
Sequential, Parallel, and Quantified Updates of
First-Order Structures

Philipp Rümmer

Department of Computer Science and Engineering, Chalmers University of
Technology and Göteborg University, SE-412 96 Göteborg, Sweden

philipp@cs.chalmers.se

Abstract. We present a datastructure for storing memory contents of
imperative programs during symbolic execution—a technique frequently
used for program verification and testing. The concept, called updates,
can be integrated in dynamic logic as runtime infrastructure and mod-
els both stack and heap. Here, updates are systematically developed as
an imperative programming language that provides the following con-
structs: assignments, guards, sequential composition and bounded as
well as unbounded parallel composition. The language is equipped both
with a denotational semantics and a correct rewriting system for execu-
tion, whereby the latter is a generalisation of the syntactic application of
substitutions. The normalisation of updates is discussed. The complete
theory of updates has been formalised using Isabelle/HOL.

1 Introduction

First-Order Dynamic Logic [1] is a program logic that enables to reason about the
relation between the initial and final states of imperative programs. One way to
build calculi for dynamic logic is to follow the symbolic execution paradigm and
to execute programs (symbolically) in forward direction. This requires infrastruc-
ture for storing the memory contents of the program, for updating the contents
when assignments occur and for accessing information whenever the program
reads from memory. Sequent calculi for dynamic logic often represent memory
using formulas and handle state changes by renaming variables and by relating
pre- and post-states with equations. All information about the considered pro-
gram states is stored in the side-formulas Γ , ∆ of a sequent Γ ` 〈α 〉 φ,∆, like
in inequations 0

.
< x and equations x′ .= x + 1.

As an alternative, this paper presents a datastructure called Updates, which
are a generalisation of substitutions designed for storing symbolic memory con-
tents. When using updates, typical sequents during symbolic execution have the
shape Γ ` {u} 〈α 〉 φ,∆. The program α is preceded by an update u that deter-
mines parts of the program state, for instance the update x := x + 1. Compared
with side-formulas, updates (i) attach information about the program state di-
rectly to the program, (ii) avoid the introduction of new symbols, (iii) can be
simplified and avoid the storage of obsolete information, like of assignments that
have been overridden by other assignments, (iv) represent accesses to variables,

array cells or instance attributes (in object-oriented languages) in a uniform way,
(v) delay case-distinctions that can become necessary due to aliasing, (vi) can
be eliminated mechanically once a program has been worked off completely.

Historically, updates have evolved over years as a central component of the
KeY system [2], a system for deductive verification of Java programs. They are
used both for interactive and automated verification. In the present paper, we
define updates as a formal language (independently of particular program logics)
and give them a denotational semantics based on model-theoretic semantics of
first-order predicate logic. The language is proposed as an intermediate language
to which sequential parts of more complicated languages (like Java) can stepwise
be translated. The thesis [3] related to this paper gives a rewriting system that
allows to execute or eliminate updates mechanically. The main contributions of
the paper are new update constructs (in particular quantification), the devel-
opment of a complete metatheory of updates and its formalisation1 using the
Isabelle/HOL proof assistant [4], including proofs of all lemmas about updates
that are given in the present paper or in [3].

The paper is organised as follows: Sect. 2 motivates updates through an ex-
ample. Sect. 3 and 4 introduce syntax and semantics of a basic version of updates
in the context of a minimalist first-order logic. Sect. 5 describes the rewriting sys-
tem for executing updates. Sect. 6 adds an operator for sequential composition
to the update language. Sect. 7 shows how heap structures can be modelled and
modified using updates, which is applied in Sect. 8 about symbolic execution.
Sect. 9 discusses laws for simplification of updates.

2 Updates for Symbolic Execution in Dynamic Logic

We give an example for symbolic execution using updates in dynamic logic.
Notation and constructs used here are later introduced in detail. The program
fragment max is written in a Java-like language and is executed in the context
of a class/record List representing doubly-linked lists with attributes next , prev
and val for the successor, predecessor and value of list nodes:

max = if (a.val
.
< a.next .val) g = a.next .val ; else g = a.val ;

where a and g are program variables pointing to list nodes. The initial state of
program execution is specified in an imperative way using an update:

init = a.prev := nil | b.next := nil | a.next := b | b.prev := a |
a.val := c | b.val := d

init can be read as a program that is executing a number of assignments in
parallel and that is setting up a list with nodes a and b. In case a

.= b—which is
possible because we do not specify the opposite—the two nodes will collapse to
the single node of a cyclic list and will carry value d: assignments that literally
1 www.cs.chalmers.se/~philipp/updates.thy, ≈ 3500 lines Isabelle/Isar code

www.cs.chalmers.se/~philipp/updates.thy

occur later (b.val := d) can override earlier assignments (a.val := c). This means
that parallel composition in updates also has a sequential component: while the
left- and right-hand sides of the assignments are all evaluated in parallel, the
actual writing to locations is carried out sequentially from left to right.

When adding updates to a dynamic logic, they can be placed in front of modal
operators for programs, like in {init} 〈max 〉 φ. The diamond formula 〈max 〉 φ
alone expresses that a given formula φ holds in at least one final state of max .
Putting the update init in front means that first init and then the program max
is supposed to be executed—init sets up the pre-state of max .

We execute max symbolically by working off the statements in forward di-
rection. Effects of the program are either appended to the update init or are
translated to first-order connectives. We denote execution steps of max by
and write ≡ for an update simplification step. init is used as an abbreviation.

{init} 〈 if (a.val
.
< a.next .val) g = a.next .val ; else g = a.val ;〉 φ

A conditional statement can be translated to propositional connectives. The
branch condition is co = (a.val

.
< a.next .val).

 {init}
(
(co ∧ 〈 g = a.next .val ;〉 φ) ∨ (¬co ∧ 〈 g = a.val ;〉 φ)

)
The application of init distributes through propositional connectives. Applying
init to co yields the condition co′ = ({init} co) ≡ ((if a

.= b then d else c)
.
< d).

≡ (co′ ∧ {init} 〈 g = a.next .val ;〉 φ ∨ (¬co′ ∧ {init} 〈 g = a.val ;〉 φ)
The program assignments are turned into update assignments that are sequen-
tially (;) connected with init .
 (co′ ∧ {init ; g := a.next .val} φ) ∨ (¬co′ ∧ {init ; g := a.val} φ)

The updates are simplified by turning sequential composition ; into parallel
composition | . The update init has to be applied to the right-hand sides, which
become ({init} a.next .val) ≡ d and ({init} a.val) ≡ (if a

.= b then d else c).
≡ (co′ ∧ {init | g := d} φ) ∨ (¬co′ ∧ {init | g := (if a

.= b then d else c)} φ)

The last formula is logically equivalent to the original formula {init} 〈max 〉 φ
and can further be simplified by applying the updates to φ. An implementation
like in KeY can, of course, easily carry out all shown steps automatically.

3 Syntax of Terms, Formulas, and Updates

The present paper is a self-contained account on updates. To this end, we ab-
stract from concrete program logics and define syntax and semantics of a (min-
imalist)2 first-order logic that is equipped with updates. Updates can, however,
be integrated in virtually any predicate logic, e.g., in dynamic logic.

We first define a basic version of our logic that contains the most common
constructors for terms and formulas (see e.g. [5]), the equality predicate .= and

2 We do not include many common features like arbitrary predicate symbols, in order
to keep the presentation concise. Adding such concepts is straightforward.

a strict order relation
.
<, as well as operators for minimum and conditional

terms. The two latter are not strictly necessary, but enable a simpler definition
of laws and rewriting rules. In this section, updates are only equipped with the
connectives for parallelism, guards and quantification, sequential composition is
added later in Sect. 6.

In order to define the syntax of the logic, we need (i) a vocabulary (Σ,α) of
function symbols, where α : Σ → N defines the arity of each symbol, and (ii) an
infinite set Var of variables.

Definition 1. The sets Ter, For and Upd of terms, formulas and updates are
defined by the following grammar, in which x ∈ Var ranges over variables and
f ∈ Σ over functions:

Ter ::= x || f(Ter , . . . ,Ter) || if For then Ter else Ter || minx.For || {Upd} Ter

For ::= true || false ||For ∧ For ||For ∨ For || ¬For || ∀x.For || ∃x.For ||
Ter .= Ter ||Ter

.
< Ter || {Upd} For

Upd ::= skip || f(Ter , . . . ,Ter) := Ter ||Upd |Upd || if For {Upd} || for x {Upd}

The update constructors represent the empty update skip, assignments to func-
tion terms f(s1, . . . , sn) := t, parallel updates u1 | u2, guarded updates if φ {u},
and quantified updates for x {u}. The possibility of having function terms as
left-hand sides of assignments is crucial for modelling heaps. In Sect. 2, expres-
sions like a.prev are really function terms prev(a), but we use the more common
notation from programming languages. More details are given in Sect. 7. There
are also constructors for applying updates to terms and to formulas (like {u} φ).

We mostly use vector notation for the arguments t̄ of functions. Operations
on terms are extended canonically or in an obvious way to vectors, for in-
stance f({u} t̄) = f({u} t1, . . . , {u} tn), valS,β(t̄) = (valS,β(t1), . . . , valS,β(tn)).

4 Semantics of Terms, Formulas, and Updates

The meaning of terms and formulas is defined using classical model-theoretic
semantics. We consider interpretations as mappings from locations to individuals
of a universe U (the predicates .= and

.
< are handled separately):

Definition 2. Given a vocabulary (Σ, α) of function symbols and an arbitrary
set U , we define the set Loc(Σ,α),U of locations over (Σ,α) and U by

Loc(Σ,α),U := {〈f, (a1, . . . , an)〉 | f ∈ Σ, α(f) = n, a1, . . . , an ∈ U} .

If the indexes are clear from the context, we just write Loc instead of Loc(Σ,α),U .

The following definition of structures/algebras deviates from common defini-
tions in the addition of a strict well-ordering on the universe.3 The well-ordering
is used for resolving clashes that can occur in quantified updates (see Example 1
and Sect. 8).
3 As every set can be well-ordered (based on Zermelo-Fraenkel set theory [6]) this

does not restrict the range of considered universes. Because the well-ordering is also

Definition 3. Suppose that a vocabulary (Σ, α) of function symbols is given. A
well-ordered algebra over (Σ, α) is a tuple S = (U,<, I), where

– U is an arbitrary non-empty set (the universe),
– < is a strict well-ordering on U , i.e., a binary relation with the properties4

• Irreflexivity: a 6< a for all a ∈ U ,
• Transitivity: a1 < a2, a2 < a3 entails a1 < a3 (a1, a2, a3 ∈ U),
• Well-orderedness: Every non-empty set A ⊆ U contains a least element

min< A ∈ A such that min< A < a for all a ∈ A\{min< A},
– I is a (total) mapping Loc(Σ,α),U → U (the interpretation).

A partial interpretation is a partial function Loc(Σ,α),U → U .

A (partial) function f : M → N is here considered as a subset of the cartesian
product M ×N . For combining and modifying interpretations, we frequently
make use of the overriding operator ⊕, which can be found in Z [7] and many
other specification languages. For two (partial or total) functions f, g : M → N
we define

f ⊕ g := {(a 7→ b) ∈ f | for all c: (a 7→ c) 6∈ g} ∪ g ,

i.e., g overrides f but leaves f unchanged at points where g is not defined. For
S = (U,<, I), we also write S ⊕A := (U,<, I ⊕A) as a shorthand notation.

Definition 4. A variable assignment over a set Var of variables and a well-
ordered algebra (U,<, I) is a mapping β : Var → U .

Given a variable assignment β, we denote the assignment that is altered in
exactly one point as is common:

βa
x(y) :=

{
a for x = y

β(y) otherwise

From now on, we consider the vocabulary (Σ,α) and Var as fixed.

Definition 5. Given a well-ordered algebra S = (U,<, I) and a variable assign-
ment β, we define the evaluation of terms, formulas and updates through the
equations of Table 1 as the (overloaded) mapping

valS,β : Ter → U, valS,β : For → {tt , ff }, valS,β : Upd → (Loc → U),

i.e., in particular updates are evaluated to partial interpretations.

accessible through the predicate
.
<, however, the expressiveness of the logic goes

beyond pure first-order predicate logic. One can, for instance, axiomatise natural
numbers up to isomorphism with a finite set of formulas. In our experience, this is
not a problem for the application of updates, because quantification in updates will
in practice only be used for variables representing integers, objects or similar types.
On such domains, appropriate well-orderings are readily available and have to be
handled anyway.

4 Note, that well-orderings are linear, i.e., a < b, a = b, or b < a for arbitrary a, b ∈ U .
Further, well-orderings are well-founded—there are no infinite descending chains—
which enables us to use well-founded recursion when defining update evaluation.

Table 1. Evaluation of Terms, Formulas, and Updates

For terms:

valS,β(x) = β(x) (x ∈ Var)

valS,β(f(t̄)) = I〈f, valS,β(t̄)〉 (S = (U, <, I))

valS,β(if φ then t1 else t2) =

(
valS,β(t1) for valS,β(φ) = tt

valS,β(t2) otherwise

valS,β(min x. φ) =

(
min< A for A 6= ∅
min< U otherwise

where S = (U, <, I) and A = {a ∈ U | valS,βa
x
(φ) = tt}

For formulas:

valS,β(true) = tt , valS,β(false) = ff

valS,β(φ1 ∧ φ2) = tt iff ff 6∈ {valS,β(φ1), valS,β(φ2)}
valS,β(φ1 ∨ φ2) = tt iff tt ∈ {valS,β(φ1), valS,β(φ2)}

valS,β(¬φ) = tt iff valS,β(φ) = ff

valS,β(∀x. φ) = tt iff ff 6∈ {valS,βa
x
(φ) | a ∈ U}

valS,β(∃x. φ) = tt iff tt ∈ {valS,βa
x
(φ) | a ∈ U}

valS,β(t1
.
= t2) = tt iff valS,β(t1) = valS,β(t2)

valS,β(t1
.
< t2) = tt iff valS,β(t1) < valS,β(t2) (S = (U, <, I))

For updates:

valS,β(skip) = ∅
valS,β(f(s̄) := t) = {〈f, valS,β(s̄)〉 7→ valS,β(t)}

valS,β(u1 | u2) = valS,β(u1)⊕ valS,β(u2)

valS,β(if φ {u}) =

(
valS,β(u) for valS,β(φ) = tt

∅ otherwise

valS,β(for x {u}) =
[

{A(a) | a ∈ U}

where A : U → (Loc → U) is defined by well-founded recursion on (U, <) and the equa-
tion A(a) = valS,βa

x
(u)⊕

S
{A(b) | b ∈ U, b < a}

Application of updates: (S′ = S ⊕ valS,β(u) and α ∈ Ter ∪ For)

valS,β({u} α) = valS′,β(α)

The most involved part of the update evaluation concerns quantified expres-
sions for x {u}, whose value is defined by well-founded recursion on (U,<). The
definition shows that quantification is a generalisation of parallel composition:
informally, for a well-ordered universe U = {a < b < c < · · · } we have

valS,β(for x {u}) = · · · ⊕ valS,βc
x
(u)⊕ valS,βb

x
(u)⊕ valS,βa

x
(u) .

For a general definition (see Table 1) of the partial interpretation on the right-
hand side, we need a union operator on partial functions:5

(⋃
M

)
(x) =

{
f(x) if there is f ∈ M with f(x) 6= ⊥
⊥ otherwise

,

where we write f(x) = ⊥ if a partial function f is not defined at point x.

Example 1. The following examples refer to the well-ordered algebra (N, <, I),
where < is the standard order on N. We assume that the vocabulary contains
literals and operations +, ·, and that these symbols are interpreted as usual forN.

valS,β(a := 2) = {〈a〉 7→ 2}
In parallel composition, the effect of the left update is invisible to the right one:

valS,β(a := 2 | f(a) := 3) = {〈a〉 7→ 2, 〈f, (valS,β(a))〉 7→ 3}
The right update in parallel composition overrides the left update when clashes
occur. Here, this happens for valS,β(a) = 1:

valS,β(f(a) := 1 | f(1) := 2) = {〈f, (1)〉 7→ 2}
In contrast, for valS,β(a) 6= 1 both assignments have an effect:

valS,β(f(a) := 1 | f(1) := 2) = {〈f, (valS,β(a))〉 7→ 1, 〈f, (1)〉 7→ 2}
Quantified updates make it possible to define whole functions:
valS,β({for x {f(x) := 2 · x + 1}} f(5)) = 11
When clashes occur in quantified updates, smaller valuations of the quantified
variable will dominate. The smallest individual of (N, <) is 0:

valS,β(for x {a := x}) = {〈a〉 7→ 0}
Update constructors can be nested arbitrarily, like in quantified parallel updates:

valS,β(for x {(f(x + 3) := x | f(2 · x) := x + 1)}) =

{〈f, (3)〉 7→ 0, 〈f, (4)〉 7→ 1, 〈f, (5)〉 7→ 2, 〈f, (6)〉 7→ 3, 〈f, (7)〉 7→ 4, . . . ,
〈f, (0)〉 7→ 1, 〈f, (2)〉 7→ 2, 〈f, (4)〉 7→ 3, 〈f, (6)〉 7→ 4, 〈f, (8)〉 7→ 5, . . . }

In the last example, both kinds of clashes occur: (i) the pair 〈f, (6)〉 7→ 3 stems
from f(x + 3) := x and is overridden by 〈f, (6)〉 7→ 4 (from f(2 · x) := x + 1),
because updates on the right side of parallel composition dominate updates on
the left side (“last-win semantics”). (ii) the pair 〈f, (4)〉 7→ 3 stems from the
valuation x 7→ 2 and is overridden by 〈f, (4)〉 7→ 1 (from x 7→ 1), because small
valuations of variables dominate larger valuations (“well-ordered semantics”).
5 The operator

S
is obviously not uniquely defined by the given equation, but because

of A(a) ⊆ A(b) for a < b its result is unique when defining the evaluation function.

We formalise the behaviour of updates for the latter kind of clashes:

Lemma 1. Small valuations of variables in updates override larger ones:

valS,β(for x {u})(loc) = valS,βm
x

(u)(loc)

where m =

{
min< A for A 6= ∅
arbitrary otherwise

and A = {a | valS,βa
x
(u)(loc) 6= ⊥}

We can now also introduce the equivalence symbol ≡ used in Sect. 2:

Definition 6. We call two terms, formulas or updates α1, α2∈Ter ∪ For ∪Upd
equivalent and write α1 ≡ α2 if they are necessarily evaluated to the same value:
for all well-ordered algebras S and all variable assignments β over S,

valS,β(α1) = valS,β(α2) .

≡ is a congruence relation for all constructors given in Def. 1 (see Lem. 2).

5 Application of Updates by Rewriting

Updates do in principle not increase the expressiveness of terms or formulas:
given an arbitrary term, formula or update α, there will always be an equivalent
expression α′ ≡ α that does not contain the update application operator.6 We
obtain this result by giving a rewriting system that eliminates updates using
altogether 44 rules like {u} (t1 ∗ t2) → {u} t1 ∗ {u} t2 (with ∗ ∈ { .=,

.
<}). For the

complete rewriting system, we have to refer to [3].
Syntactic application of updates to terms or formulas, i.e., simplification of

expressions {u} α, is carried out in two phases: first, the update is propagated
to subterms or subformulas. In the second phase, when the update has reached
a function application, it is analysed whether the update assigns the represented
location. For achieving this separation, we need to introduce further operators
and extend the syntax given Def. 1 as well as the semantics of Def. 5:

Definition 7. We define the sets TerA, ForA and UpdA of terms, formulas and
updates as in Def. 1, but with further constructors (x ∈ Var ranges over variables
and f ∈ Σ over functions):

TerA ::= · · · || {x/TerA} TerA ||non-rec(UpdA, f, (TerA, . . . ,TerA))

ForA ::= · · · || {x/TerA} ForA || in-dom(f, (TerA, . . . ,TerA),UpdA)

UpdA ::= · · · || {x/TerA} UpdA ||reject(UpdA,UpdA)

The constructors represent the explicit application of substitutions to terms, for-
mulas, and to updates (like {x/s} t), the non-recursive application of an update u

6 As we have not formally proven that our rewriting system that turns α into α′ is
terminating (but consider it as obvious), we do not state this as a theorem.

to function terms f(t̄) (like non-rec(u, f, t̄)), the test whether an update u as-
signs to the location denoted by f(t̄) (like in-dom(f, t̄, u)), and filtered updates
reject(u1, u2) (which are described in Sect. 9). We also extend the evaluation
function valS,β on TerA, ForA and UpdA by adding the following clauses:

valS,β({x/s} α) = valS,β′(α) ,

where β′ = β
valS,β(s)
x and α ∈ TerA ∪ ForA ∪UpdA,

valS,β(non-rec(u, f, t̄)) = I ′〈f, valS,β(t̄)〉 ,

where S = (U,<, I) and I ′ = I ⊕ valS,β(u),
valS,β(in-dom(f, t̄, u)) = tt iff valS,β(u)〈f, valS,β(t̄)〉 6= ⊥
valS,β(reject(u1, u2)) = {(loc 7→ a) ∈ valS,β(u1) | valS,β(u2)(loc) = ⊥}

The difference between non-recursive application non-rec(u, f, t̄) and ordi-
nary application {u} f(t̄) is that the subterms t̄ are in the first case evaluated
in the unmodified algebra, whereas in the latter case the algebra is first updated
by u. Formally, we have {u} f(t̄) ≡ non-rec(u, f, {u} t̄). The non-recursive op-
erator enables us to separate the syntactic propagation of updates to subterms
and subformulas from the syntactic evaluation of updates.

6 Sequentiality and Application of Updates to Updates

We extend the basic version of updates from Sect. 3 a second time and intro-
duce sequential composition. Sequentiality already occurs when applications of
updates are nested, for instance in an expression {u1} {u2} α. It seems natural
to make an operator for sequential composition compatible with the nesting of
updates: {u1} {u2} α ≡ {u1 ; u2} α. Sequential composition of this kind can be
reduced to parallel composition by extending the update application operator to
updates themselves, i.e., by considering updates {u1} u2.

Definition 8. We define the sets TerAS, ForAS and UpdAS of terms, formulas
and updates as in Def. 7, but with two further constructors:

UpdAS ::= · · · ||UpdAS ; UpdAS || {UpdAS} UpdAS

Again, the evaluation function is extended to TerAS , ForAS and UpdAS by adding
two clauses (in both cases S′ = S ⊕ valS,β(u1)):

valS,β(u1 ; u2) = valS,β(u1)⊕ valS′,β(u2), valS,β({u1} u2) = valS′,β(u2)

The second clause resembles the semantics of update application to terms and
formulas. The first clause is very similar to the evaluation of parallel updates,
with the only difference that the right update u2 is evaluated in the structure S′

updated by u1. Intuitively, with parallel composition the effect of u1 is invisible
to u2 (and vice versa), whereas sequential composition carries out u1 before
u2. This directly leads to the equivalence u1 ; u2 ≡ u1 | {u1} u2 that makes it
possible to eliminate sequentiality (see [3]).

The relation ≡ from Def. 6 can be extended to TerAS , ForAS and UpdAS :

Lemma 2. Equivalence ≡ of terms, formulas and updates is a congruence re-
lation for all constructors given in Def. 1, 7 and 8.

Example 2. We continue Example 1 and assume the same vocabulary/algebra.

a := 1 ; f(a) := 2 ≡ a := 1 | f(1) := 2
valS,β(a := 1 ; f(a) := 2) = {〈a〉 7→ 1, 〈f, (1)〉 7→ 2}

valS,β(a := 1 ; (a := 3 | f(a) := 2)) = {〈a〉 7→ 3, 〈f, (1)〉 7→ 2}

7 Modelling Heap Structures

The memory of imperative and object-oriented programs can be modelled as a
well-ordered algebra by choosing appropriate vocabularies Σ. By updating the
values of function symbols, the memory contents can be modified symbolically.
Compared to a more explicit encoding of program states as individuals (for
instance, elements of a datatype), directly representing memory using a first-
order vocabulary leads to very readable formulas that are in particular suited
for interactive proof systems (see [3] for a more detailed discussion).

In the whole section, we assume that the universe for evaluating updates are
the natural numbers N, and that the standard well-ordering < is used (as in
Example 1). A more realistic application would, of course, require a typed logic
and to model the datatypes of programming languages properly. For this section,
it shall suffice to treat both data and addresses/pointers as natural numbers.

Variables: The simplest way to store data in programs is the usage of global
variables, which can be seen as constants g, h, i, . . . ∈ Σ when representing pro-
gram memory using well-ordered algebras (α(g) = α(h) = · · · = 0). Assignments
are naturally performed through updates g := t. Expanding a sequential update
into a parallel update yields a representation of the post-state by describing the
post-values of all modified variables in terms of the pre-values:7

gswap = i := g ; g := h ; h := i ≡ g := h | h := g | i := g

Classes and Attributes: The individual objects of a class can be distinguished
using addresses (natural numbers). Instance attributes of a class C are then
unary functions aC , bC . . . ∈ Σ (with α(aC) = α(bC) = · · · = 1) that take an ad-
dress as argument. As an example, we consider again the class List representing
doubly-linked lists from Sect. 2 (with attributes next , prev , val ∈ Σ). The follow-
ing two updates describe the setup of singleton lists (that hold a value v) and
the concatenation of two lists (where one list ends with the object e and the
second one begins with the object b):

setup(o, v) = o.prev := nil | o.val := v | o.next := nil

cat(e, b) = e.next := b | b.prev := e

7 We leave out parentheses because both parallel and sequential composition are as-
sociative, see (R52) and (R53) in Table 2.

(we assume that nil ∈ Σ denotes invalid addresses and the beginning and end
of lists). The update init from Sect. 2 and a list containing the numbers 0, . . . , n
can then be set up as follows:

init ≡ setup(a, c) ; setup(b, 2) ; cat(a, b) ; a.next .val := d

seq = for x {if x
.
< n + 1 {setup(x, x)}} ; for x {if x

.
< n {cat(x, x + 1)}}

≡N 0.prev := nil | n.next := nil | for x {if x
.
< n + 1 {x.val := x}} |

for x {if x
.
< n {x.next := x + 1}} |

for x {if x
.
< n {(x + 1).prev := x}}

Properties about the lists can be proven by applying the updates and performing
first-order reasoning:

∀x. (¬x
.
< n ∨ {seq} x.next .prev .= x) ≡N ∀x. (¬x

.
< n ∨ x

.= x) ≡ true

Object Allocation: Updates cannot add or remove individuals from a universe
(constant-domain semantics). In modal logic, the usual way to simulate changing
universes is to introduce a predicate that distinguishes between existing and non-
existing individuals. Likewise, for our heap model “implicit” attributes createdC

can be defined that, for instance, have value 1 for existing and 0 for non-existing
objects of a class C. An initial state in which no objects are allocated can be
reached through the update for x {x.createdC := 0}. We write an allocator for
list nodes as follows:8

alloc(o, v) = o := min i. (i.createdList
.= 0) ;

(
o.createdList := 1 | setup(o, v)

)
Note, that allocating objects in parallel using this method will produce clashes,
because parallel updates cannot observe each other’s effects. When running in
parallel, alloc(a, 1) and alloc(b, 2) will deterministically allocate the same object:

alloc(a, 1) | alloc(b, 2) ≡ alloc(b, 2) ; a := b 6≡ alloc(a, 1) ; alloc(b, 2)

Arrays: Arrays in a Java-like language behave much like objects of classes,
with the difference that arrays provide numbered cells instead of attributes.
We can model arrays be introducing a binary access function ar ∈ Σ and a
unary function len ∈ Σ telling the length of arrays (α(ar) = 2 and α(len) = 1).
Array allocation can be treated just like allocation of objects through an implicit
attribute createdar . Given this vocabulary, we can allocate an array of length n
and fill it with numbers 0, . . . , n− 1: (we write o[x] instead of ar(o, x))

allocar (o, n) = o := min i. (i.createdar
.= 0) ;

(
o.createdar := 1 | o.len := n

)
seqar = allocar (o, n) ; for x {if x

.
< o.len {o[x] := x}}

8 For practical purposes, it is reasonable to have more book-keeping about allocated
objects than shown here. The approach that is followed in KeY is to introduce
variables nextToCreateC and to allocate objects sequentially.

8 Symbolic Execution in Dynamic Logic Revisited

As shown in Sect. 2, during symbolic execution, updates can represent a certain
prefix (or path) of a program, whereas the suffix that remains to be executed is
given in the original language. In order to use updates for symbolic execution,
first of all a suitable representation of the program states using a first-order
vocabulary and algebras (along the lines of Sect. 7) has to be chosen. Rewriting
rules then define the semantics of program features in terms of updates and
of connectives of first-order logic. This approach has been used to implement
symbolic execution for the “real-world” language JavaCard [8]. Examples for
the rewriting rules are:9

〈 〉 φ φ, 〈 s = t; α 〉 φ {s := t} 〈α 〉 φ

〈 if (b) β1; else β2; α 〉 φ (b ∧ 〈β1; α 〉 φ) ∨ (¬b ∧ 〈β2; α 〉 φ)

It is important to note that updates are not intended as an intermediate repre-
sentation for complete programs: the focus is on handling the sequential parts.
For reasoning about general loops or recursion, techniques like induction or in-
variants are still necessary. It is, nevertheless, possible to translate certain loops
directly to an update [9]. An example are many array operations in Java:10

〈 System.arrayCopy(ar1, o1, ar2, o2, n) 〉 φ

 {for x {if ¬x
.
< o2 ∧ x

.
< o2 + n {ar2[x] := ar1[x− o2 + o1]}}} φ

Compared to a declarative specification of arrayCopy using a post-condition
that contains a universally quantified formula, the imperative update can be
applied to formulas or terms like a substitution. We consider updates as advan-
tageous both for interactive and automated reasoning: the program structure is
preserved, and unnecessary non-determinism in a derivation is avoided.

A characteristic of imperative programs is that memory locations can be
assigned to/overwritten multiple times. After elimination of sequential composi-
tion, overwritten locations occur as clashes in updates. An example is the update
init from Sect. 2 and 7, which contains potential clashes because of aliasing: for
a

.= b, the expressions a.val and b.val denote the same location. Due to last-win
semantics, it is not necessary to distinguish the possible cases when turning se-
quential composition into parallel composition. Only when applying the update,
as in the expression co′ in Sect. 2, the case a

.= b has to be handled explicitly.
Well-ordered semantics enables an implicit handling of output dependencies

in loops (different iterations assign to the same locations) in a similar way [9].
A simple example is: (e(i) is a side-effect free, possibly non-injective expression)

〈 while (¬i
.= 0) {i = i− 1; a[e(i)] = i;} 〉 φ

 {i := 0 | for x {if x
.
< i {a[e(x)] := x}}} φ

9 s, t, b have to be free of side-effects. It general, it will also be necessary to define a
translation of side-effect free program expressions into terms.

10 For sake of clarity, the example ignores the diverse errors that can occur when calling
arrayCopy, for instance for ar1

.
= ar2.

Table 2. Laws for Commuting and Distributing Update Connectives

For α ∈ TerAS ∪ ForAS ∪UpdAS :

{u1} {u2} α ≡ {u1 ; u2} α (R51)

u1 | (u2 | u3) ≡ (u1 | u2) | u3 (R52)

u1 ; (u2 ; u3) ≡ (u1 ; u2) ; u3 (R53)

u1 | u2 ≡ reject(u1, u2) | u2 (R54)

u1 | u2 ≡ u2 | reject(u1, u2) (R55)

u ≡ u | if φ {u} (φ arbitrary) (R56)

u1 ≡ u1 | reject(u1, u2) (u2 arbitrary) (R57)

if φ {u1 | u2} ≡ if φ {u1} | if φ {u2} (R58)

if φ1 {if φ2 {u}} ≡ if φ1 ∧ φ2 {u} (R59)

for x {if φ {u}} ≡ if φ {for x {u}} (x 6∈ fv(φ)) (R60)

for x {if φ {u}} ≡ if ∃x. φ {u} (x 6∈ fv(u)) (R61)

for x {u1 | u2} ≡ for x {u1} | u2 (x 6∈ fv(u2)) (R62)

For u = for z {if z
.
< x {{x/z} u1}} and z 6= x, z 6∈ fv(u1):

for x {u1} ≡ for x {reject(u1, u)} (R63)

for x {u1 | u2} ≡ for x {u1} | for x {reject(u2, u)} (R64)

For u = for z {if z
.
< x {{x/z} for y {u1}}} and |{x, y, z}| = 3, z 6∈ fv(u1):

for x {for y {u1}} ≡ for y {for x {reject(u1, u)}} (R65)

9 Laws for Update Simplification

Sect. 7 demonstrates how updates can be simplified and written as parallel com-
position of assignments. More formally, we can extend Sect. 5 and state that,
given an arbitrary update u, there will always be an equivalent update u′ ≡ u
of the following shape: (in which φi, si, ti do not contain further updates)

for x1,1 {for x1,2 {for · · · {if φ1 {s1 := t1}}}}
| · · ·
| for xk,1 {for xk,2 {for · · · {if φk {sk := tk}}}}

(1)

It is usually advantageous to establish this shape: (i) Obvious clashes, like in the
update g := 1 | g := 2, can easily be eliminated. (ii) The update can easily be
read and directly tells about the values of variables or heap contents. (iii) When
applying updates syntactically using the rewriting system of Sect. 5, this form
is more efficient than most other shapes, because it supports the search for
matching assignments. (iv) It is possible to define more specialised and efficient
rewriting rules for update application (than the ones given in [3]). This has been
done for the implementation of updates in KeY.

Table 2 gives, besides others, identities that enable to establish form (1) by
turning sequential composition into parallel composition, distributing if and
for through parallel composition and commuting if and for. In this table, we
denote the set of free variables of an expression α with fv(α) (see, e.g., [5]). The
soundness of all rules and identities, based on the semantics of Sect. 4, has been
proven using the Isabelle/HOL proof assistant.

For formulating the transformation rules, we need a further operator from
Def. 7: the expression reject(u1, u2) denotes an update that carries out exactly
those assignments of u1 that do not define locations that are also assigned to
by u2. This enables us to make updates disjoint, i.e., to prevent updates from
assigning to the same locations, which is often a premise for permuting updates.
Disjointness is relevant for parallel composition (R55) and for quantification
(R64), (R65), where permutation can change the order of assignments.

10 Related Work

A theory that is very similar to updates are abstract state machines (ASMs) [10].
While there are different versions of ASMs, all update constructors of this paper
can in similar form also be found in [11]. The main difference is the notion of
“consistent updates” that exists for ASMs and that demands clash-freeness. In
contrast, the present paper describes a semantics in which clashes are resolved
by a last-win strategy or a well-ordering strategy, which we consider as better
suited for representing imperative programs.

Substitutions in B [12] have character similar to updates. Like ASMs, they
are used for modelling systems and are a complete programming language that
also provides loops and non-determinism. Updates are deliberately kept less
expressive, focussing on automated simplification and application.

The guarded command language [13] is used as intermediate language in the
verification systems ESC/Java2 and Boogie. In contrast to updates, guarded
commands are used to represent complete object-oriented programs—which re-
quires concepts like loops or non-determinism—and are eliminated using wp-
calculus.

In the context of the KeY system, updates turn up in [8] for the first time,
where the only update constructor are assignments. Parallel updates are de-
scribed in [14,15] for the first time, and have the same last-win semantics as in
this paper.

11 Conclusions and Future Work

The update language described in this paper has been implemented in the KeY
prover. Quantified updates, added most recently, have mostly improved the abil-
ity of the prover to handle arrays, as operations like arrayCopy (Sect. 8) can now
be specified and symbolically executed very efficiently. Compared to the rules in
Sect. 5 and 9 (which are more general), KeY also contains further optimisations
for applying updates that have been found to be important in practice.

In the future, an interesting step would be the combination of ordinary sub-
stitutions and updates. This would require developing a concept of bound re-
naming for updates. Another appealing improvement would be the possibility
of non-deterministic updates, which would allow to handle object creation (or,
generally, under-specification of language features) more naturally.

Acknowledgements

I want to thank Reiner Hähnle for bringing up the idea of extending the update
language by adding quantification, as well as for discussions. I am also grateful for
discussions and comments from Wolfgang Ahrendt, Richard Bubel, and Steffen
Schlager, and for comments from the anonymous referees.

References

1. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
2. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,

Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY Tool. Software
and System Modeling 4 (2005) 32–54

3. Rümmer, P.: Proving and disproving in dynamic logic for Java. Licentiate Thesis
2006–26L, Department of Computer Science and Engineering, Chalmers University
of Technology, Göteborg, Sweden (2006)

4. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)

5. Fitting, M.C.: First-Order Logic and Automated Theorem Proving. 2nd edn.
Springer-Verlag, New York (1996)

6. Zermelo, E.: Beweis dass jede Menge wohlgeordnet werden kann. Mathematische
Annalen 59 (1904) 514–516

7. Spivey, J.M.: The Z Notation: A Reference Manual. 2nd edn. Prentice Hall (1992)
8. Beckert, B.: A dynamic logic for the formal verification of JavaCard programs.

In Attali, I., Jensen, T., eds.: Java on Smart Cards: Programming and Security.
Revised Papers, Java Card 2000, International Workshop, Cannes, France. Volume
2041 of LNCS., Springer (2001) 6–24

9. Gedell, T., Hähnle, R.: Automating verification of loops by parallelization. In:
Proceedings, 13th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning. LNAI, Springer (2006) To appear.

10. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In Börger, E., ed.: Specifica-
tion and Validation Methods. Oxford University Press (1995) 9–36

11. Stärk, R.F., Nanchen, S.: A logic for abstract state machines. Journal of Universal
Computer Science 7 (2001) 981–1006

12. Abrial, J.R.: The B Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

13. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
14. Platzer, A.: An object-oriented dynamic logic with updates. Master’s thesis,

University of Karlsruhe, Department of Computer Science. Institute for Logic,
Complexity and Deduction Systems (2004)

15. Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions: A basis for object-
oriented program verification. In Furbach, U., Shankar, N., eds.: Proceedings,
IJCAR, Seattle, USA. LNCS, Springer (2006) To appear.

	Sequential, Parallel, and Quantified Updates of First-Order Structures
	Philipp Rümmer

