforms to some independently
defined property.



2 Preliminaries

We consider a model of probabilistic transition systems, containing probabilistic
and non-deterministic choices as independent concepts. Processes, in most parts
of the paper, are transition systems only containing non-deterministic choices,
i.e., there is no probabilistic behaviour. In contrast, tests are defined as transition
systems that can contain both non-deterministic and probabilistic behaviour,
more precisely as finite trees in which certain states are “accepting.” As we will
see, in this setting it is possible to give an exceptionally simple and elegant
characterisation of simulation in terms of tests.

Most of the definitions follow the lines of [2].

2.1 Basic Concepts

A weighting on a set S is a function σ : S → R≥0 from S to nonnegative real
numbers. For a set S, we use σ(S) to denote

∑
s∈S σ(s). A probability distribution

on a finite set S is a weighting σ on S such that σ(S) = 1. A sub-distribution on
a finite set S is a weighting σ on S such that σ(S) ≤ 1. We use s ∈ σ to denote
that σ(s) > 0. The support Supp(σ) of a weighting σ is the set of elements s
with s ∈ σ. A distribution whose support is a singleton set is called a determin-
istic distribution. Let Weight(S) and Dist(S) denote the sets of weightings and
probability distributions on S, respectively. We will sometimes identify a single
state s with the deterministic distribution that assigns probability 1 to s.

If σ is a weighting on S and ρ is a weighting on R, then σ × ρ is a weighting
on S × R, defined by (σ × ρ)(〈s, r〉) = σ(s) ∗ ρ(r). If σ is a weighting on S and
h : S → R is a function from S to R, then h(σ) is a weighting on R, defined by
h(σ)(r) =

∑
h(s)=r σ(s). If σ and ρ are weightings on S, then σ ≤ ρ denotes that

σ(s) ≤ ρ(s) for all s ∈ S.

2.2 Probabilistic Transition Systems

We assume a finite set Act of atomic actions, ranged over by a and b.

Definition 1. A (probabilistic) transition system is a pair 〈S,−→〉, where

– S is a non-empty finite set of states, and
– −→ ⊆ S ×Act×Dist(S) is a finite transition relation.

We use s
a−→ σ to denote that 〈s, a, σ〉 ∈ −→.

A (probabilistic) process is a tuple 〈〈S,−→〉, σ0〉, where 〈S,−→〉 is a probabilistic
transition system, and σ0 ∈ Dist(S) is an initial probability distribution on S.



We write s
a−→ to denote that there is a σ such that s

a−→ σ, and say that a
state s is terminal (written s 6−→) if there is no a and σ such that s

a−→ σ. By

slight abuse of notation, we write s
a−→ s′ if s

a−→ σ such that s′ ∈ σ. A finite
tree is a process 〈〈S,−→〉, σ0〉 such that every state s′ ∈ S can be reached by

exactly one path s0
a1−→ s1

a2−→ · · · an−→ sn = s′ with s0 ∈ σ0.

Each state of a probabilistic transition system has a potential for future dy-
namic behavior. When an action is performed, the system makes a probabilistic
“choice” of next state. Thus, at each point in time, a snapshot of the system
state will be a distribution over possible states.

2.3 Probabilistic Testing

To study testing, we define a synchronous parallel composition operator for
probabilistic transition systems, in which two processes P and Q execute in
parallel while synchronizing on all actions in Act.

Definition 2. Let 〈S,−→〉 and 〈R,−→〉 be two transition systems. Their com-
position, denoted by the expression 〈S,−→〉‖〈R,−→〉, is the transition system
〈U,−→〉 where

– U = S ×R. A pair (s, r) ∈ U is denoted s‖r.
– −→ ⊆ U ×Act×Dist(U) is defined by

s‖r a−→ σ × ρ iff s
a−→ σ and r

a−→ ρ

The composition of two processes P = 〈〈S,−→〉, σ0〉 and Q = 〈〈R,−→〉, ρ0〉,
denoted P‖Q, is the process 〈〈S,−→〉‖〈R,−→〉, σ0 × ρ0〉.

Following Wang and Larsen [5], we define tests as finite trees with a certain
subset of the terminal states being “accepting states.”

Definition 3. A (probabilistic) test is a tuple 〈〈〈T,−→〉, τ0〉, F 〉 in which the
process 〈〈T,−→〉, τ0〉 is a finite tree, and F ⊆ T is a set of success states, each
of which is terminal.

A test T is applied to a process P by putting the process P in parallel with the
test T and measuring the likelihood of reaching a success state.

We define a testing system as the parallel composition of a process and a test.

Definition 4. Let P = 〈〈S,−→〉, σ0〉 be a process and T = 〈〈〈T,−→〉, τ0〉, F 〉
be a test. The composition of P and T , denoted P‖T , is called a testing system,
defined as the process 〈〈S,−→〉, σ0〉‖〈〈T,−→〉, τ0〉 with success states S × F .



Our intention is that a testing system defines a probability of reaching a success
state. However, since from each state there may be several outgoing transitions,
such a probability is not uniquely defined. We will be interested in the maximal
probabilities of success. These can be defined inductively on the structure of the
testing system.

Definition 5. Let P‖T be a testing system, with a process P = 〈〈S,−→〉, σ0〉
and test T = 〈〈〈T,−→〉, τ0〉, F 〉. For each state s‖t of P‖T we define its maximal
probability of sucess, denoted tdse inductively by

– If s‖t is terminal, then tdse = 1 if t is a success state, else tdse = 0.
– If s‖t is not terminal, then

tdse = max
s‖t a−→ σ × τ

∑
s′‖t′

(σ × τ)(s′‖t′) ∗ t′ds′e


For a distribution σ on S and a distribution τ on T , we define

τdσe =
∑
s‖t

(σ × τ)(s‖t) ∗ tdse

We define T dPe = σ0dτ0e.

We note that, using the definition of τdσe, we simplify the definition of tdse to

tdse = max
s‖t a−→ σ × τ

τdσe

We now define a may-preorder of testing, which abstracts from the set of possible
expected outcomes when testing a process P by a test T : may-testing considers
the highest possible expected outcome of P‖T .

Definition 6. Given two processes P and Q, define

P vt Q iff ∀T : T dPe ≤ T dQe

The intention behind the definition of vt is that intuitively, P vt Q should
mean that P refines Q with respect to “safety properties.” The motivation is
the following. We can regard the success states of a test as states defining when
the tester has observed some “bad” or “unacceptable” behavior. A process then
refines another one if it has a smaller potential for “bad behavior” with respect
to any test. In the definition of P vt Q, this means that the maximal probability
of observing bad behavior of P should not exceed the maximal probability of
observing bad behavior of Q.



Example 7. Consider the following processes P and Q. The dashed arrows show
the initial distribution of the processes, the straight arrows the (deterministic)
transitions of the processes.

a

0.3

b

0.7

P

a

0.2

a b

0.8

Q

The probability that P may pass a test is always less or equal to the probability
Q may pass the same test; therefore P vt Q. To see this, consider the sub-
systems A1,A2,A3:

a

A1

b

A2

a b

A3

Clearly, for any test T it is the case that T dA1e ≤ T dA3e and T dA2e ≤ T dA3e.
This implies that

T dPe = 0.3 · T dA1e+ 0.7 · T dA2e ≤ 0.2 · T dA1e+ 0.8 · T dA3e = T dQe .

3 Characterization of Simulation by Probabilistic Testing

In the following, we restrict our attention to non-probabilistic processes, but
consider the analysis of such processes with the help of probabilistic tests. We
call a process 〈〈S,−→〉, σ0〉 non-probabilistic if σ0 is a deterministic distribution,
and if, likewise, σ is deterministic for every 〈s, a, σ〉 ∈ −→. The main result of
this section is the relationship between the may-preorder for non-probabilistic
processes, established through execution of probabilistic tests, and the classical
notion of simulation [4]:

Definition 8 (Simulation). Let 〈S,−→〉 and 〈R,−→〉 be two non-probabilistic
transition systems. A simulation relation between 〈S,−→〉 and 〈R,−→〉 is a bi-
nary relation W ⊆ S×R such that, whenever (s, r) ∈W and s

a−→ s′, there is a
state r′ ∈ R with r

a−→ r′ and (s′, r′) ∈ W . We say that a process 〈〈S,−→〉, s0〉
simulates a process 〈〈R,−→〉, r0〉, denoted by 〈〈S,−→〉, s0〉 � 〈〈R,−→〉, r0〉, if
there is a simulation relation W between 〈S,−→〉 and 〈R,−→〉 with (s0, r0) ∈W .



Lemma 9. The relation s � r ≡ 〈〈S,−→〉, s〉 � 〈〈R,−→〉, r〉 is the greatest
simulation relation between the non-probabilistic transition systems 〈S,−→〉 and
〈R,−→〉.

The simulation preorder is instrumental in various contexts, in particular (as
discussed in the later sections of this paper) for checking the conformance of
systems with behavioural specifications.

We are now able to give the main theorem of this section (and the paper), relating
the may-preorder of testing with the classical simulation preorder. The result
shows that the simulation preorder of non-probabilistic processes can be tested
in a probabilistic setting, by considering tests possibly containing probabilistic
choices.

Theorem 10 (Testability of simulation). Suppose P,Q are non-probabilistic
processes. Then the following equivalence holds:

P vt Q iff P �Q

For proving this theorem, we first need a number of intermediate results. We can
first observe that every testing system gives rise to a finite set of resolutions, in
which every state has an out-degree of at most one:

3.1 Linear Resolutions of Processes

Definition 11 (Linearity). A finite tree 〈〈S,−→〉, σ0〉 is called linear if σ0 =
s0 is deterministic and every state has at most one outgoing transition:

for each s ∈ S : s
a−→ σ and s

a′−→ σ′ imply a = a′ and σ = σ′ .

A linear resolution of a finite tree P = 〈〈S,−→〉, σ0〉 is a maximum linear sub-
tree 〈〈S′,−→′〉, σ0〉 of P, i.e., a linear tree consisting of maximum subsets of
states S′ ⊆ S and transitions −→′ ⊆ −→ of P. The set of resolutions of a tree P
is denoted by Res(P).

The notion of linear resolutions naturally extends to finite acyclic processes, i.e.,
to processes in which the length of paths s0

a1−→ s1
a2−→ · · · an−→ sn is bounded.

Note that, by definition of a tree, the resolution 〈〈S′,−→′〉, σ0〉 is closed under
transitions: Supp(σ0) ⊆ S′ and Supp(σ) ⊆ S for each 〈s, a, σ〉 ∈ −→′. Maximality
implies that a resolution does not have more terminal states than the original
tree, i.e., s 6−→′ implies s 6−→ for any s ∈ S′.

Intuitively, if a state of a process has two outgoing transitions s
a−→ σ and

s
a′−→ σ′, any linear resolution of the process will contain at most one of the

transitions, and remove the other one; if s is a state that is kept in the resolution,
exactly one of the transitions will be kept. In the case of a finite non-probabilistic
tree, resolutions correspond to maximum paths starting in the root of the tree.



Example 12. The following diagrams illustrates a linear resolution of a finite
tree T . The resolution is drawn bold:

a

0.3

b

0.7

a

a

b

0.8 0.2

c

b

T

Note that probabilistic choices are kept in a resolution, so that linear resolutions
do not necessarily form simple chains of transitions.

The notion of a resolution leads to a more explicit characterisation of the maxi-
mum success probability of running a test:

Lemma 13. Let P‖T be a testing system, composed of process P = 〈〈S,−→〉, σ0〉
and the test T = 〈〈〈T,−→〉, τ0〉, F 〉. Then

T dPe = max
R∈Res(P‖T )

P (R)

where the success probability P (R) = PR(σ0×τ0) of a test system resolution R ∈
Res(P‖T ) is recursively defined by:

PR(σ × τ) =
∑
s‖t

(σ × τ)(s‖t) ∗ PR(s‖t)

PR(s‖t) =


1 if t ∈ F is a success state

0 if s‖t 6−→ is a terminal state with t 6∈ F
PR(σ × τ) if s‖t a−→ σ × τ (in the resolution R)

3.2 Necessary and Sufficient Conditions for the May-Preorder

It is unnecessary to consider the set of all tests for checking the may-preorder;
rather, we can give necessary and sufficient conditions for the preorder by check-
ing whether tests are guaranteed to succeed or not. These criteria will be helpful
in proving the main Theorem 10 of the section:

Lemma 14. For non-probabilistic processes P,Q:

P vt Q iff ∀T :
(
T dPe = 1 =⇒ T dQe = 1

)



Proof. “=⇒” By definition, P vt Q means ∀T : T dPe ≤ T dQe, which implies
the right-hand side of the equivalence.

“⇐=” Proving by contradiction, we assume ∀T :
(
T dPe = 1 =⇒ T dQe = 1

)
,

but P 6vt Q, the latter of which implies that there is a test T = 〈〈〈T,−→〉, τ0〉, F 〉
such that T dPe > T dQe. According to Lem. 13, we can assume that T dPe is
realised by the resolution R = 〈〈SR,−→R〉, σR〉 ∈ Res(P‖T ), which means that
the success probability of R is P (R) = T dPe.

We define a new test T ′ = 〈〈〈T ′,−→′〉, τ0〉, F ′〉, in such a way that T ′dPe = 1:

– T ′ = {t ∈ T | ∃s : s‖t ∈ SR} is the set of test states reachable in R;

– −→′ = {(t, a, τ) ∈ −→ | ∃(s, a, σ) : (s‖t, a, σ × τ) ∈−→R} is the reduct of
−→ to transitions in R;

– F ′ = {t ∈ T ′ | ∃s : s‖t 6−→R} are those test states that occur as final states
in R.

To see that T ′dPe = 1, observe that R also is a resolution of P‖T ′; all terminal
states of this resolution are success states.

Due to the assumption that ∀T :
(
T dPe = 1 =⇒ T dQe = 1

)
, this implies

T ′dQe = 1; in other words, also Q‖T ′ has a resolution R′ in which all terminal
states are success states. This means, in particular, that all success states of T
reached in R are also reached in R′, because otherwise R′ would contain paths
not leading to success. But then also the test system Q‖T has a resolution R′′

containing at least all success states reached in R, which implies P (R′′) ≥ P (R)
and contradicts the assumption T dPe > T dQe. ut

Similarly, it would be sufficient to consider tests with success probability 0 to
characterise the may-preorder:

Lemma 15. For non-probabilistic processes P,Q:

P vt Q iff ∀T :
(
T dQe = 0 =⇒ T dPe = 0

)

3.3 The May-Preorder as Simulation

We prove the two directions of Theorem 10 separately. The more intricate proof
concerns the observation that the may-preorder is a subset of the simulation
preorder, which can be shown by induction over processes:

Lemma 16. If P = 〈〈S,−→〉, s0〉 and Q = 〈〈R,−→〉, r0〉 are non-probabilistic
processes, then:

P vt Q implies P �Q



Proof. We conduct a proof by contradiction, showing that P 6 Q implies P 6vt
Q. Since 6 can be defined as a least fixed-point, we can prove the implication
by means of induction over processes P,Q not in simulation relation.

Assume P 6 Q. Since � is the greatest simulation relation, this means that there
is a transition s0

a−→ s′, but for all a-transitions r0
a−→ r1, . . . , r0

a−→ rn of Q we
have P ′ = 〈〈S,−→〉, s′〉 6 〈〈R,−→〉, ri〉 = Qi (for i ∈ {1, . . . , n}). Together with
the induction hypothesis and Lem. 14, this implies that there are tests T1, . . . , Tn
such that TidP ′e = 1, but TidQie < 1 for all i ∈ {1, . . . , n}.

We construct a new test T , in such a way that T dPe = 1, but T dQe < 1. By
Lem. 14, this implies P 6vt Q.

We assume Ti = 〈〈〈Ti,−→i〉, τi〉, Fi〉, and, without loss of generality, that the
sets (Ti)

n
i=1 are pairwise disjoint. The test T = 〈〈〈T,−→〉, t0〉, F 〉 is defined by:

– T = {t0} ∪
⋃n
i=1 Ti, where t0 is a fresh state not occurring in any of the

sets Ti;
– −→ = {(t0, a, τa)} ∪

(⋃n
i=1 −→i

)
, with τa being the distribution

τa(t) =

{
τi(t)/n if t = ti

0 otherwise;

– F =
⋃n
i=1 Fi.

We then have T dPe = 1, since TidP ′e = 1 for all i ∈ {1, . . . , n}:

T dPe = t0ds0e = max
s0‖t0

b−→σ×τ
τdσe

≥ τads′e =

n∑
i=1

τids′e
n

=

n∑
i=1

TidP ′e
n

=

n∑
i=1

1

n
= 1

Similarly, we can observe that T dQe < 1:

T dQe = t0dr0e = max
r0‖t0

b−→σ×τ
τdσe

= max
i∈{1,...,n}

τadrie = max
i∈{1,...,n}

n∑
j=1

τjdrie
n

(∗)
< 1

At (∗), we make use of the fact that τjdrie ≤ 1 for all i, j ∈ {1, . . . , n}, but in
particular τidrie = TidQie < 1 for i ∈ {1, . . . , n}. ut

The proof for the other direction of Theorem 10 proceeds by induction over tests:

Lemma 17. If P = 〈〈S,−→〉, s0〉 and Q = 〈〈R,−→〉, r0〉 are non-probabilistic
processes, then:

∀T :
(
P �Q implies T dPe ≤ T dQe

)



Proof. We prove the lemma by induction over tests T = 〈〈〈T,−→〉, τ0〉, F 〉.
Suppose ti

ai−→ τi are all transitions outgoing from initial states ti ∈ τ0, for
i ∈ {1, . . . , n}. For each t ∈ T \Supp(τ0), we can identify a sub-test Tt of T that
has t as root.

Assuming P � Q, the transitions outgoing from s0 are s0
bj−→ sj (for j ∈

{1, . . . ,m}), and the transitions outgoing from r0 are r0
cl−→ rl (for l ∈ {1, . . . , k}).

Due to P �Q, we know that for every j ∈ {1, . . . ,m} there is a lj ∈ {1, . . . , k}
such that bj = clj and 〈〈S,−→〉, sj〉� 〈〈R,−→〉, rlj 〉. By the induction hypothe-
sis, it follows that tdsje ≤ tdrlje for all t ∈ T \Supp(τ0). From this we can derive
T dPe ≤ T dQe:

T dPe = τ0ds0e =
∑
t0

τ0(t0)× t0ds0e
(∗)
≤

∑
t0

τ0(t0)× t0dr0e = T dQe

At (∗), we use the following sub-derivation, for a state t0 ∈ τ0:

t0ds0e = max
s0‖t0

a−→σ×τ
τdσe = max

i,j
ti=t0
ai=bj

τidsje = max
i,j
ti=t0
ai=bj

∑
t

τi(t) ∗ tdsje

≤ max
i,j
ti=t0
ai=bj

∑
t

τi(t) ∗ tdrlje = max
i,j
ti=t0
ai=bj

τidrlje ≤ max
i,l

ti=t0
ai=cl

τidrle = t0dr0e

This concludes the proof. ut

Lem. 16 and 17 together imply Theorem 10.

3.4 Linear Tests

Up to this point, we have considered tests as arbitrary finite trees that can, in
particular, exhibit non-deterministic behaviour (transitions t

a−→ t1 and t
a−→ t2)

or have states in which multiple actions are offered to the system under test
(transitions t

a1−→ t1 and t
a2−→ t2). From the perspective of practical testing,

both properties are somewhat unusual and can be difficult to implement. We
show in this section that such a rich language of tests is in fact unnecessary, our
main results (in particular Theorem 10) also hold if only linear tests (following
Def. 11) are considered.

Definition 18. Given two processes P and Q, we define the linear may-preorder
by:

P vlt Q iff ∀T :
(
T is linear =⇒ T dPe ≤ T dQe

)
Lemma 19. For non-probabilistic processes P,Q, the linear may-preorder co-
incides with the may-preorder:

P vt Q iff P vlt Q



Proof. “=⇒” Holds since every linear test is a test.

“⇐=” There are different ways to prove the implication; importantly, it can be
observed that the proof of Lem. 16 only requires linear tests to be constructed,
from which the implication follows.

We give an independent proof by contradiction as well. Assume P vlt Q, but
P 6vt Q. By Lem. 14, this means that there is a test T such that T dPe = 1, but
T dQe < 1. Since T dPe = 1, by Lem. 13 there is a resolution R ∈ Res(P‖T ) with
P (R) = 1. In the same way as in the proof of Lem. 14, it is possible to derive a
new, linear test T ′ from R with T ′dPe = 1; in fact, T ′ is a linear resolution of
T .

From the assumption P vlt Q, it follows that T ′dQe = 1. However, Res(Q‖T ′) ⊆
Res(Q‖T ), which (by Lem. 13) implies T dQe = 1, contradicting the assump-
tion P 6vt Q. ut

Using Lem. 19 and Theorem 10, we can derive a stronger form of our main
theorem:

Theorem 20 (Linear testability of simulation). For non-probabilistic pro-
cesses P,Q, the following equivalence holds:

P vlt Q iff P �Q

4 Probabilistic Conformance Testing

Conformance testing is concerned with checking that a system (or a piece of
software) behaves correctly with respect to a given specification or standard.
Many well-known applications of testing, for instance the verification of partial
functional properties, can be considered as a part of conformance testing. Since
conformance can pertain to safety- and security-critical aspects, as well as to
contractual commitments, it is of great practical importance when developing
systems.

A common setup for conformance testing is that of black-box testing, which means
that implementation details of the system under test (SUT) are not taken into
account during the testing process. In this scenario, the SUT is executed for
a finite (but large) set of concrete test inputs, observing the responses of the
system, in order to answer (with high confidence) the question whether the SUT
conforms with a given specification.

We discuss how probabilistic testing of simulation relations, developed in the
last sections, can be used to formally capture this kind of testing. There are
typically a number of sources of non-determinism that have to be considered:

– the SUT might appear to behave non-deterministically, due to internal mech-
anisms (like a scheduler) that are not visible to the environment;



– the specification can be non-deterministic, in order to describe a whole set of
scenarios of system execution, and in order to allow some degree of freedom
in the behavior of the SUT;

– the set of considered concrete tests can be generated randomly, according
to some chosen distributions, and depending on the responses given by the
SUT.

Example 21. We consider the following, simplistic model Q1 of a server com-
municating with its environment using the messages Msg (sent to the server)
and Ack (sent by the server). We adopt a discrete model of time and assume the
presence of a further action Tick , expressing that one unit of time has passed. In
the initial state Q1, the server is expected to remain silent until it has received
Msg ; then, after at most two Ticks, the server is supposed to respond with an
Ack , returning to the state Q1:

Tick

Msg

Ack
Tick

Tick
Ack

Ack

Q1

Tick

Msg

Ack

Tick Tick

Tick

Ack

Q2

As a specification of an actual implementation P of such a server, it could be
required that P simulates the model Q1, i.e., P � Q1. Note that this kind of
specification is able to capture very intricate behavioral properties related to the
branching structure of a system. For instance, the model Q2 mostly coincides
with Q1, but is stronger since it requires the server to decide about the delay
before sending Ack at an earlier point (Q2�Q1, butQ1 6 Q2). Also, note that we
disregard probabilistic aspects both of the implementation and the specification;
while either might behave non-deterministically, we do not specify or check the
distribution of behavior. 2

4.1 Random Testing of Simulation Relations

A methodology for testing whether a SUT simulates a process (given as specifi-
cation) can be as follows:

1. A number of linear, non-probabilistic tests is generated, and for each of
the tests it is checked whether the SUT P passes the test (considering the
unique terminal state of the test as success state). This yields a multiset O ⊆
Act∗×B, recording both the sequences of input/output actions, and the test



outcomes. The number of tests in O with positive outcome determines the
overall success rate sP of the SUT.

2. The set O is summarized as a single linear test T , using the distribution of
tests in O to synthesize probabilities.

3. The measured success rate sP is compared with the maximum success prob-
ability T dQe predicted by the specification. Since sP can be considered as
a lower bound of the precise maximum success probability T dPe (for a suf-
ficiently large number of tests), a result sP > T dQe is an indication for
T dPe > T dQe, and by Theorem 10 for P 6 Q.

5 Conclusions

We have shown that the simulation relation between non-probabilistic processes
can be characterised through probabilistic testing, and outlined how this result
might be useful for the purpose of conformance testing on non-deterministic
processes. It is planned to study this latter application on more detail, and
evaluate how tools for property-based random testing can be used to implement
the conformance testing approach in practice.

References

1. Abramsky, S.: Observation equivalence as a testing equivalence. Theor. Comput.
Sci. pp. 225–241 (1987)

2. Jonsson, B., Yi, W.: Testing preorders for probabilistic processes can be character-
ized by simulations. Theor. Comput. Sci. 282(1), 33–51 (2002)

3. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Rou, G.,
Sokolsky, O., Tillmann, N. (eds.) Runtime Verification, Lecture Notes in Computer
Science, vol. 6418, pp. 122–135. Springer Berlin Heidelberg (2010)

4. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA (1989)

5. Yi, W., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In: Pro-
ceedings of the IFIP TC6/WG6.1 Twelth International Symposium on Protocol
Specification, Testing and Verification XII. pp. 47–61. North-Holland Publishing
Co., Amsterdam, The Netherlands (1992)

6. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a focus
on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (Sep 2006)


