
Quantification of Verification Progress

[Extended Abstract]

Stephan Arlt
Université du Luxembourg

John Murray
SRI International

Philipp Rümmer
Uppsala University

Martin Schäf
SRI International

ABSTRACT
A key disadvantage of software verification over other qual-
ity assurance techniques, such as testing, is its unpredictable
cost. A lot of people-hours have to be invested before cor-
rectness can be proved, and, in contrast to testing, there is
no quantifiable evidence that incremental verification effort
results in incremental quality improvements. On the other
hand, the process of verifying code can be seen as a sort of
audit or code-walk, so there is an intuition that the process
itself improves quality, even before a proof can be computed.
In this paper we discuss our first attempts to quantify the
incremental quality improvements that are achieved during
verification using a metric called verification coverage.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory

Keywords
Software verification, coverage metrics

1. INTRODUCTION
So far, we see a very limited adoption of formal verification
into the industrial software development process. This is
largely due to the unpredictable return on investment that
is inherent to verification. One has to invest a considerable
amount of people-hours to prepare software for verification
(e.g., by specifying, or annotating code) before attempting
a proof of correctness, and one has no guarantee that this
proof can be computed by existing tools given the undecid-
ability of the problem. Until the proof is obtained there is
no notion for the quality improvement gained through ver-
ification. That is, unlike, for example, in testing, there is

currently no evidence that incremental verification effort re-
sults in incremental quality improvements.

Intuitively, we would argue that any verification effort im-
proves software quality, regardless of if we reach an actual
proof or not, and that more verification effort leads to bet-
ter code quality. To a large extent, verification is like a
code-walk or an audit. We walk through a piece of code
line by line and try to understand what it does, and, in the
case of verification, even try to formalize this behavior in
a machine readable form. Hence, if audits and code-walks
improve code quality, so should formal verification. What is
missing is solid empirical evidence to support this.

Having some solid evidence that the attempt of verifying
software gives quantifiable incremental quality improvements
even if no proof is reached could pave the way for a broader
industrial adoption of state of the art tools.

Recently, we have been looking into possible metrics to sup-
port the claim that incremental verification effort leads to
incremental quality improvements. Such a metric has two
essential requirements:

1. The metric has to reflect the progress of verification.
That is, code that is sufficiently specified to be ana-
lyzed by state of the art verification tools has to be
more highly ranked than code that is has insufficient
or overly strong specification (e.g., preconditions that
exclude part of the code).

2. The metric must be able to reflect code quality even if
no specification is available. That is, given two versions
of a programs source code, the metric must be able to
detect if one version is more error prone than the other.

In a first attempt we started using the percentage of (im-
plicit) assertions in a program that can be verified as a met-
ric of verification coverage [1]. The term verification cov-
erage is loosely based on the idea of test coverage, indicat-
ing that it represents the percentage of statements which we
have explored exhaustively.

Using verification coverage as a measure of progress for ver-
ification is based on our experience with how code-walks are
done: a piece of code is brought up on the screen and in-
spected line by line. For each line, it is discussed if this line
might fail and under which precondition. From a verification



point of view, this can be seen as trying to verify the implicit
run-time assertions associated with that line and stating the
necessary preconditions. Functional correctness of code that
is often discussed in audits can be encoded using assertion
statements.

Obviously, the problem of computing verification coverage
is just as undecidable as the problem of proving correctness
of the entire program. So the question that we need to dis-
cuss is if a reasonable approximation of verification coverage
can be computed efficiently. Here, reasonable means that we
need a suitable under-approximation of the actual verifica-
tion coverage. An over-approximation would be dangerous,
just like unsound verification, as it vouches for possibly in-
correct code.

In the following, we discuss two experimental setups where
we tried to compute verification coverage. We discuss how
our approaches scale and where we had to sacrifice sound-
ness.

2. DEDUCTIVE VERIFICATION FOR JAVA
In [1], we presented an extension to deductive verification
of Java programs that allowed us to automatically compute
verification coverage. The tool is based on standard deduc-
tive verification techniques. It analyzes a program given as
Java bytecode one procedure at a time. Each procedure is
first translated into the intermediate verification language
Boogie [3]. However, unlike in weakest-precondition-based
deductive verification, run-time assertions are not modeled
as assertion statements but as conditional choices where a
violation of the assertion actually creates a new exception
and returns. For each such exception, we keep a mapping of
the Java bytecode instruction that it was generated for.

Now, we create a first-order logic formula representing the
transition relation of this procedure. That is, a model of this
formula can be mapped to a feasible execution of the pro-
cedure. Further, for each model, we can extract a blocking
clause that blocks all models that correspond to executions
of the same control-flow path. That is, by iteratively check-
ing the formula and blocking feasible paths, we can obtain
a control-flow graph cover of all feasible paths.

We use this formula to first identify all control-flow paths
that are feasible under the postcondition that no run-time
exception is thrown. Then, we lift this postcondition, to
cover all paths that may throw runtime exceptions. Every-
thing that is not covered in either of the steps is unreach-
able. That is, this algorithm allows us to identify which
statements in the Boogie program are reachable, and which
are only reachable on executions that throw run-time excep-
tion. Using this information and the mapping from Boogie
statements to Java bytecode instructions, we can decide for
each bytecode instruction if it may, may-not, or must throw
a run-time exception, or if it is unreachable. Hence, we can
simply compute the verification coverage from the sum of
instructions that may or must throw run-time exceptions,
divided by the overall number of instructions.

Now the question is, how sound and complete can we im-
plement this way of computing verification coverage? For
Java, we have the benefit that we can use the relatively sim-

ple Burstall-Bornat memory model (e.g., [5]), which allows
us a sound and relatively precise modular analysis. As most
run-time assertions in the bytecode are related to whether
or not a variable points to an allocated object, a very coarse
(but sound) abstraction is sufficient in most cases (see [2]
for a detailed description of the encoding). Our approach
inevitably loses soundness in the presence of threads or re-
flection. For now, we do not see any feasible way to extend
our tool to handle these language features properly. Com-
pleteness is always a trade-off between precision and cost.
In our current implementation, for example, we do not try
to analyze loops or function calls. We simply replace them
by the weakest possible contract (i.e., a non-deterministic
assignment to all variables that may be modified followed
by the assertion of the trivial invariant true).

Table 1 shows our preliminary results of computing verifica-
tion coverage for some open-source applications. The source
code for all applications was taken from recent stable re-
leases. Our algorithm to compute verification coverage was
applied to each procedure of each program with a timeout of
10 seconds. Note that the analysis is not inter-procedural.
Each procedure is analyzed without any precondition.

Completeness. The results show that a relatively high ver-
ification coverage of up to 80% can be computed by our tool.
Following popular defect metrics for defect density (e.g., one
defect per thousand lines of code in open-source software),
this is certainly relatively low, but given that the analysis
is not inter-procedural and loops are abstracted in a bru-
tal way, it should be possible to drive this percentage up
relatively quickly with simple preconditions and invariants.

Soundness. The approach is inevitably unsound because
it does not handle parallelism or reflection, which are both
frequently used in real code. We checked the soundness of
the approach by manually expecting roughly one hundred
statements. For all statements that were reported strictly
unsafe (i.e., that must throw an exception), we could find
a source of unsoundness, mostly related to multi-threading.
The same could be observed for over half of the unreachable
statements. In most cases, code was reported unreachable
because it was preceded by a loop that only terminated if
another thread set a flag. We did not find any statement that
was wrongly reported to be safe. However, given the small
sample, this result is more of an intuition than a reliable
trend.

Future Work. So far, we have seen that verification cov-
erage can be computed on top of deductive verification for
Java. The next step has to be to find experimental evidence
that verification coverage correlates with code quality. To
that end, we plan two sets of experiments: in the first exper-
iment, we will take some open-source projects that are rela-
tively mature, where source code changes in the repository
were mostly made to fix bugs and improve quality (rather
than adding new functionality). For the projects we will
compute verification coverage over several source code ver-
sions to see if quality improvements can be captured by our
metric. In a second experiment we will try to verify a piece



Program #procedures #stmts #unreachable #safe
#strictly
unsafe

#possibly
unsafe

#skipped

ArgoUML 13,515 142,959 31 110,920 (75%) 2 20,125 11,881
Args4j 361 2,489 0 2,011 (80%) 0 311 167
GraVy 2,044 31,860 6 16,522 (51%) 0 3,844 11,488
Hadoop 18,728 266,571 54 177,373 (66%) 7 32,249 56,888
Log4j 3,172 30,611 1 22,381 (73%) 0 2,746 5,483

Table 1: Results of computing verification coverage for several pieces of software with a timeout after 10
seconds. The last column represents that number of statements that have not been analyzed because their
containing method reached a timeout.

of software and measure if verification coverage improves as
we proceed with our verification efforts.

An important aspect of our future work has to be the as-
sessment of unsoundness. While the approach as is, is un-
sound because of its lacking support for multi-threading and
reflection, it is very important to keep in mind that any in-
termediate result of deductive verification is inevitably un-
sound as long as there are preconditions which are not yet
verified. That is, while verification researchers tend to be
very religious about the idea of soundness, a very different
approach to this is required when trying to measure verifi-
cation progress. Unsoundness is inevitable when measuring
progress and we are looking for ways to incorporate this in
our metrics.

3. ABSTRACT INTERPRETATION FOR C
In a second experiment we tried to compute the verification
coverage of the domain name server BIND using the abstract
interpretation based analysis from Frama-C [4]. Intuitively,
abstract interpretation is the better choice to compute veri-
fication coverage. Abstract interpretation keeps a symbolic
state for the program while it iterates through the program.
Every time it reaches an (implicit) assertion, it can check
if this assertion may fail when executed from the current
symbolic state. The symbolic state may become imprecise
through widening operations, when tracking all possible pre-
cise states becomes infeasible within the given memory con-
straints.

For our experiments, we first used Frama-C in order to con-
vert each implicit assertion into an explicit one: it gener-
ated a total of 46726 assertions. Then we applied Value in
a modular way by starting the analysis from each function
of BIND. It results than 8122 (17%) of these assertions have
been verified by Value, while 11234 assertions (24%) hav
not been verified, and the remaining 27368 (59%) were not
reached by Value because our methodology is not complete
(see below).

That is, the results are somewhat discouraging as compared
to what could be achieved for the Java benchmarks. The
main reason for this seems to be the more complex memory
model that is needed when analyzing C programs. Unlike
Java, C can have very complex aliasing. Therefore, when
analyzing a procedure in isolation, one either has to make
strong assumptions about the state of the memory upon
entering the procedure or start from a very imprecise initial
state. In our experiments, we decided to start from the

imprecise initial state as we tried to avoid creating proof-
obligations that we are not going to check.

Completeness. Like in the previous experiment, our results
are very incomplete. It turned out that applying Frama-Cs
Value analysis in a modular way is not very suitable. Cur-
rently, the tool does not provide adequate support to infer a
suitable initial state for analyzing procedures in isolation. In
particular the high number of unreachable assertions indi-
cates that additional work is required to make this approach
feasible.

Certainly these problems do not appear if abstract interpre-
tation is started from a genuine entry point of the program.
However, in that case, the analysis starts to lose precision
rather quickly and fails to progress deeper into the control-
flow graph without human guidance.

Soundness. While Frama-C is sound in general, some of
the assumptions that we had to make in order to do a mod-
ular analysis were unsound. As the overall result of the ex-
periment already shows that this approach is not suitable to
compute verification coverage, we did not further investigate
how unsoundness affects the results.

Future Work. Even though the results of this experiment
are rather discouraging, abstract interpretation still seems to
be the more intuitive way of computing verification coverage.
In the future, we will investigate if there are more suitable
ways of doing modular abstract interpretation (e.g., [6]), or
if the problem is only rooted in the more complex memory
model that is needed to analyze C programs.

4. CONCLUSION
Our work presents a first step in our effort to quantify the
software quality improvements that can be achieved by using
formal verification. We believe that the concept of verifica-
tion coverage is useful in general, and our experiments for
Java programs already look promising. For our future work,
we have to carry out several case studies to validate that
verification coverage is a robust metric.

5. REFERENCES
[1] S. Arlt, C. Rubio-González, P. Rümmer, M. Schäf, and

N. Shankar. The Gradual Verifier. In NASA Formal
Methods, pages 313–327, 2014.



[2] S. Arlt, P. Rümmer, and M. Schäf. Joogie: From java
through jimple to boogie. In Proceedings of the 2nd
ACM SIGPLAN International Workshop on State Of
the Art in Java Program Analysis, SOAP ’13, pages
3–8, New York, NY, USA, 2013. ACM.

[3] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and
K. R. M. Leino. Boogie: A Modular Reusable Verifier
for Object-Oriented Programs. In FMCO, pages
364–387, 2005.

[4] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto,
J. Signoles, and B. Yakobowski. Frama-C - A Software
Analysis Perspective. In SEFM, pages 233–247, 2012.

[5] K. R. M. Leino and P. Rümmer. A Polymorphic
Intermediate Verification Language: Design and Logical
Encoding. In TACAS, pages 312–327, 2010.

[6] F. Logozzo. Cibai: An abstract interpretation-based
static analyzer for modular analysis and verification of
java classes. In VMCAI, pages 283–298, 2007.


