
Efficient Algorithms for
Bounded Rigid E -Unification?

Peter Backeman and Philipp Rümmer

Uppsala University, Sweden

Abstract. Rigid E -unification is the problem of unifying two expres-
sions modulo a set of equations, with the assumption that every variable
denotes exactly one term (rigid semantics). This form of unification was
originally developed as an approach to integrate equational reasoning
in tableau-like proof procedures, and studied extensively in the late 80s
and 90s. However, the fact that simultaneous rigid E -unification is un-
decidable has limited the practical relevance of the method, and to the
best of our knowledge there is no tableau-based theorem prover that uses
rigid E -unification. We recently introduced a new decidable variant of
(simultaneous) rigid E -unification, bounded rigid E -unification (BREU),
in which variables only represent terms from finite domains, and used it
to define a first-order logic calculus. In this paper, we study the problem
of computing solutions of (individual or simultaneous) BREU problems.
Two new unification procedures for BREU are introduced, and compared
theoretically and experimentally.

1 Introduction

The integration of efficient equality reasoning in tableaux and sequent calculi
is a long-standing challenge, and has led to a wealth of theoretically intriguing,
yet surprisingly few practically satisfying solutions. Among others, a family of
approaches related to the (undecidable) problem of computing simultaneous rigid
E-unifiers [7] have been developed, by utilising incomplete unification procedures
in such a way that an overall complete first-order calculus is obtained. To the
best of our knowledge, however, none of those procedures has led to competitive
theorem provers.

We recently introduced simultaneous bounded rigid E-unification (BREU)
[2], a new version of rigid E -unification that is bounded in the sense that variables
only represent terms from finite domains, thus preserving decidability even for
simultaneous E -unification problems. As demonstrated in [2], BREU can be used
to design sound and complete calculi for first-order logic with equality, and to
implement theorem provers that compare favourably to state-of-the-art tableau
provers in terms of performance on problems with equality. In this paper we
introduce two new unification algorithms for BREU problems.

? This work was partly supported by the Microsoft PhD Scholarship Programme and
the Swedish Research Council.

1.1 Background and Motivating Example

We start by illustrating our approach using an example from [3, 2]:

φ = ∃x, y, u, v.
(

(a 6≈ b ∨ g(x, u, v) ≈ g(y, f(c), f(d))) ∧
(c 6≈ d ∨ g(u, x, y) ≈ g(v, f(a), f(b)))

)
For sake of presentation, the formula is flattened to ensure that every literal

contains at most one function symbol (for more details, see [2]):

φ′ = ∀z1, z2, z3, z4.
(
f(a) 6≈ z1 ∨ f(b) 6≈ z2 ∨ f(c) 6≈ z3 ∨ f(d) 6≈ z4 ∨

∃x, y, u, v. ∀z5, z6, z7, z8.

g(x, u, v) 6≈ z5 ∨ g(y, z3, z4) 6≈ z6 ∨
g(u, x, y) 6≈ z7 ∨ g(v, z1, z2) 6≈ z8 ∨
((a 6≈ b ∨ z5 ≈ z6) ∧ (c 6≈ d ∨ z7 ≈ z8))

To show that φ′ is valid, a Gentzen-style proof (or, equivalently, a tableau)

can be constructed, using free variables for x, y, u, v:

A
. . . , g(X,U, V) ≈ o5, a ≈ b ` o5 ≈ o6

B
. . . , g(U,X, Y) ≈ o7, c ≈ d ` o7 ≈ o8

...

f(a) ≈ o1, f(b) ≈ o2, f(c) ≈ o3, f(d) ≈ o4 ` ∃x, y, u, v. ∀z5, z6, z7, z8. . . .
(∗)

...

` ∀z1, z2, z3, z4. . . .

To finish this proof, both A and B need to be closed by applying further
rules, and substituting concrete terms for the variables. In our bounded setting,
we restrict the terms considered for instantiation of X,Y, U, V to the symbols
that were in scope when the variables were introduced (at (∗) in the proof): X
ranges over constants {o1, o2, o3, o4}, Y over {o1, o2, o3, o4, X}, and so on. Since
the problem is flat, those sets contain representatives of all existing ground terms
at point (∗) in the proof. We can observe that the proof can be concluded by
applying the substitution σb = {X 7→ o1, Y 7→ o2, U 7→ o3, V 7→ o4}.

It has long been observed that this restricted instantiation strategy gives
rise to a complete calculus for first-order logic with equality. The strategy was
first introduced as dummy instantiation in the seminal work of Kanger [8] (in
1963, i.e., even before the introduction of unification), and later studied under
the names subterm instantiation and minus-normalisation [4, 5]; the relation-
ship to general Simultaneous Rigid E -unification (SREU) was observed in [3].
The present paper addresses the topic of solving a problem using the restricted
strategy in an efficient way and makes the following main contributions:

– we define congruence tables and present an eager procedure for solving BREU
using a SAT encoding (Sect. 4);

– we define complemented congruence closure, a procedure for abstract reason-
ing over sets of equivalence relations, and present a lazy solving procedure
utilising this method (Sect. 5 and 6);

– we give an experimental comparison between the two methods (Sect. 7).

2

Further related work. For a general overview of research on equality handling in
sequent calculi and related systems, as well as on SREU, we refer the reader to
the detailed handbook chapter [4]. To the best of our knowledge, we are the first
to develop algorithms for the BREU problem.

2 Preliminaries

We assume familiarity with classical first-order logic and Gentzen-style calculi
(see e.g., [6]). Given countably infinite sets C of constants (denoted by c, d, . . .),
Vb of bound variables (written x, y, . . .), and V of free variables (denoted by
X,Y, . . .), as well as a finite set F of fixed-arity function symbols (written
f, g, . . .), the syntactic categories of formulae φ and terms t are defined by

φ ::= φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ || t ≈ t , t ::= c || x || X || f(t, . . . , t) .

Note that we distinguish between constants and zero-ary functions for reasons
that will become apparent later. We generally assume that bound variables x
only occur underneath quantifiers ∀x or ∃x. Semantics of terms and formulae
without free variables is defined as is common.

We call constants and (free or bound) variables atomic terms, and all other
terms compound terms. A flat equation is an equation between atomic terms, or
an equation of the form f(t1, . . . , tn) ≈ t0, where t0, . . . , tn are atomic terms. A
congruence pair is a pair of two flat equations (f(ā) ≈ b, f(ā′) ≈ b′) with b 6= b′.

A substitution is a mapping of variables to terms, s.t. all but finitely many
variables are mapped to themselves. Symbols σ, θ, . . . denote substitutions, and
we use post-fix notation φσ or tσ to denote application of substitutions. An
atomic substitution is a substitution that maps variables only to atomic terms.
An atomic substitution is idempotent if σ ◦ σ = σ. We write u[r] do denote that
r is a sub-expression of a term or formula u, and u[s] for the term or formula
obtained by replacing the sub-expression r with s.

Definition 1 ([11]). The replacement relation →E induced by a set of equa-
tions E is defined by: u[l] → u[r] if l ≈ r ∈ E. The relation ↔∗E represents the
reflexive, symmetric, and transitive closure of →E.

2.1 Congruence Closure

We characterise the concept of congruence closure (CC) [9, 1] as fixed-point
computation over equivalence relations between symbols. Let S ⊆ C ∪ V denote
a finite set of constants and variables. The equivalence closure ClEq(R) of a
binary relation R ⊆ S2 is the smallest equivalence relation (ER) containing R.

Let further E be a finite set of flat equations over S (and arbitrary functions
from F). Without loss of generality, we assume that every equation in E con-
tains a function symbol; equations a ≈ b between constants or variables can be
rewritten to f() ≈ a, f() ≈ b by introducing a fresh zero-ary function f . The

3

congruence closure CCE(R) of a relation R ⊆ S2 with respect to E is the small-
est ER that is consistent with the equations E, and defined as a least fixed-point
over binary relations as follows:

CC 1
E(R) = ClEq

(
R ∪ {(b, b′) | ∃ f(ā) ≈ b, f(ā′) ≈ b′ ∈ E with (ā, ā′) ∈ R}

)
CCE(R) = µX ⊆ S2. CC 1

E(R ∪X)

where we write (ā, ā′) ∈ R for the inclusion {(a1, a′1), (a2, a
′
2), . . . , (an, a

′
n)} ⊆ R,

provided ā = (a1, . . . , an) and ā′ = (a′1, . . . , a
′
n).

2.2 The Bounded Rigid E-Unification Problem

Bounded rigid E -unification is a restriction of rigid E -unification in the sense
that solutions are required to be atomic substitutions s.t. variables are only
mapped to smaller atomic terms according to some given partial ordering �.
This order takes over the role of an occurs-check of regular unification.

Definition 2 (BREU). A bounded rigid E -unification (BREU) problem is a
triple U = (�, E, e), with � being a partial order over atomic terms s.t. for all
variables X the set {s | s � X} is finite; E is a finite set of flat formulae; and
e = s ≈ t is an equation between atomic terms (the target equation). An atomic
substitution σ is called a bounded rigid E -unifier of s and t if sσ ↔∗Eσ tσ and
Xσ � X for all variables X.

Definition 3 (Simultaneous BREU). A simultaneous bounded rigid E -uni-
fication problem is a pair (�, (Ei, ei)ni=1) s.t. each triple (�, Ei, ei) is a bounded
rigid E-unification problem. A substitution σ is a simultaneous bounded rigid
E -unifier if it is a bounded rigid E-unifier for each problem (�, Ei, ei).

A solution to a simultaneous BREU problem can be used in a calculus to
close all branches in a proof tree. While SREU is undecidable in the general case,
simultaneous BREU is decidable, in fact it is NP-complete [2]; the existence of
bounded rigid E -unifiers can be decided in non-deterministic polynomial time,
since it can be verified in polynomial time that a substition σ is a solution
of a (possibly simultaneous) BREU problem. Hardness follows from the fact
that propositional satisfiability can be reduced to BREU. Also, a number of
generalisations are possible, but can be reduced to BREU as in Def. 2.

Example 4. We revisit the example introduced in Sect. 1.1, which can be cap-
tured as the following simultaneous BREU problem (�, {(E1, e1), (E2, e2)}):

E1 = E ∪ {a ≈ b}, e1 = o5 ≈ o6, E2 = E ∪ {c ≈ d}, e2 = o7 ≈ o8,

E =

{
f(a) ≈ o1, f(b) ≈ o2, f(c) ≈ o3, f(d) ≈ o4,
g(X,U, V) ≈ o5, g(Y, o3, o4) ≈ o6, g(U,X, Y) ≈ o7, g(V, o1, o2) ≈ o8

}
with a ≺ b ≺ c ≺ d ≺ o1 ≺ o2 ≺ o3 ≺ o4 ≺ X≺ Y ≺ U≺ V ≺ o5 ≺ o6 ≺ o7 ≺ o8.

A unifier to this problem is sufficient to close all goals of the tree up to
equational reasoning; one solution is σ = {X 7→ o1, Y 7→ o2, U 7→ o3, V 7→ o4}.

4

Input: BREU problem B = (�, E, s ≈ t)
1: while candidates remains do
2: σ ← new candidate // Guessing
3: ER ← CCE{(X,Xσ) | X ∈ S ∩ V } // Congruence Closure
4: if (s, t) ∈ ER then // Verifying
5: return σ
6: end if
7: end while
8: return UNSAT

Algorithm 1: Generic search procedure for BREU

3 Solving Bounded Rigid E -Unification

Suppose B = (�, E, e) is a BREU problem, and S ⊆ V ∪C the set of all atomic
terms occurring in B (“relevant terms”). On a high level, our procedures for
solving BREU problems consist of three steps: Guessing a candidate substitu-
tion; using Congruence Closure to calculate the corresponding equivalence
relation; and Verifying that the target equation is satisfied by this relation
(see Alg. 1). This schema derives from the basic observation that sσ ↔∗Eσ tσ if
and only if (s, t) ∈ CCE{(X,Xσ) | X ∈ S ∩ V }, provided that σ is an idempo-
tent substitution [11]. Since an E -unifier σ with Xσ � X for all X ∈ V can be
normalised to an idempotent E -unifier, search can be restricted to the latter.

This paper introduces two different methods of performing these steps; an
eager encoding of the problem into SAT that encodes the entire procedure as a
SAT-problem, and a lazy encoding that uses SAT to generate candidate solutions.
Common to both methods is the representation of the candidate substitution.

3.1 Candidate representation

We introduce a bijection Ind : S → {1, . . . , |S|}, s.t. for each s, t ∈ S we have
s � t⇒ Ind(s) ≤ Ind(t); the mapping Ind will be used for the remainder of the
paper. We also introduce a pseudo-integer variable1 vs for each s ∈ S, together
with a SAT-constraint restricting the domains:∧
c∈S∩C

vc = Ind(c) ∧
∧

X∈S∩V

∨
t∈S
t�X

(
vX = Ind(t) ∧ vt = Ind(t)

)
(Sat Domain)

Any idempotent substitution σ satisfying Xσ � X for the variables X ∈ V
(as in Def. 2) can be represented by vX = Ind(Xσ), and thus gives rise to a
SAT model of the domain constraint; and vice versa. A search procedure over
the models is thus sufficient for solving the Guessing step of Alg. 1. The Sat
Domain constraint will be used in both methods presented in this paper.

1 A pseudo-integer variable is a bit-wise representation of an integer in the range
{1, . . . , n} by introducing dlogne Boolean variables.

5

4 Eager Encoding of Bounded Rigid E -Unification

In this section we describe how to eagerly encode a (simultaneous) BREU prob-
lem into SAT based on the procedure shown in Alg. 1. We note that a fairly
intricate encoding is necessary to accommodate the combination of variables,
constants, and congruence reasoning. For instance, the classical Ackermann re-
duction can be used to encode congruence closure and constants, but is not
applicable in the presence of both variables and constants.

4.1 Congruence Tables

A congruence table is a table where each column represents a union-find data
structure in a step of the congruence closure procedure, and each row corre-
sponds to an atomic term, the “representative” for each step. The initial column
is defined by a substitution while every internal column is constrained by its
previous column modulo the given set of equations. From the final column of
the table, an equivalence relation, equal to the congruence closure of the given
substitution modulo the given equations, can be extracted.

Definition 5. Suppose E is a set of flat equations, each containing exactly one
function symbol, and σ is a substitution s.t. Xσ � X for all X ∈ V . As before, let
S = {t1, . . . , tm} ⊆ C∪V be the relevant terms, and Ind(ti) = i (i ∈ {1, . . . ,m}).

Then a congruence table T of size n for E and σ is a list of column vectors
[c̄1, . . . c̄n], with c̄i ∈ {1, . . . , |S|}m, where c̄1 = (Ind(t1σ), . . . , Ind(tmσ)) and for
each pair of consecutive vectors c̄i and c̄i+1 and each j ∈ {1, . . . ,m}:

1. if c̄i(j)
2 6= j then c̄i+1(j) = c̄i+1(c̄i(j)).

2. if c̄i(j) = j then:

(a) c̄i+1(j) = c̄i+1(k) if k < j, and there are equations f(a1, . . . , al) ≈ b,
f(a′1, . . . , a

′
l) ≈ b′ ∈ E s.t. c̄i(Ind(b)) = j and c̄i(Ind(b′)) = k, and

furthermore c̄i(Ind(ah)) = c̄i(Ind(a′h)) for all h ∈ {1, . . . , l}.
(b) c̄i+1(j) = j if no such pair of equations exists.

To illustrate the definition, observe first that all entries of the first vector
point upwards, i.e., c̄1(j) ≤ j for j ∈ {1, . . . ,m} (due to the definition of Ind in
Sect. 3.1), and define a union-find forest. The rules relating consecutive vectors
(union-find data structures) to each other in Def. 5 correspond to three different
cases: (1) defines path shortening, stating that each term can point directly
to its representative term; (2a) states that if the arguments of two function
applications are equal, the results must also be equal, and enables merging of
the two equivalence classes s.t. the new representative is the smaller term; and
(2b) states that if no such merging is possible, a term retains its identity value.
All definitions are acyclic because the property c̄i(j) ≤ j is preserved in all
columns i (see Lem. 8 below).

2 We write c̄(j) for the jth component of a vector c̄.

6

a o1 o2 o3 o4

b X Y U V

o5 o6

o7 o8

σ σ σ σÁ

Â

Â Ã

Fig. 1. Equivalence classes of different columns of Table 1

Example 6. Consider the simultaneous BREU problem and unifier σ introduced
in Example 4. Table 1 shows a complete congruence table of size 4 for E1 (the
left branch) and σ; for sake of presentation, the table contains symbols t rather
than their index Ind(t), and in each column bold font indicates modified entries.
The represented union-find forests are shown in Fig. 1, in which each edge is
annotated with number of the column in which the edge was introduced. We
can see that the fourth column defines an equivalence relation partitioning ER
of the set of relevant terms S into seven sets. More importantly, under this
equivalence relation the two terms in the target equation e1 = o5 ≈ER o6 are
equal, implying that the substitution is a unifier to this sub-problem.

Definition 7. A congruence table T = [c̄1, . . . , c̄n] of size n is complete if for
every table T ′ = [c̄′1, . . . c̄

′
n+1] of size n+1, if c̄1 = c̄′1, . . . , c̄n = c̄′n then c′n+1 = c′n.

Intuitively, a congruence table T is complete, if every additional column added
would be identical to the last one.

Lemma 8. For every congruence table T = [c̄1, . . . , c̄n] of size n
∀i ∈ {1, . . . , n− 1}. ∀j ∈ {1, . . . , |c̄i|}. c̄i+1(j) ≤ c̄i(j).

S 1 2 3 4
a a a a a
b b a a a
o1 o1 o1 o1 o1
o2 o2 o2 o1 o1
o3 o3 o3 o3 o3
o4 o4 o4 o4 o4
X o1 o1 o1 o1
Y o2 o2 o1 o1
U o3 o3 o3 o3
V o4 o4 o4 o4
o5 o5 o5 o5 o5
o6 o6 o6 o6 o5

o7 o7 o7 o7 o7
o8 o8 o8 o8 o8

Table 1.

Lem. 8 states that when observing a certain index of vec-
tors of a congruence table, e.g., c̄1(2), c̄2(2), . . . , the values
are non-increasing. Therefore, given a set of relevant terms
S, there is an upper bound b s.t. all congruence tables, with
vectors of length |S|, with size n ≥ b will be complete.

Observe that every vector c̄ in a congruence ta-
ble of size n defines an equivalence relation ER(c̄) =
ClEq{(Ind−1(j), Ind−1(c̄(j))) | j ∈ {1, . . . ,m}}. Furthermore,
considering a congruence table T of size n for a set of equations
E and a substitution σ, the vectors c̄1, . . . c̄n ∈ T represent in-
termediate and final step of congruence closure over E and σ.
This leads to the following lemma:

Lemma 9. Given a complete congruence table T of size n
for equations E and substitution σ, it holds that ER(c̄n) =
CCE{(t, tσ) | t ∈ S}.

If a BREU problem B = (�, E, s ≈ t) has an E -unifier σ,
then (s, t) ∈ CCE{(t′, t′σ) | t′ ∈ S}. Therefore, with Lem. 8 and Lem. 9, it is

7

only necessary to consider the congruence tables of a large enough size for every
substitution to find a solution, and if none of them represents a solving substitu-
tion, the given BREU problem is unsatisfiable. This leads to the construction of
a SAT model that encodes all possible congruence table of a certain size. How-
ever, this upper bound will in general be very pessimistic, so we introduce an
iterative procedure that replaces this upper bound by checking an incompletion
constraint.

4.2 Modeling Congruence Tables using SAT

In the remainder of this section we present the variables (the congruence matrix
and the active congruence pairs) as well as the constraints introduced to model
congruence tables for a given BREU problem B = (�, E, e) using SAT.

Congruence matrix. The congruence matrix M ∈ {1, . . . ,m}m×n is a matrix
of pseudo-integer variables with m rows and n columns, corresponding to the
vectors [c̄1, . . . c̄n] in Def. 5. We write M i

j for the cell in row j and column i.
Intuitively, the matrix represents congruence tables of size n for a set of relevant
symbols S with |S| = m, and cell M i

j represents the entry c̄i(j).

Active congruence pairs. The set of congruence pairs is the set CP = {(f(ā) ≈
b, f(ā′) ≈ b′) ∈ E2}. For each column i > 1 in the congruence matrix, there is
also a set {vicp | cp ∈ CP} of auxiliary Boolean variables that indicate the active
congruence pairs cp = (f(a1, . . . , ak) ≈ b, f(a′1, . . . , a

′
k) ≈ b′), constrained by:

vicp ⇔M i−1
Ind(a1)

= M i−1
Ind(a′1)

∧ · · · ∧M i−1
Ind(ak)

= M i−1
Ind(a′k)

∧M i−1
Ind(b) > M i−1

Ind(b′)

(Table CP)
Intuitively, if some vicp is true, the congruence pair cp represents two equations
in which the arguments are equal in the equivalence relation of column i − 1,
but the results are different.

Initial column. In the initial column, we constrain each cell M1
j to be consistent

with the variables vs introduced in Sect. 3.1 to represent solution candidates:∧
t∈S

M1
Ind(t) = vt (Table Init)

Internal column. In the internal columns with index i > 1, each cell must obey
the following constraints, for every j ∈ {1, . . . ,m}:∨

k∈{1,...,j−1}

(M i−1
j = k ∧M i

j = M i
k) ∨ (Table Int)

M i−1
j = j ∧

∧
cp∈CP (¬vicp ∨M i−1

Ind(b) 66= j) ∧M i
j = j

∨∨
cp∈CP

(
vicp ∧M i−1

Ind(b) = j ∧∨
k∈{1,...,j−1}(M

i−1
Ind(b′) = k ∧M i

j = M i
k)
)

with cp = (f(ā) ≈ b, f(ā′) ≈ b′). The topmost constraint models condition (1)
while the bottom constraint models condition (2) in Def. 5.

8

Input: BREU problem B = (�, E, s ≈ t)
1: Add initial table constraint (Sat Domain, Table CP, Init, Int, Goal)
2: while ¬solver.isSat() do
3: Remove goal constraint (Sat Goal)
4: Add incompletion constraint (Table Incomp)
5: if ¬solver.isSat() then
6: return UNSAT
7: else
8: Remove incompletion constraint (Table Incomp)
9: Add internal column and goal constraints (Table Int, Goal)

10: end if
11: end while
12: return SAT

Algorithm 2: Search procedure for the table encoding of a BREU problem

Goal Constraint. The final constraint asserts that the two rows corresponding
to the two terms in the target equation contain the same atomic term in the
final column.

Mn
Ind(s) = Mn

Ind(t) (Table Goal)

where the target equations is e = s ≈ t and the table has n columns.

4.3 Eager procedure

Our eager procedure (outlined in Alg. 2) creates constraints for an initial table,
and then in an iterative fashion adds columns until either a solution is found,
or an incompletion constraint is not satisfied. Incompletion constraints make it
unnecessary to provide an a-priori upper bound on the size of constructed tables,
and instead check whether some congruence pair can be used to merge further
equivalence classes in the last column:∨

cp∈CP

vn+1
cp (Table Incomp)

To handle a simultaneous BREU problem B = (�, (Ei, ei)ni=1), one table is
created for each sub-problem (�, Ei, ei), s.t. the variables xt are shared. However,
for many simultaneous BREU problems only a few of sub-problems are required
to prove unsatisfiability. Therefore we use an iterative approach, where initially
there is only a table for the first sub-problem. Once the constraints of the first
table could be satisfied, the encoding is extended in an iterative fashion with
tables for the other sub-problems, until either all tables are satisfied, or a subset
of complete but unsatisfiable tables has been found.

5 Complemented Congruence Closure

The congruence closure algorithm (Sect. 2) efficiently decides entailment be-
tween ground equations, and can therefore be used to check (in polynomial time)

9

whether a given substitution σ is a solution to a BREU problem: σ translates
to the equivalence relation {(a, b) ∈ S2 | aσ = bσ} over the symbols S ⊆ C ∪ V
occurring in the problem, and can be completed to the smallest ER solving the
BREU equations via CC.

As main building block for the lazy BREU algorithm introduced in the next
section, we defined a generalised version of CC that can be applied to whole
sets of relations over S, in a manner similar to abstract interpretation (the new
algorithm can indeed be identified as an abstract domain for CC, within the
framework of abstract interpretation, but the details are beyond the scope of
this paper). This notion of complemented congruence closure (CCC) can also be
used as an optimisation for the SAT-based algorithm in Sect. 4, since it can often
quickly rule out the existence of solutions to a BREU problem (Example 12).

CCC reasons about disequalities that are preserved by CC: while CC is de-
fined as a least fixed-point over relations R ⊆ S2 representing equalities be-
tween symbols (constants or variables), CCC corresponds to the computation of
greatest fixed-points over relations D ⊆ S2 representing disequalities between
symbols. The definition of CCC is similar in shape to the one of CC in Sect. 2.1;
as before, we assume that E is a finite set of flat equations over S in which each
equation contains exactly one function symbol.

C 3,1
E (D) =

{
(c, c′) ∈ D | c 6= c′, and for all f(ā) ≈ b, f(ā′) ≈ b′ ∈ E

it holds that D ∩ ClEq{(ā, ā′), (b, c), (b′, c′)} 6= ∅

}
C 3
E (D) = νX ⊆ S2. C 3,1

E (D ∩X)

The one-step function C 3,1
E removes all pairs (c, c′) (representing disequalities

c 6≈ c′) from the relation D that can no longer be maintained, i.e., if there are
equations f(ā) ≈ b and f(ā′) ≈ b′ s.t. in some ER (consistent with the disequal-
ities D) it is the case that ā ≈ ā′, b ≈ c, and b′ ≈ c′. This criterion is expressed
by checking whether the equivalence closure ClEq{(ā, ā′), (b, c), (b′, c′)} has some
elements in common with the relation D representing assumed disequalities. The
function C 3,1

E is clearly monotonic, and can therefore be used to define C 3
E as

a greatest fixed-point over the complete lattice of binary relations; C 3
E itself is

then also monotonic.

5.1 Properties of Complemented Congruence Closure

In this and later sections, we write RC = S2 \ R for the complement of a
relation over S. Most importantly, we can show that CC and CCC yield the
same result when starting from equivalence relations, illustrating that CCC is a
strict generalisation of CC:

Theorem 10. Suppose R ⊆ S2 is an ER. Then CCE(R)C = C 3
E (RC).

For arbitrary relations R, congruence closure CCE(R) will be an ER, whereas
the result C 3

E (RC)C in general is not; consider in particular the case E = ∅, in
which CCE will not have any effect beyond removing pairs (c, c) from a relation.
This implies that the assumption of R being an ER is essential in the theorem.

10

Sets C 3
E (D) for relations D whose complement is not an ER can be used to

approximate the effect of CC, and in particular summarise the effect of applying
CC to whole families of relations:

Corollary 11. Suppose R ⊆ S2 is an ER, and D ⊆ S2 a relation s.t. R∩D = ∅.
Then CCE(R) ∩ C 3

E (D) = ∅.
Example 12. Consider S = {c, d, e,X}, equations E = {f(X) ≈ X, f(c) ≈ d},
and the equivalence relation R = ClEq{(X, c)} that identifies X and c and keeps
the other symbols distinct. CC on this input will also identify X and d, and thus
c and d, but keep e in a separate class: CCE(R) = ClEq{(X, c), (X, d)}.

The complement isRC = {(c, d), (d, e), (c, e), (X, d), (X, e)}↔, where we write
A↔ = A∪A−1 for the symmetric closure of a relation. CCC on RC will remove
(X, d) from the relation, since ClEq{(X, c), (X,X), (d, d)} is disjoint from RC ,
and similarly (c, d): C 3

E (RC) = {(d, e), (c, e), (X, e)}↔ = CCE(R)C .
Consider now the BREU problem B = (�, E, c ≈ e) with c ≺ d ≺ e ≺ X.

Note that every substitution σ with Xσ � X preserves the disequalities

D = {(c, d), (d, e), (c, e)}↔ =
⋂

σ a substitution
∀X∈V. Xσ�X

{(a, b) ∈ S2 | aσ 6= bσ}.

As before, CCC will remove (c, d) from D; but CCC will keep (c, e), because
both ClEq{(X, c), (X, c), (d, e)} and ClEq{(X, c), (X, e), (d, c)} overlap with D,
and similarly (d, e): C 3

E (D) = {(d, e), (c, e)}↔. This shows that c and e are not
E -unifiable, and neither are d and e.

6 Lazily Solving Bounded Rigid E -Unification

When dealing with large simultaneous BREU problems, e.g., containing many
parallel problems as well as many equations, just constructing a monolithic
SAT model (possibly containing much redundancy) as in Sect. 4 can be time-
consuming, even if the subsequent solving might be fast. Our second algorithm
for solving BREU problems works in the style of lazy SMT solving: starting from
a compact SAT encoding that coarsely over-approximates the BREU problem,
additional constraints are successively added, until eventually a correct E -unifier
is derived, or the encoding becomes unsatisfiable. Following Alg. 1, the overall
idea is to repeatedly generate candidate solutions σ, check whether the candidate
is a genuine solution, and otherwise generate a blocking constraint that excludes
(at least) this solution from the search space.

Overall procedure. Consider a simultaneous BREU problem (�, (Ei, ei)ni=1). The
overall procedure is shown in Alg. 3, and based on the three steps described in
Sect. 3, but directly solving simultaneous BREU problems. The algorithm uses
an underlying solver process for reasoning incrementally about the SAT encod-
ing. The Guessing step is implemented using the Sat Domain constraints from
Sect. 3.1 (line 1). When a candidate solution σ has been found, congruence clo-
sure is used to verify that σ solves each sub-problem (�, Ei, ei) (line 4), executing
the Congruence Closure and Verifying steps in Alg. 1.

11

1: Add domain constraints (Sat Domain)
2: while solver .isSat() do
3: σ ← solver .model
4: if σ solves all sub-problems then
5: return σ
6: else
7: Let (�, E, e) be an unsolved sub-problem
8: D ← {(s, t) ∈ S2 | sσ 6= tσ}
9: D′ ← minimise(D, (�, E, e))

10: Add blocking constraint
∨
{vs = vt | (s, t) ∈ D′}

11: end if
12: end while
13: return UNSAT

Algorithm 3: Lazy search procedure for a simultaneous BREU problem.

Input: Disequality set D
Input: BREU problem (�, E, s ≈ t) with (s, t) ∈ C 3

E (D)
1: Compute set BaseD for � // by construction, BaseD ⊆ D
2: for dq ∈ D\BaseD do
3: D′ ← C 3

E (D\{dq})
4: if (s, t) ∈ C 3

E (D′) then
5: D ← D′ ∪ BaseD
6: end if
7: end for
8: return D

Algorithm 4: Minimisation of disequality sets

Blocking constraints. Given a candidate σ that violates (�, Ei, si ≈ ti), a block-
ing constraint for σ is a formula φ over the solution variables {vt | t ∈ S}
introduced in Sect. 3.1 with the property that 1. φ evaluates to false for the
assignment {vt 7→ Ind(tσ) | t ∈ S}, and 2. φ evaluates to true for all genuine E -
unifiers σ′ and assignments {vt 7→ Ind(tσ′) | t ∈ S}. In other words, φ excludes
the incorrect solution σ, but it does not rule out any correct E -unifiers. The
most straightforward blocking constraint excludes the incorrect candidate σ:∨

X∈S∩V
vX 6= Ind(Xσ) (1)

This constraint leads to a correct procedure, but is inefficient since it does not
generalise from the observed conflict (in SMT terminology), and does not exclude
any candidates other than σ. More efficient blocking constraints can be defined
by using the concept of complemented congruence closure. For this, observe that
(1) can equivalently be expressed in terms of disequalities implied by σ:∨

(s,t)∈D

vs = vt, D = {(s, t) ∈ S2 | sσ 6= tσ} (2)

12

Candidate σ (E1, e1) (E2, e2) Minimised set D′

1: X 7→ X,Y 7→ Y,U 7→ U, V 7→ V 7 (7) {(Y, o4), (V, o4)} ∪ BaseD
2: X 7→ X,Y 7→ Y,U 7→ U ,V 7→ o4 7 (7) {(Y, o4), (U, o3)} ∪ BaseD
3: X 7→ X,Y 7→ o4,U 7→ U ,V 7→ V 7 (7) {(U, o4), (V, o4)} ∪ BaseD
4: X 7→ X,Y 7→ o4, U 7→ U ,V 7→ o4 7 (7) {(U, o4), (U, o3)} ∪ BaseD
5: X 7→ X,Y 7→ o4,U 7→ o3,V 7→ o4 7 (7) {(X,Y), (Y, a), (Y, b), (Y, o1),

(Y, o2), (U, o4)} ∪ BaseD
6:X 7→ o4,Y 7→ o4, U 7→ o3, V 7→ o4 3 7 {(X, o2), (Y, o2)} ∪ BaseD
7:X 7→ o2, Y 7→ o1,U 7→ o3, V 7→ o4 3 7 {(Y, o2), (V, o2)} ∪ BaseD
8:X 7→ o1, Y 7→ o2,U 7→ o3, V 7→ o4 3 3 —

Table 2. Execution of the lazy algorithm

Indeed, in order to satisfy (1), one of the disequalities in D has to be violated
(since σ′ 6= σ implies Xσ′ = t for some variable X and some t ∈ S \ {Xσ}); and
vice versa, (2) can only be satisfied by substitutions σ′ different from σ.

To obtain stronger blocking constraints, we consider subsets of D in (2), but
ensure that only constraints are generated that do not exclude E -unifiers of the
sub-problem (�, Ei, si ≈ ti), and therefore also preserve solutions of the overall
problem (�, (Ei, ei)ni=1). This is the case for all constraints defined as follows:∨

(s,t)∈D′

vs = vt, (Lazy BC)

where D′ ⊆ {(s, t) ∈ S2 | sσ 6= tσ} such that (si, ti) ∈ C 3
Ei

(D′).

The condition (si, ti) ∈ C 3
Ei

(D′) expresses that D′ is a set of disequalities that
prevents si and ti from being unified. Suppose σ′ is a solution candidate vio-
lating Lazy BC, which by construction implies R ∩ D′ = ∅ for R = {(s, t) ∈
S2 | sσ′ = tσ′}. By Corollary 11, we then have CCEi

(R) ∩ C 3
Ei

(D′) = ∅, and
therefore (si, ti) 6= CCEi

(R), so that σ′ cannot be an E -unifier of (�, Ei, si ≈ ti).
The constraint Lazy BC is implemented in lines 8–10 in Alg. 3.

Minimisation. Greedy systematic minimisation of disequality sets D is described
in Alg. 4, which successively attempts to remove elements dp from D, but pre-
serving (s, t) ∈ C 3

E (D). Certain disequalities sσ 6= tσ are known to hold under
any substitution σ, and are handled using a special set BaseD and kept in D:

BaseD =
⋂

σ a substitution
∀X∈V. Xσ�X

{(a, b) ∈ S2 | aσ 6= bσ}

BaseD can easily be derived from �. Elimination of disequalities from BaseD
is not helpful, since such disequalities are already implied by the Sat Domain
constraint; at the same time, they are useful as input for CCC.

Example 13. We consider again (�, {(E1, e1), (E2, e2)}) from Example 4, which
is solved by the run of Alg. 3 shown in Table 2. Note that various executions

13

0.01

0.1

1

10

0 2000 4000 6000 8000

R
u
n
ti

m
e

(s
ec

)

BREU Problem Count

Table
Lazy

Fig. 2. Cactus plot showing the runtime
distribution for the two procedures.

0

10

20

30

40

50

60

5 10 15 20 25 30 35 40

A
v
er

a
g
e

R
u
n
ti

m
e

(s
ec

)

Maximum Equation Count

Table
Lazy

Fig. 3. Runtime dependent on the max-
imum number of equations in a BREU
sub-problem.

SAT UNSAT T/O (SAT) T/O (UNSAT)

Table 3769 2854 0 3
Lazy 3727 2845 45 9

Table 3. Comparison of the two BREU procedures. All experiments were done on an
AMD Opteron 2220 SE machine, running 64-bit Linux, heap space limited to 1.5GB.

exist, since the sets D′ and the candidates σ are not uniquely determined.
Sets D′ directly translate to blocking constraints, for instance {(Y, o4), (V, o4)}∪
BaseD is encoded as vY = vo4 ∨ vV = vo4 ∨ · · · . In iterations 1–5, the sub-
problem (�, E1, e1) is violated, and used to generate a blocking constraints; in
6–7, (�, E2, e2) is used. It can be observed that the algorithm is able to derive
very concise blocking constraints, and quickly focuses on interesting assignments.

7 Experiments

We implemented both procedures as described in Sect. 4 and Sect. 6 and in-
tegrated them into the ePrincess theorem prover (based on [10]) using the
calculus presented in [2].3 The Sat4j solver was used to reason about the propo-
sitional encoding used in the procedures. To measure the performance of the two
methods, we used randomly selected benchmarks from TPTP v.6.1.0 to generate
BREU problems: when constructing a proof for a TPTP problem, ePrincess
repeatedly extracts and attempts to solve BREU problems in order to close the
constructed proof. ePrincess was instrumented to output and collected those
BREU problems, so that altogether 6626 instances were in the end available for
benchmarking. Those 6626 BREU problems were then separately processed by
the Table and Lazy procedure, with a timeout of 60s.

3 Found at http://user.it.uu.se/~petba168/breu/

14

0.1

1

10

0.1 1 10

L
a
zy

R
u
n
ti

m
e

(s
ec

)

Table Runtime (sec)

Fig. 4. Runtime comparison of the lazy and table procedures

7.1 Results and Discussion

The two procedures can handle most of the BREU problems generated. Table 3
tells us that the table procedure can solve all but three, while the lazy time-
outs on slightly above 50. However, the three problems which the table method
could not handle where all solved by the lazy method. The fact that almost
all BREU problems could be solved indicates the efficiency of the two BREU
procedures, but also that the BREU problems generated by ePrincess are not
excessively large (which can be considered a strength of the calculus implemented
by ePrincess [2]).

The cactus plot in Fig. 2 shows the distribution of runtime needed by either
procedure to solve the BREU problems. It can be observed that more than half of
the problems can be solved in less than 0.1s, and most of the problems in less than
1s. Fig. 3 shows that increasing complexity of BREU problems (�, (Ei, ei)ni=1),
measured in terms of the maximum number of equations in any BREU sub-
problem (Ei, ei), also leads to increased solving time. The graph illustrates that
the lazy procedure is more sensitive to this form of complexity than the table
procedure. The high runtime for equation count > 35 corresponds to timeouts.
In contrast, we found that neither procedure is very sensitive to the number of
sub-problems that a BREU problem consists of.

From Fig. 2 and Fig. 3, it can be seen that the table procedure is on average
a bit faster than the lazy procedure. The scatter plot in Fig. 4 gives a more
detailed comparison of runtime, and shows that the correlation of runtime of
the procedures is in fact quite weak, but there is a slight trend towards shorter

15

runtime of the table method. Note that this is a comparison between procedures
for solving BREU problems, for an evaluation of the overall performance of
ePrincess on TPTP problems we refer the reader to [2].

On average, the lazy procedure produces 4.3 blocking clauses before finding
an E -unifier, or proving that no unifier exists. The major bottleneck of the lazy
method lies in the minimisation step of blocking constraints. The procedure
spends most of its time in this part, and could be improved by creating a more
efficient algorithm for CCC. For the table method, most of the runtime is spent
in SAT solving, in particular in calls concluding with UNSAT.

8 Conclusion

In this paper we have presented two different procedures for solving the BREU
problem. Both of them are shown to be efficient and usable in an automated
theorem proving environment. Apart from further improving the proposed pro-
cedures, in future work we plan to consider the combination of BREU with other
theories, in particular arithmetic.

Acknowledgements We thank the anonymous referees for helpful feedback.

References

1. Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. J. Autom.
Reasoning 31(2), 129–168 (2003)

2. Backeman, P., Rümmer, P.: Theorem proving with bounded rigid E-Unification.
In: CADE. LNCS, Springer (2015), to appear

3. Degtyarev, A., Voronkov, A.: What you always wanted to know about rigid E-
Unification. J. Autom. Reasoning 20(1), 47–80 (1998)

4. Degtyarev, A., Voronkov, A.: Equality reasoning in sequent-based calculi. In: Hand-
book of Automated Reasoning (in 2 volumes). Elsevier and MIT Press (2001)

5. Degtyarev, A., Voronkov, A.: Kanger’s Choices in Automated Reasoning. Springer
(2001)

6. Fitting, M.C.: First-Order Logic and Automated Theorem Proving. Graduate
Texts in Computer Science, Springer-Verlag, Berlin, 2nd edn. (1996)

7. Gallier, J.H., Raatz, S., Snyder, W.: Theorem proving using rigid e-unification
equational matings. In: LICS. pp. 338–346. IEEE Computer Society (1987)

8. Kanger, S.: A simplified proof method for elementary logic. In: Siekmann, J.,
Wrightson, G. (eds.) Automation of Reasoning 1: Classical Papers on Computa-
tional Logic 1957-1966, pp. 364–371. Springer, Berlin, Heidelberg (1983), originally
appeared in 1963

9. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J.
ACM 27, 356–364 (April 1980)

10. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: LPAR. LNCS, Springer (2008)

11. Tiwari, A., Bachmair, L., Rueß, H.: Rigid E-Unification revisited. In: CADE. pp.
220–234. CADE-17, Springer-Verlag, London, UK, UK (2000)

16

