
Regular Symmetry Patterns

Anthony W. Lin1, Truong Khanh Nguyen2, Philipp Rümmer3, and Jun Sun4

1 Yale-NUS College, Singapore
2 Autodesk, Singapore

3 Uppsala University, Sweden
4 Singapore University of Design and Technology

Abstract. Symmetry reduction is a well-known approach for alleviating the state
explosion problem in model checking. Automatically identifying symmetries in
concurrent systems, however, is computationally expensive. We propose a sym-
bolic framework for capturing symmetry patterns in parameterised systems (i.e.
an infinite family of finite-state systems): two regular word transducers to repre-
sent, respectively, parameterised systems and symmetry patterns. The framework
subsumes various types of “symmetry relations” ranging from weaker notions
(e.g. simulation preorders) to the strongest notion (i.e. isomorphisms). Our frame-
work enjoys two algorithmic properties: (1) symmetry verification: given a trans-
ducer, we can automatically check whether it is a symmetry pattern of a given
system, and (2) symmetry synthesis: we can automatically generate a symmetry
pattern for a given system in the form of a transducer. Furthermore, our sym-
bolic language allows additional constraints that the symmetry patterns need to
satisfy to be easily incorporated in the verification/synthesis. We show how these
properties can help identify symmetry patterns in examples like dining philoso-
pher protocols, self-stabilising protocols, and prioritised resource-allocator proto-
col. In some cases (e.g. Gries’s coffee can problem), our technique automatically
synthesises a safety-preserving finite approximant, which can then be verified for
safety solely using a finite-state model checker.

1 Introduction

Symmetry reduction [12, 19, 22] is a well-known approach for alleviating the state ex-
plosion problem in automatic verification of concurrent systems. The essence of sym-
metry reduction is to identify symmetries in the system and avoid exploring states that
are “similar” (under these symmetries) to previously explored states.

One main challenge with symmetry reduction methods is the difficulty in identi-
fying symmetries in a given system in general. One approach is to provide dedicated
language instructions for specifying symmetries (e.g. see [22, 29, 30]) or specific lan-
guages (e.g. see [13, 24, 25]) so that users can provide insight on what symmetries are
there in the system. For instance, Murϕ provides a special data type with a list of syntac-
tic restrictions and all values that belong to this type are symmetric. Another approach
is to detect symmetry automatically without requiring expert insights. Automatic de-
tection of symmetries is an extremely difficult computational problem. A number of
approaches have been proposed in this direction (e.g. [15, 16, 33]). For example, Don-
aldson and Miller [15, 16] designed an automatic approach to detecting process symme-
tries for channel-based communication systems, based on constructing a graph called

static channel diagram from a Promela model whose automorphisms correspond to
symmetries in the model. Nonetheless, it is clear from their experiments that existing
approaches work only for small numbers of processes.

In practice, concurrent systems are often obtained by replicating a generic behav-
ioral description [32]. For example, a prioritised resource-allocator protocol [14, Sec-
tion 4.4] provides a description of an allocator program and a client program in a net-
work with a star topology (allocator in the center), from which a concurrent system
with 1 allocator and m clients (for any given m ∈ Z>0) can be generated. This is in
fact the standard setting of parameterised systems (e.g. see [4, 31]), which are symbolic
descriptions of infinite families {Si}∞i=1 of transition systems Si that can be generated
by instantiating some parameters (e.g. the number of processes).

Adopting this setting of parameterised systems, we consider the problem of formu-
lating and generating symbolic symmetry patterns, abstract descriptions of symmetries
that can be instantiated to obtain concrete symmetries for every instance of a param-
eterised system. A formal language to specify symmetry patterns should be able to
capture interesting symmetry patterns, e.g., that each instance Si of the parameterised
system S = {Si}∞i=1 exhibits the full symmetry Sn (i.e. invariant under permuting the
locations of the processes). Ideally, such a language L should also enjoy the following
algorithmic properties: (1) symmetry verification, i.e., given a symmetry pattern P ∈ L,
we can automatically check whether P is a symmetry pattern of a given parameterised
system, and (2) symmetry synthesis: given a parameterised system, we can automati-
cally generate symmetry patterns P ∈ L that the system exhibits. In particular, if L is
sufficiently expressive to specify commonly occuring symmetry patterns, Property (1)
would allow us to automatically compute which common symmetry patterns hold for a
given parameterised system. In the case when symmetry patterns might be less obvious,
Property (2) would allow us to identify further symmetries that are satisfied by the given
parameterised systems. To the best of our knowledge, to date no such languages have
been proposed.
Contribution: We propose a general symbolic framework for capturing symmetry pat-
terns for parameterised systems. The framework uses finite-state letter-to-letter word
transducers to represent both parameterised systems and symmetry patterns. In the se-
quel, symmetry patterns that are recognised by transducers are called regular symmetry
patterns. Based on extensive studies in regular model checking (e.g. see [1, 4, 27, 31]),
finite-state word transducers are now well-known to be good symbolic representa-
tions of parameterised systems. Moreover, equivalent logic-based (instead of automata-
based) formalisms are also available, e.g., LTL(MSO) [3] which can be used to specify
parameterised systems and properties (e.g. safety and liveness) in a convenient way. In
this paper, we show that transducers are not only also sufficiently expressive for rep-
resenting many common symmetry patterns, but they enjoy the two aforementioned
desirable algorithmic properties: automatic symmetry verification and synthesis.

There is a broad spectrum of notions of “symmetries” for transition systems that
are of interest to model checking. These include simulation preorders (a weak variant)
and isomorphisms (the strongest), e.g., see [6]. We suggest that transducers are not only
sufficiently powerful in expressing many such notions of symmetries, but they are also a
flexible symbolic language in that constraints (e.g. the symmetry pattern is a bijection)
can be easily added to or relaxed from the specification. In this paper, we shall illustrate

this point by handling simulation preorders and isomorphisms (i.e. bijective simulation
preorders) within the same framework. Another notable point of our symbolic language
is its ability to specify that the simulation preorder gives rise to an abstracted system
that is finite-state and preserves non-safety (i.e. if the original system is not safe, then
so is the abstracted system). In other words, we can specify that the symmetry pattern
reduces the infinite-state parameterised system to a finite-state system. Safety of finite-
state systems can then be checked using standard finite-state model checkers.

We next show how to specialise our framework to process symmetries [12, 19, 22].
Roughly speaking, a process symmetry for a concurrent system S with n processes is a
permutation π : [n]→ [n] (where [n] := {1, . . . , n}) such that the behavior of S is in-
variant under permuting the process indices by π (i.e. the resulting system is isomorphic
to the original one under the natural bijection induced by π). For example, if the process
indices of clients in the aforementioned resource-allocator protocol with 1 allocator and
m clients are 1, . . . ,m+1, then any permutation π : [m+1]→ [m+1] that fixes 1 is a
process symmetry for the protocol. The set of such process symmetries is a permutation
group on [m+1] (under functional composition) generated by the following two permu-
tations specified in standard cyclic notations: (2, 3) and (2, 3, . . . ,m + 1). This is true
for every value of m ≥ 2. In addition, finite-state model checkers represent symmetry
permutation groups by their (often exponentially more succinct) finite set of genera-
tors. Thus, if S = {Sn}∞n=1 is a parameterised system where Sn is the instance with
n processes, we represent the parameterised symmetry groups G = {Gn}∞n=1 (where
Gn is the process symmetry group for Sn) by a finite list of regular symmetry patterns
that generate G. We postulate that commonly occuring parameterised process symmetry
groups (e.g. full symmetry groups and rotations groups) can be captured in this frame-
work, e.g., parameterised symmetry groups for the aforementioned resource-allocator
protocol can be generated by the symmetry patterns {(2, 3)(4) · · · (m + 1)}m≥3 and
{(2, 3, . . . ,m + 1)}m≥3, which can be easily expressed using transducers. Thus, us-
ing our symmetry verification algorithm, commonly occuring process symmetries for a
given parameterised system could be automatically identified.

The aforementioned approach of checking a given parameterised system against a
“library” of common regular symmetry patterns has two problems. Firstly, some com-
mon symmetry patterns are not regular, e.g., reflections. To address this, we equip our
transducers with an unbounded pushdown stack. Since pushdown transducers in gen-
eral cannot be synchronised [5] (a crucial property to obtain our symmetry verification
algorithm), we propose a restriction of pushdown transducers for which we can recover
automatic symmetry verification. Secondly, there are many useful but subtle symmetry
patterns in practice. To address this, we propose the use of our symmetry synthesis al-
gorithm. Since a naive enumeration of all transducers with k = 1, . . . , n states does not
scale, we devise a CEGAR loop for our algorithm in which a SAT-solver provides a can-
didate symmetry pattern (perhaps satisfying some extra constraints) and an automata-
based algorithm either verifies the correctness of the guess, or returns a counterexample
that can be further incorporated into the guess of the SAT-solver.

We have implemented our symmetry verification/synthesis algorithms and demon-
strated its usefulness in identifying regular symmetry patterns for examples like din-
ing philosopher protocols, self-stabilising protocols, resource-allocator protocol, and

Gries’s coffee can problem. In the case of the coffee can problem, we managed to ob-
tain a reduction from the infinite system to a finite-state system.

Related Work: Our work is inspired by regular model checking (e.g. [1, 3, 4, 31]),
which focuses on symbolically computing the sets of reachable configurations of pa-
rameterised systems as regular languages. Such methods are generic, but are not guar-
anteed to terminate in general. As in regular model checking, our framework uses trans-
ducers to represent parameterised systems. However, instead of computing their sets of
reachable configurations, our work finds symmetry patterns of the parameterised sys-
tems, which can be exploited by an explicit-state finite-state model checker to verify the
desired property over finite instances of the system (see [32] for more details). Although
our verification algorithm is guaranteed to terminate in general (in fact, in polynomial-
time assuming the parameterised system is given as a DFA), our synthesis algorithm
only terminates when we fix the number of states for the transducers. Finding process
symmetry patterns is often easier since there are available tools for finding symmetries
for finite (albeit small) instances of the systems (e.g. [15, 16, 33]).

Another related line of works is “cutoff techniques” (e.g. see [17, 18] and the survey
[31]), which allows one to reduce verification of parameterised systems into verification
of finitely many instances (in some cases,≤ 10 processes). These works usually assume
verification of LTL\X properties. Although such techniques are extremely powerful, the
systems that can be handled using the techniques are often quite specific (e.g. see [31]).

Organisation: Section 2 contains preliminaries. In Section 3, we present our frame-
work of regular symmetry patterns. In Section 4 (resp. Section 5), we present our sym-
metry verification algorithm (resp. synthesis) algorithms. Section 6 discusses our imple-
mentation and experiment results. Section 7 concludes with future work. Due to space
constraints, some details are relegated into the full version [28].

2 Preliminaries

General notations. For two given natural numbers i ≤ j, we define [i, j] = {i, i +
1, . . . , j}. Define [k] = [1, k]. Given a set S, we use S∗ to denote the set of all finite
sequences of elements from S. The set S∗ always includes the empty sequence which
we denote by ε. Given two sets of words S1, S2, we use S1 · S2 to denote the set
{v · w | v ∈ S1, w ∈ S2} of words formed by concatenating words from S1 with
words from S2. Given two relations R1, R2 ⊆ S × S, we define their composition as
R1 ◦ R2 = {(s1, s3) | ∃s2. (s1, s2) ∈ R1 ∧ (s2, s3) ∈ R2}. Given a subset X ⊆ S,
we define the image R(X) (resp. preimage R−1(X)) of X under R as the set {s ∈
S | ∃s′. (s′, s) ∈ R} (resp. {s′ ∈ S | ∃s. (s′, s) ∈ R}). Given a finite set S =
{s1, . . . , sn}, the Parikh vector P(v) of a word v ∈ S∗ is the vector (|v|s1 , . . . , |v|sn)
of the number of occurrences of the elements s1, . . . , sn, respectively, in v.

Transition systems Let ACT be a finite set of action symbols. A transition system
over ACT is a tuple S = 〈S; {→}a∈ACT〉, where S is a set of configurations, and
→a ⊆ S×S is a binary relation over S. We use→ to denote the relation

(⋃
a∈ACT →a

)
.

In the sequel, we will often only consider the case when |ACT| = 1 for simplicity.
The notation→+ (resp.→∗) is used to denote the transitive (resp. transitive-reflexive)

closure of →. We say that a sequence s1 → · · · → sn is a path (or run) in S (or in
→). Given two paths π1 : s1 →∗ s2 and π2 : s2 →∗ s3 in →, we may concatenate
them to obtain π1 � π2 (by gluing together s2). In the sequel, for each S′ ⊆ S we use
the notation post∗→(S′) to denote the set of configurations s ∈ S reachable in S from
some s ∈ S.

Words, automata, and transducers. We assume basic familiarity with word automata.
Fix a finite alphabet Σ. For each finite word w = w1 . . . wn ∈ Σ∗, we write w[i, j],
where 1 ≤ i ≤ j ≤ n, to denote the segment wi . . . wj . Given a (nondeterministic
finite) automaton A = (Σ,Q, δ, q0, F), a run of A on w is a function ρ : {0, . . . , n} →
Q with ρ(0) = q0 that obeys the transition relation δ. We may also denote the run
ρ by the word ρ(0) · · · ρ(n) over the alphabet Q. The run ρ is said to be accepting if
ρ(n) ∈ F , in which case we say that the word w is accepted by A. The language L(A)
of A is the set of words in Σ∗ accepted by A. In the sequel, we will use the standard
abbreviations DFA/NFA (Deterministic/Nondeterministic Finite Automaton).

Transducers are automata that accept binary relations over words [8, 9] (a.k.a.
“letter-to-letter” automata, or synchronised transducers). Given two words w =
w1 . . . wn and w′ = w′1 . . . w

′
m over the alphabet Σ, let k = max{n,m} and

Σ# := Σ ∪ {#}, where # is a special padding symbol not in Σ. We define a word
w ⊗ w′ of length k over alphabet Σ# ×Σ# as follows:

w ⊗ w′ = (a1, b1) . . . (ak, bk), where ai =

{
wi i ≤ n
i > n,

and bi =

{
w′i i ≤ m
i > m.

In other words, the shorter word is padded with #’s, and the ith letter of w ⊗ w′ is
then the pair of the ith letters of padded w and w′. A transducer (a.k.a. letter-to-letter
automaton) is simply a finite-state automaton over Σ# × Σ#, and a binary relation
R ⊆ Σ∗×Σ∗ is regular if the set {w⊗w′ : (w,w′) ∈ R} is accepted by a letter-to-letter
automaton. The relation R is said to be length-preserving if R only relates words of the
same length [4], i.e., that any automaton recognising R consumes no padded letters
of the form (a,#) or (#, a). In the sequel, for notation simplicity, we will confuse a
transducer and the binary relation that it recognises (i.e. R is used to mean both).

Finally, notice that the notion of regular relations can be easily extended to r-ary
relations R for each positive integer r (e.g. see [8, 9]). To this end, the input alphabet
of the transducer will be Σr

#. Similarly, for R to be regular, the set {w1 ⊗ · · · ⊗ wr :
(w1, . . . , wr) ∈ R} of words over the alphabet Σr must be regular.

Permutation groups. We assume familiarity with basic group theory (e.g. see [11]). A
permutation on [n] is any bijection π : [n] → [n]. The set of all permutations on [n]
forms the (nth) full symmetry group Sn under functional composition. A permutation
group on [n] is any set of permutations on [n] that is a subgroup of Sn (i.e. closed under
composition). A generating set for a permutation group G on [n] is a finite set X of
permutations (called generators) such that each permutation in G can be expressed by
taking compositions of elements in X . In this case, we say that G can be generated by
X . A word w = a0 . . . ak−1 ∈ [n]∗ containing distinct elements of [n] (i.e. ai 6= aj
if i 6= j) can be used to denote the permutation that maps ai 7→ ai+1 mod k for each
i ∈ [0, k) and fixes other elements of [n]. In this case,w is called a cycle (more precisely,

k-cycle or transposition in the case when k = 2), which we will often write in the
standard notation (a0, . . . , ak−1) so as to avoid confusion. Any permutation can be
written as a composition of disjoint cycles [11]. In addition, it is known that Sn can be
generated by the set {(1, 2), (1, 2, . . . , n)}. Each subgroup G of Sn acts on the set Σn

(over any finite alphabet Σ) under the group action of permuting indices, i.e., for each
π ∈ G and v = (a1, . . . , an) ∈ Σn, we define πv := (aπ−1(1), . . . , aπ−1(n)). That way,
each π induces the bijection fπ : Σn → Σn such that fπ(v) = πv.

Given a permutation group G on [n] and a transition system S = 〈S;→〉 with
state space S = Σn, we say that S is G-invariant if the bijection fπ : Σn → Σn

induced by each π ∈ Gn is an automorphism on S, i.e., ∀v, w ∈ S: v → w implies
fπ(v)→ fπ(w).

3 The formal framework

This section describes our symbolic framework regular symmetry patterns.

3.1 Representing parameterised systems

As is standard in regular model checking [1, 4, 31], we use length-preserving transduc-
ers to represent parameterised systems. As we shall see below, we will use non-length-
preserving transducers to represent symmetry patterns.

Definition 1 (Automatic transition systems5). A transition system S =
〈S; {→}a∈ACT〉 is said to be (length-preserving) automatic if S is a regular set
over a finite alphabet Σ and each relation→a is given by a transducer over Σ.

More precisely, the parameterised system defined by S is the family {Sn}n≥0 with
Sn = 〈Sn;→a,n〉, where Sn := S ∩ Σn is the set of all words in S of length n and
→a,n is the transition relation →a restricted to Sn. In the sequel, for simplicity we
will mostly consider examples when |ACT| = 1. When the meaning is understood, we
shall confuse the notation →a for the transition relation of S and the transducer that
recognises it. To illustrate our framework and methods, we shall give three examples of
automatic transition systems (see [3, 31] for numerous other examples).

Example 1. We describe a prioritised resource-allocator protocol [14, Section 4.4],
which is a simple mutual exclusion protocol in network with a star topology. The proto-
col has one allocator and m clients. Initially, each process is in an idle state. However,
clients might from time to time request for an access to a resource (critical section),
which can only be used by one process at a time. For simplicity, we will assume that
there is only one resource shared by all the clients. The allocator manages the use of the
resource. When a request is lodged by a client, the allocator can allow the client to use
the resource. When the client has finished using the resource, it will send a message to
the allocator, which can then allow other clients to use the resource.

To model the protocol as a transducer, we let Σ = {i, r, c}, where i stands for
“idle”, r for “request”, and c for “critical”. Allocator can be in either the state i or

5 Length-preserving automatic transition systems are instances of automatic structures [8, 9]

the state c, while a client can be in one of the three states in Σ. A valid configuration
is a word aw, where a ∈ {i, c} represents the state of the allocator and w ∈ Σ∗

represents the states of the |w| clients (i.e. each position in w represents a state of a
client). Letting I = {(a, a) : a ∈ Σ} (representing idle local transitions), the transducer
can be described by a union of the following regular expressions:

– I+(i, r)I∗ — a client requesting for a resource.
– (i, c)I∗(r, c)I∗ — a client request granted by the allocator.
– (c, i)I∗(c, i)I∗ — the client has finished using the resource. ut

Example 2. We describe Israeli-Jalfon self-stabilising protocol [23]. The original pro-
tocol is probabilistic, but since we are only interested in reachability, we may use non-
determinism to model randomness. The protocol has a ring topology, and each process
either holds a token (denoted by>) or does not hold a token (denoted by⊥). Dynamics
is given by the following rules:

– A process P holding a token can pass the token to either the left or the right neigh-
bouring process P ′, provided that P ′ does not hold a token.

– If two neighbouring processes P1 and P2 hold tokens, the tokens can be merged
and kept at process P1.

We now provide a transducer that formalises this parameterised system. Our relation is
on words over the alphabet Σ = {⊥,>}, and thus a transducer is an automaton that
runs over Σ × Σ. In the following, we use I := {(>,>), (⊥,⊥)}. The automaton is
given by a union of the following regular expressions:

– I∗(>,⊥)(⊥,>)I∗

– I∗(⊥,>)(>,⊥)I∗
– I∗(>,>)(>,⊥)I∗

– (⊥,>)I∗(>,⊥)
– (>,⊥)I∗(⊥,>)
– (>,⊥)I∗(>,>) ut

Example 3. Our next example is the classical David Gries’s coffee can problem, which
uses two (nonnegative) integer variables x and y to store the number of black and white
coffee beans, respectively. At any given step, if x + y ≥ 2 (i.e. there are at least two
coffee beans), then two coffee beans are nondeterministically chosen. First, if both are
of the same colour, then they are both discarded and a new black bean is put in the
can. Second, if they are of a different colour, the white bean is kept and the black one
is discarded. We are usually interested in the colour of the last bean in the can. We
formally model Gries’s coffee can problem as a transition system with domain N × N
and transitions:

(a) if x ≥ 2, then x := x− 1 and y := y.
(b) if y ≥ 2, then x := x+ 1 and y := y − 2.
(c) if x ≥ 1 and y ≥ 1, then x := x− 1 and y := y.

To distinguish the colour of the last bean, we shall add self-loops to all configurations
in N × N, except for the configuration (1, 0). We can model the system as a length-
preserving transducer as follows. The alphabet isΣ := Ωx∪Ωy, whereΩx := {1x,⊥x}
and Ωy := {1y,⊥y}. A configuration is a word in the regular language 1∗x⊥∗x1∗y⊥∗y. For
example, the configuration with x = 5 and y = 3, where the maximum size of the
integer buffers x and y is 10, is represented as the word (1x)5(⊥x)5(1y)3(⊥y)7. The
transducer for the coffee can problem can be easily constructed. ut

3.2 Representing symmetry patterns

Definition 2. Let S = 〈S;→〉 be a transition system with S ⊆ Σ∗. A symmetry pattern
for S = 〈S;→〉 is a simulation preorder R ⊆ S × S for S, i.e., satisfying:

(S1) R respects each→a, i.e., for all v1, v2, w1 ∈ S, if v1 →a w1, and (v1, v2) ∈ R,
then there exists w2 ∈ S such that (w1, w2) ∈ R and v2 →a w2;

(S2) R is length-decreasing, i.e., for all v1, v2 ∈ S, if (v1, v2) ∈ R, then |v1| ≥ |v2|.
The symmetry pattern is said to be complete if additionally the relation is length-
preserving and a bijective function.

Complete symmetry patterns will also be denoted by functional notation f . In the case
of complete symmetry pattern f , it can be observed that Condition (S1) also entails that
f(v)→a f(w) implies v →a w. This condition does not hold in general for simulation
preorders. We shall also remark that, owing to the well-known property of simulation
preorders, symmetry patterns preserve non-safety. To make this notion more precise,
we define the image of a transition system S = 〈S;→〉 (with S ⊆ Σ∗) under the
symmetry pattern R as the transition system S1 = 〈S1;→1〉 such that S1 = R(S) and
that→1 is the restriction of→ to S1.

Proposition 1. Given two sets I, F ⊆ Σ∗, if post∗→1
(R(I)) ∩ R(F) = ∅, then

post∗→(I) ∩ F = ∅.
In other words, if S1 is safe, then so is S. In the case when S1 is finite-state, this check
can be performed using a standard finite-state model checker. We shall define now a
class of symmetry patterns under which the image S1 of the input transition system
can be automatically computed.

Definition 3 (Regular symmetry pattern). A symmetry pattern R ⊆ S × S for an
automatic transition system S = 〈S;→〉 is said to be regular if the relationR is regular.

Proposition 2. Given an automatic transition system S = 〈S;→〉 (with S ⊆ Σ∗)
and a regular symmetry pattern R ⊆ S × S, the image of S under R is an automatic
transition system and can be constructed in polynomial-time.

In particular, whether the image of S under R is a finite system can be automati-
cally checked since checking whether the language of an NFA is finite can be done in
polynomial-time. The proof of this proposition (in the full version) is a simple automata
construction that relies on the fact that regular relations are closed under projections.
We shall next illustrate the concept of regular symmetry patterns in action, especially
for Israeli-Jalfon self-stabilising protocol and Gries’s coffee can problem.

We start with Gries’s coffee can problem (cf. Example 3). Consider the function
f : (N × N) → (N × N) where f(x, y) is defined to be (i) (0, 1) if y is odd, (ii) (2, 0)
if y is even and (x, y) 6= (1, 0), and (iii) (1, 0) if (x, y) = (1, 0). This is a symmetry
pattern since the last bean for the coffee can problem is white iff y is odd. Also, that
a configuration (x, y) with y ≡ 0 (mod 2) and x > 1 is mapped to (2, 0) is because
(2, 0) has a self-loop, while (1, 0) is a dead end. It is easy to show that f is a regular
symmetry pattern. To this end, we construct a transducer for each of the cases (i)–(iii).
For example, the transducer handling the case (x, y) when y ≡ 1 (mod 2) works as
follows: simultaneously read the pair (v, w) of words and ensure that w = ⊥x⊥x1y and
v ∈ 1∗x⊥∗x1y(1y1y)∗⊥∗y. As an NFA, the final transducer has ∼ 10 states.

Process symmetry patterns. We now apply the idea of regular symmetry patterns to
capture process symmetries in parameterised systems. We shall show how this ap-
plies to Israeli-Jalfon self-stabilising protocol. A parameterised permutation is a family
π̄ = {πn}n≥1 of permutations πn on [n]. We say that π̄ is regular if, for each alpha-
bet Σ, the bijection fπ̄ : Σ∗ → Σ∗ defined by fπ̄(v) := πnv, where v ∈ Σn, is a
regular relation. We say that π̄ is effectively regular if π̄ is regular and if there is an
algorithm which, on input Σ, constructs a transducer for the bijection fπ̄ . As we shall
only deal with effectively regular permutations, when understood we will omit mention
of the word “effectively”. As we shall see below, examples of effectively regular param-
eterised permutations include transpositions (e.g. {(1, 2)(3) · · · (n)}n≥2) and rotations
{(1, 2, . . . , n)}n≥1.

We now extend the notion of parameterised permutations to parameterised sym-
metry groups G := {Gn}n≥1 for parameterised systems, i.e., each Gn is a permuta-
tion group on [n]. A finite set F = {π̄1, . . . , π̄r} of parameterised permutations (with
π̄j = {πjn}n≥1) generates the parameterised symmetry groups G if each group Gn ∈ G
can be generated by the set {πjn : j ∈ [r]}, i.e., the nth instances of parameterised
permutations in F . We say that G is regular if each π̄j in F is regular.

We will single out three commonly occuring process symmetry groups for con-
current systems with n processes: full symmetry group Sn (i.e. generated by (1, 2)
and (1, 2, . . . , n)), rotation groupRn (i.e. generated by (1, 2, . . . , n)), and the dihedral
groupDn (i.e. generated by (1, 2, . . . , n) and the “reflection” permutation (1, n)(2, n−
1) · · · (bn/2c, dn/2e)). The parameterised versions of them are: (1) S := {Sn}n≥1, (2)
R := {Rn}n≥1, and (3) D := {Dn}n≥1.

Theorem 1. Parameterised full symmetry groups S and parameterised rotation sym-
metry groupsR are effectively regular.

As we will see in Proposition 3 below, parameterised dihedral groups are not regular.
We will say how to deal with this in the next section. As we will see in Theorem 4,
Theorem 1 can be used to construct a fully-automatic method for checking whether
each instance Sn of a parameterised system S = {Sn}n≥0 represented by a given
transducer A has a full/rotation process symmetry group.

Proof (sketch of Theorem 1). To show this, it suffices to show that F =
{(1, 2)(3) · · · (n)}n≥2 and F ′ = {(1, 2, . . . , n)}n≥2 are effectively regular. [The de-
generate case when n = 1 can be handled easily if necessary.] For, if this is the
case, then the parameterised full symmetry S and the parameterised rotation symmetry
groups can be generated by (respectively) {F ,F ′} and F ′. Given an input Σ, the trans-
ducers for both F and F ′ are easy. For example, the transducer for F simply swaps the
first two letters in the input, i.e., accepts pairs of words of the form (abw, baw) where
a, b ∈ Σ andw ∈ Σ∗. These transducers can be constructed in polynomial time (details
in the full version). ut

The above proof shows that {(1, 2)(3) · · · (n)}n≥0 and {(1, 2, . . . , n)}n≥0 are regular
parameterised permutations. Using the same proof techniques, we can also show that the
following simple variants of these parameterised permutations are also regular for each
i ∈ Z>0: (a) {(i, i+ 1)(i+ 2) · · · (n)}n≥1, and (b) {(i, i+ 1, . . . , n)}n≥1. As we saw
from Introduction, the prioritised resource-allocator protocol has a star topology and so

both {(2, 3)(4) · · · }n≥1 and {(2, 3, . . . , n)}n≥1 generate complete symmetry patterns
for the protocol (i.e. invariant under permuting the clients). Therefore, our library L of
regular symmetry patterns could store all of these regular parameterised permutations
(up to some fixed i).

Parameterised dihedral groupsD are generated by rotations π̄ = {(1, 2, . . . , n)}n≥2

and reflections σ̄ = {(1, n)(2, n− 1) · · · (bn/2c, dn/2e)}n≥2. Reflections σ̄ are, how-
ever, not regular for the same reason that the language of palindromes (i.e. words that
are the same read backward as forward). In fact, it is not possible to find a different list
of generating parameterised permutations that are regular (proof in the full version):

Proposition 3. Parameterised dihedral groups D are not regular.

4 Symmetry verification

In this section, we will present our symmetry verification algorithm for regular symme-
try patterns. We then show how to extend the algorithm to a more general framework of
symmetry patterns that subsumes parameterised dihedral groups.

4.1 The algorithm

Theorem 2. Given an automatic transition system S = 〈S;→〉 and a regular relation
R ⊆ S × S, we can automatically check if R is a symmetry pattern of S.

Proof. Let D be the set of words over the alphabet Σ3 of the form v1 ⊗ v2 ⊗ w1, for
some words v1, v2, w2 ∈ Σ∗ satisfying: (1) v1 → w1, (2) (v1, v2) ∈ R, and (3) there
does not exist w2 ∈ Σ∗ such that v2 → w2 and (w1, w2) ∈ R. Observe that R is a
symmetry pattern for S iff D is empty. An automaton A = (Σ3, Q,∆, q0, F) for D
can be constructed via a classical automata construction.

As before, for simplicity of presentation, we will assume that S = Σ∗; for, oth-
erwise, we can perform a simple product automata construction with the automa-
ton for S. Let A1 = (Σ2, Q1, ∆1, q

1
0 , F1) be an automaton for →, and A2 =

(Σ2
#, Q2, ∆2, q

2
0 , F2) an automaton for R.

We first construct an NFA A3 = (Σ2
#, Q3, ∆3, q

3
0 , F3) for the set Y ⊆ S × S con-

sisting of pairs (v2, w1) such that the condition (3) above is false. This can be done by
a simple product/projection automata construction that takes into account the fact that
R might not be length-preserving: That is, define Q3 := Q1 ×Q2, q3

0 := (q1
0 , q

2
0), and

F3 := F1×F2. The transition relation∆ consists of transitions ((q1, q2), (a, b), (q′1, q
′
2))

such that, for some c ∈ Σ#, it is the case that (q2, (b, c), q
′
2) ∈ ∆2 and one of the fol-

lowing is true: (i) (q1, (a, c), q
′
1) ∈ ∆1, (ii) q1 = q′1, b 6= #, and a = c = #. Observe

that the construction for A3 runs in polynomial-time.
In order to constructA, we will have to perform a complementation operation onA3

(to compute the complement of Y) and apply a similar product automata construction.
The former takes exponential time (sinceA3 is nondeterministic), while the latter costs
an additional polynomial-time overhead. ut

The above algorithm runs in exponential-time even if R and S are presented as
DFA, since an automata projection operation in general yields an NFA. The situation
improves dramatically when R is functional (i.e. for all x ∈ S, there exists a unique
y ∈ S such that R(x, y)).

Theorem 3. There exists a polynomial-time algorithm which, given an automatic tran-
sition system S = 〈S;→〉 presented as a DFA and a functional regular relation
R ⊆ S × S presented as an NFA, decides whether R is a symmetry pattern for S.

Proof. Let D be the set of words over the alphabet Σ4 of the form v1 ⊗ v2 ⊗w1 ⊗w2,
for some words v1, v2, w1, w2 ∈ Σ∗ satisfying: (1) v1 → w1, (2) (v1, v2) ∈ R, (2’)
(w1, w2) ∈ R, and (3) v2 6→ w2 Observe that R is a symmetry pattern for S iff D is
empty. The reasoning is similar to the proof of Theorem 2, but the difference now is that
given any w1 ∈ Σ∗, there is a unique w2 such that (w1, w2) ∈ R since R is functional.
For this reason, we need only to make sure that v2 6→ w2. An automatonA forD can be
constructed by first complementing the automaton for → and then a standard product
automata construction as before. The latter takes polynomial-time if→ is presented as a
DFA, while the latter costs an additional polynomial-time computation overhead (even
if R is presented as an NFA). ut

Proposition 4. The following two problems are solvable in polynomial-space: given
a regular relation R ⊆ S × S, check whether (1) R is functional, and (2) R is a bi-
jective function. Furthermore, the problems are polynomial-time reducible to language
inclusion for NFA.

Observe that there are fast heuristics for checking language inclusion for NFA using an-
tichain and simulation techniques (e.g. see [2, 10]). The proof of the above proposition
uses standard automata construction, which is relegated to the full version.

4.2 Process symmetries for concurrent systems

We say that an automatic transition system S = 〈S;→〉 (with S ⊆ Σ∗) is G-invariant
if each instance Sn = 〈S ∩ Γn;→〉 of S is Gn-invariant. If G is generated by regular
parameterised permutations π̄1, . . . , π̄r, then G-invariance is equivalent to the condition
that, for each j ∈ [r], the bijection fπj : Σ∗ → Σ∗ is a regular symmetry pattern for
S. The following theorem is an immediate corollary of Theorem 3.

Theorem 4. Given an automatic transition system S = 〈S;→〉 (with S ⊆ Σ∗) and a
regular parameterised symmetry group G presented by regular parameterised permuta-
tions π̄1, . . . , π̄k, we can check that S is G-invariant in polynomial-time assuming that
S is presented as DFA.

In fact, to check whether S is G-invariant, it suffices to sequentially go through each
π̄j and ensure that it is a symmetry pattern for S, which by Theorem 3 can be done in
polynomial-time.

4.3 Beyond regular symmetry patterns

Proposition 3 tells us that regular symmetry patterns do not suffice to capture parame-
terised reflection permutation. This leads us to our inability to check whether a parame-
terised system is invariant under parameterised dihedral symmetry groups, e.g., Israeli-
Jalfon’s self-stabilising protocol and other randomised protocols including Lehmann-
Rabin’s protocol (e.g. [26]). To deal with this problem, we extend the notion of regular
length-preserving symmetry patterns to a subclass of “context-free” symmetry patterns
that preserves some nice algorithmic properties. Proviso: All relations considered in
this subsection are length-preserving.

Recall that a pushdown automaton (PDA) is a tuple P = (Σ,Γ,Q,∆, q0, F), where
Σ is the input alphabet, Γ is the stack alphabet (containing a special bottom-stack sym-
bol, denoted by ⊥, that cannot be popped), Q is the finite set of control states, q0 ∈ Q
is an initial state, F ⊆ Q is a set of final states, and ∆ ⊆ (Q × Γ) × Σ × (Q × Γ≤2)
is a set of transitions, where Γ≤2 denotes the set of all words of length at most 2. A
configuration of P is a pair (q, w) ∈ Q×Γ ∗ with stack-height |w|. For each a ∈ Σ, we
define the binary relation→a on configurations of P as follows: (q1, w1) →a (q2, w2)
if there exists a transition ((q1, o), a, (q2, v)) ∈ ∆ such that w1 = wo and w2 = wv for
some w ∈ Γ ∗. A computation path π of P on input a1 . . . an is any sequence

(q0,⊥)→a1 (q1, w1)→a2 · · · →an (qn, wn)

of configurations from the initial state q0. In the following, the stack-height sequence of
π is the sequence |⊥|, |w1|, . . . , |wn| of stack-heights. We say that a computation path
π is accepting if qn ∈ F .

We now extend Theorem 4 to a class of transducers that allows us to capture the
reflection symmetry. This class consists of “height-unambiguous” pushdown transduc-
ers, which is a subclass of pushdown transducers that is amenable to synchronisation.
We say that a pushdown automaton is height-unambiguous (h.u.) if it satisfies the re-
striction that the stack-height sequence in an accepting computation path on an input
word w is uniquely determined by the length |w| of w. That is, given an accepting com-
putation path π on w and an accepting computation path π′ of w′ with |w| = |w′|,
the stack-height sequences of π and π′ coincide. Observe that the definition allows the
stack-height sequence of a non-accepting path to differ. A language L ⊆ Σ∗ is said to
be height-unambiguous context-free (huCF) if it is recognised by a height-unambiguous
PDA. A simple example of a huCF language is the language of palindromes (i.e. the in-
put word is the same backward as forward). A simple non-example of a huCF language
is the language of well-formed nested parentheses. This can be proved by a standard
pumping argument.

We extend the definitions of regularity of length-preserving relations, symmetry
patterns, etc. from Section 2 and Section 3 to height-unambiguous pushdown automata
in the obvious way, e.g., a length-preserving relation R ⊆ S × S is huCF if {v ⊗ w :
(v, w) ∈ R} is a huCF language. We saw in Proposition 3 that parameterised dihedral
symmetry groups D are not regular. We shall show now that they are huCF.

Theorem 5. Parameterised dihedral symmetry groups D are effectively height-
unambiguous context-free.

Proof. To show this, it suffices to show that the parameterised reflection permutation
σ̄ = {σn}n≥2, where σn := (1, n)(2, n − 1) · · · (bn/2c, dn/2e), is huCF. To this end,
given an input alphabet Σ, we construct a PDA P = (Σ2, Γ,Q,∆, q0, F) that recog-
nises fσ̄ : Σ∗ → Σ∗ such that fσ̄(v) = σnv whenever v ∈ Σn. The PDA P works just
like the PDA recognising the language of palindromes. We shall first give the intuition.
Given a word w of the form v1⊗v2 ∈ (Σ2)∗, we write w−1 to denote the word v2⊗v1.
On an input word w1w2w3 ∈ (Σ2)∗, where |w1| = |w3| and |w2| ∈ {0, 1}, the PDA
will savew1 in the stack and compares it withw3 ensuring thatw3 is the reverse ofw−1

1 .
It will also make sure that w2 = (a, a) for some a ∈ Σ in the case when |w2| = 1. The
formal definition of P is given in the full version. ut

Theorem 6. There exists a polynomial-time algorithm which, given an automatic tran-
sition system S = 〈S;→〉 presented as a DFA and a functional h.u. context-free relation
R ⊆ S × S presented as an NFA, decides whether R is a symmetry pattern for S.

To prove this theorem, let us revisit the automata construction from the proof of Theo-
rem 3. The problematic part of the construction is that we need to show that, given an
huCF relation R, the 4-ary relation

R := (R×R) ∩ {(w1, w2, w3, w4) ∈ (Σ∗)4 : |w1| = |w2| = |w3| = |w4|} (∗)

is also huCF. The rest of the construction requires only taking product with regular
relations (i.e.→ or its complement), which works for unrestricted pushdown automata
since context-free languages are closed under taking product with regular languages via
the usual product automata construction for regular languages.

Lemma 1. Given an huCF relation R, we can construct in polynomial-time an h.u.
PDA recognising the 4-ary relationR.

Proof. Given a h.u. PDA P = (Σ2, Γ,Q,∆, q0, F) recognising R, we will construct a
PDA P ′ = (Σ4, Γ ′, Q′, ∆′, q′0, F

′) recognising R. Intuitively, given an input (v, w) ∈
R, the PDA P ′ is required to run two copies of P at the same time, one on the input
v (to check that v ∈ R) and the other on input w (to check that w ∈ R). Since P is
height-unambiguous and |v| = |w|, we can assume that the stack-height sequences of
accepting runs of P on v and w coincide. That is, in an accepting run π1 of P on v and
an accepting run of π2 ofP onw, when a symbol is pushed onto (resp. popped from) the
stack at a certain position in π1, then a symbol is also pushed onto (resp. popped from)
the stack in the same position in π2. The converse is also true. These two stacks can,
therefore, be simultaneously simulated using only one stack of P ′ with Γ ′ = Γ × Γ .
For this reason, the rest of the details is a standard product automata construction for
finite-state automata. Therefore, the automaton P ′ is of size quadratic in the size of P .
The detailed definition of P ′ is given in the full version. ut

We shall finally pinpoint a limitation of huCF symmetry patterns, and discuss how
we can address the problem in practice. It can be proved by a simple reduction from
Post Correspondence Problem that it is undecidable to check whether a given PDA is
height-unambiguous. In practice, however, this is not a major obstacle since it is possi-
ble to manually (or semi-automatically) add a selection of huCF symmetry patterns to

our library L of regular symmetry patterns from Section 3. Observe that this effort is in-
dependent of any parameterised system that one needs to check for symmetry. Checking
whether any huCF symmetry pattern in C is a symmetry pattern for a given automatic
transition system S can then be done automatically and efficiently (cf. Theorem 6). For
example, Theorem 5 and Theorem 6 imply that we can automatically check whether an
automatic transition system is invariant under the parameterised dihedral groups:

Theorem 7. Given an automatic transition system S = 〈S;→〉 (with S ⊆ Σ∗) pre-
sented as DFA, checking whether S is D-invariant can be done in polynomial-time.

Among others, this allows us to automatically confirm that Israeli-Jalfon self-stabilising
protocol is D-invariant.

5 Automatic Synthesis of Regular Symmetry Patterns

Some regular symmetry patterns for a given automatic system might not be obvious,
e.g., Gries’s coffee can example. Even in the case of process symmetries, the user might
choose different representations for the same protocol. For example, the allocator pro-
cess in Example 1 could be represented by the last (instead of the first) letter in the word,
which would mean that {(1, 2, . . . , n−1)}n≥3 and {(1, 2)(3) · · · (n)}n≥3 are symmetry
patterns for the system (instead of {(2, 3, . . . , n)}n≥2 and {(2, 3)(4) · · · (n)}n≥3). Al-
though we can put reasonable variations of common symmetry patterns in our libraryL,
we would benefit from a systematic way of synthesising regular symmetry patterns for
a given automatic transition system S. In this section, we will describe our automatic
technique for achieving this. We focus on the case of symmetry patterns that are total
functions (i.e. homomorphisms), but the approach can be generalised to other patterns.

Every transducer A = (Σ# × Σ#, Q, δ, q0, F) over Σ∗# represents a regular bi-
nary relation R over Σ∗. We have shown in Section 4 that we can automatically check
whether R represents a symmetry pattern, perhaps satisfying further constraints like
functionality or bijectivity as desired by the user. Furthermore, we can also automati-
cally check that it is a symmetry pattern for a given automatic transition system S. Our
overall approach for computing such transducers makes use of two main components,
which are performed iteratively within a refinement loop:

SYNTHESISE A candidate transducer A with n states is computed with the help of a
SAT-solver, enforcing a relaxed set of conditions encoded as a Boolean constraint ψ
(Section 5.1).

VERIFY As described in Section 4, it is checked whether the binary relation R repre-
sented by A is a symmetry pattern for S (satisfying further constraints like com-
pleteness, as desired by the user). If this check is negative, ψ is strengthened to
eliminate counterexamples, and SYNTHESISE is invoked (Section 5.2).

This refinement loop is enclosed by an outer loop that increments the parameter n
(initially set to some small number n0) when SYNTHESISE determines that no trans-
ducers satisfying ψ exist anymore. The next sections describe the SYNTHESISE step,
and the generation of counterexamples in case VERIFY fails, in more detail.

5.1 SYNTHESISE: Computation of a Candidate Transducer A

Our general encoding of transducersA = (Σ#×Σ#, Q, δ, q0, F) uses a representation
as a deterministic automaton (DFA), which is suitable for our refinement loop since
counterexamples (in particular, words that should not be accepted) can be eliminated
using succinct additional constraints. We assume that the states of the transducer A
to be computed are Q = {1, . . . , n}, and that q0 = 1 is the initial state. We use the
following variables to encode transducers with n states:

– xt (of type Boolean), for each tuple t = (q, a, b, q′) ∈ Q×Σ# ×Σ# ×Q;
– zq (of type Boolean), for each q ∈ Q.

The assignment xt = 1 is interpreted as the existence of the transition t inA. Likewise,
we use zq = 1 to represent that q is an accepting state in the automaton; since we use
DFA, it is in general necessary to have more than one accepting state.

The set of considered transducers in step SYNTHESISE is restricted by imposing a
number of conditions, selected depending on the kind of symmetry to be synthesised:
for general symmetry homomorphisms, conditions (C1)–(C8) are used, for complete
symmetry patterns (C1)–(C10), and for process symmetries (C1)–(C11).

(C1) The transducer A is deterministic.

(C2) For every transition q
(a,b)−→ q′ in A it is the case that a 6= #.6

(C3) Every state of the transducer is reachable from the initial state.
(C4) From every state of the transducer an accepting state can be reached.
(C5) The initial state q0 is accepting.
(C6) The language accepted by the transducer is infinite.

(C7) There are no two transitions q
(a,b)−→ q′ and q

(a,b′)−→ q′ with b 6= b′.

(C8) If an accepting state q has self-transitions q
(a,a)−→ q for every letter a ∈ Σ#, then

q has no outgoing edges.

(C9) For every transition q
(a,b)−→ q′ in A it is the case that b 6= #.

(C10) There are no two transitions q
(a,b)−→ q′ and q

(a′,b)−→ q′ with a 6= a′.

Condition (C2) implies that computed transducers are length-decreasing, while (C3)
and (C4) rule out transducers with redundant states. (C5) and (C6) follow from the sim-
plifying assumption that only homomorphic symmetries patterns are computed, since
a transducer representing a total function Σ∗ → Σ∗ has to accept the empty word
and words of unbounded length. Note that (C5) and (C6) are necessary, but not suf-
ficient conditions for total functions, so further checks are needed in VERIFY. (C7)
and (C8) are necessary (but again not sufficient) conditions for transducers represent-
ing total functions, given the additional properties (C3) and (C4); it can be shown that
a transducer violating (C7) or (C8) cannot be a total function. Condition (C9) implies
that padding # does not occur in any accepted word, and is a sufficient condition for
length-preservation; as a result, the symbol # can be eliminated altogether from the
transducer construction.

6 Note that all occurrences of # are in the end of words.

Finally, for process symmetries the assumption can be made that the transducer
preserves not only word length, but also the number of occurrences of each symbol:

(C11) The relation R represented by the transducer only relates words with the same
Parikh vector, i.e., R(v, w) implies P(v) = P(w).

The encoding of the conditions (C1)–(C11) as Boolean constraints is mostly
straightforward. Further Boolean constraints can be useful in special cases, in particular
for Example 3 the restriction can be made that only image-finite transducers are com-
puted. We can also constrain the search in the SYNTHESISE stage to those transducers
that accept manually defined words W = {v1 ⊗ w1, . . . , vk ⊗ wk}, using a similar en-
coding as the one for counterexamples in Sect. 5.2. This technique can be used, among
others, to systematically search for symmetry patterns that generalise some known finite
symmetry.

5.2 Counterexample Generation

Once a transducer A representing a candidate relation R ⊆ Σ∗ × Σ∗ has been com-
puted, Theorem 2 can be used to implement the VERIFY step of the algorithm. When
using the construction from the proof of Theorem 2, one of three possible kinds of
counterexample can be detected, corresponding to three different formulae to be added
to the constraint ψ used in the SYNTHESISE stage:

1. A word v has to be included in the domain R−1(Σ∗#): ∃w. R(v, w)
2. A word w has to be included in the range R(Σ∗#): ∃v. R(v, w)
3. One of two contradictory pairs has to be eliminated: ¬R(v1, w1) ∨ ¬R(v2, w2)

Case 1 indicates relations R that are not total; case 2 relations that are not surjective;
and case 3 relations that are not functions, not injective, or not simulations.7 Each of
the formulae can be directly translated to a Boolean constraint over the vocabulary in-
troduced in Sect. 5.1. We illustrate how the first kind of counterexample is handled,
assuming v = a1 · · · am ∈ Σ∗# is the word in question; the two other cases are sim-
ilar. We introduce Boolean variables ei,q for each i ∈ {0, . . . ,m} and state q ∈ Q,
which will be used to identify an accepting path in the transducer with input letters
corresponding to the word v. We add constraints that ensure that exactly one ei,q is set
for each state q ∈ Q, and that the path starts at the initial state q0 = 1 and ends in an
accepting state:{ ∨

q∈Q
ei,q

}
i∈{0,...,m}

,
{
¬ei,q ∨ ¬ei,q′

}
i∈{0,...,m}
q 6=q′∈Q

, e0,1,
{
em,q → zq

}
q∈Q .

For each i ∈ {1, . . . ,m} a transition on the path, with input letter ai has to be enabled:{
ei−1,q ∧ ei,q′ →

∨
b∈Σ

x(q,ai,b,q′)

}
i∈{1,...,m}
q,q′∈Q

.

7 Note that this is for the special case of homomorphisms. Simulation counterexamples are more
complicated than case 3 when considering simulations relations that are not total functions.

Table 1. Experimental Results on Verifying and Generating Symmetry Patterns

Symmetry Systems (#letters) # Transducer states Verif. time Synth. time
Herman Protocol (2) 5 0.0s 4s
Israeli-Jalfon Protocol (2) 5 0.0s 5s
Gries’s Coffee Can (4) 8 0.1s 3m19s
Resource Allocator (3) 11 0.0s 4m56s
Dining Philosopher (4) 17 0.4s 26m

6 Implementation and Evaluation

We have implemented a prototype tool based on the aforementioned approach for
verifying and synthesising regular symmetry patterns. The programming language
is Java and we use SAT4J [7] as the SAT solver. The source code and the bench-
marking examples can be found at https://bitbucket.org/truongkhanh/
parasymmetry. The input of our tool includes a model (i.e. a textual representation
of transducers), and optionally a set of finite instance symmetries (to speed up synthesis
of regular symmetry patterns), which can be generated using existing tools like [33].

We apply our tool to 5 models: the Herman self-stabilising protocol [21], Israeli-
Jalfon self-stabilising protocol [23], the Gries’ coffee can example [20], Resource Al-
locator, and Dining Philosopher. For the coffee can example, the tool generates the
functional symmetry pattern described in Section 3, whereas the tool generates rota-
tional process symmetries for the other models (see the full version for state diagrams).
Finite instance symmetries were added as constraints in the last three examples.

Table 1 presents the experimental results: the number of states of the synthesised
symmetry transducer, the time needed to verify that the transducer indeed represents
a symmetry pattern (using the method from Section 4), and the total time needed to
compute the transducer (using the procedure from Section 5). The data are obtained
using a MacBook Pro (Retina, 13-inch, Mid 2014) with 3 GHz Intel Core i7 processor
and 16 GB 1600 MHz DDR3 memory. In almost all cases, it takes less than 5 minutes
(primarily SAT-solving) to find the regular symmetry patterns for all these models. As
expected, the verification step is quite fast (< 1 second).

7 Future work

Describe the expressivity and nice algorithmic properties that regular symmetry pat-
terns enjoy, we have pinpointed a limitation of regular symmetry patterns in expressing
certain process symmetry patterns (i.e. reflections) and showed how to circumvent it
by extending the framework to include symmetry patterns that can be recognised by
height-unambiguous pushdown automata. One possible future research direction is to
generalise our symmetry synthesis algorithm to this more general class of symmetry
patterns. Among others, this would require coming up with a syntactic restriction of
this “semantic” class of pushdown automata.

Acknowledgment: Lin is supported by Yale-NUS Grants, Rümmer by the Swedish Re-
search Council. We thank Marty Weissman for a fruitful discussion.

References

1. P. A. Abdulla. Regular model checking. STTT, 14(2):109–118, 2012.
2. P. A. Abdulla, Y.-F. Chen, L. Holı́k, R. Mayr, and T. Vojnar. When simulation meets an-

tichains. In TACAS, pages 158–174, 2010.
3. P. A. Abdulla, B. Jonsson, M. Nilsson, J. d’Orso, and M. Saksena. Regular model checking

for LTL(MSO). STTT, 14(2):223–241, 2012.
4. P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of regular model checking.

In CONCUR, pages 35–48, 2004.
5. M. Arenas, P. Barceló, and L. Libkin. Regular languages of nested words: Fixed points, au-

tomata, and synchronization. In Automata, Languages and Programming, 34th International
Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings, pages 888–900,
2007.

6. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
7. D. L. Berre and A. Parrain. The Sat4j library, release 2.2. JSAT, 7(2-3):59–6, 2010.
8. A. Blumensath. Automatic structures. Master’s thesis, RWTH Aachen, 1999.
9. A. Blumensath and E. Grädel. Finite presentations of infinite structures: Automata and in-

terpretations. Theory Comput. Syst., 37(6):641–674, 2004.
10. F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations up to congruence. In

The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 457–468, 2013.

11. P. J. Cameron. Permutation Groups. London Mathematical Society Student Texts. Cam-
bridge University Press, 1999.

12. E. M. Clarke, S. Jha, R. Enders, and T. Filkorn. Exploiting symmetry in temporal logic
model checking. Formal Methods in System Design, 9(1/2):77–104, 1996.

13. D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification as a hardware
design aid. In Proceedings 1991 IEEE International Conference on Computer Design: VLSI
in Computer & Processors, ICCD ’92, Cambridge, MA, USA, October 11-14, 1992, pages
522–525, 1992.

14. A. F. Donaldson. Automatic Techniques for Detecting and Exploiting Symmetry in Model
Checking. PhD thesis, University of Glasgow, 2007.

15. A. F. Donaldson and A. Miller. Automatic Symmetry Detection for Model Checking Using
Computational Group Theory. In FM, pages 631–631, 2005.

16. A. F. Donaldson and A. Miller. Automatic Symmetry Detection for Promela. Journal of
Automated Reasoning, pages 251–293, 2008.

17. E. A. Emerson and V. Kahlon. Reducing model checking of the many to the few. In Au-
tomated Deduction - CADE-17, 17th International Conference on Automated Deduction,
Pittsburgh, PA, USA, June 17-20, 2000, Proceedings, pages 236–254, 2000.

18. E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In POPL, pages 85–94, 1995.
19. E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal Methods in System

Design, 9(1/2):105–131, 1996.
20. D. Gries. The Science of Programming. Springer-Verlag, 1981.
21. T. Herman. Probabilistic self-stabilization. Inf. Process. Lett., 35(2):63–67, 1990.
22. C. N. Ip and D. L. Dill. Better Verification through Symmetry. Formal Methods in System

Design, pages 41–75, 1996.
23. A. Israeli and M. Jalfon. Token management schemes and random walks yield self-

stabilizing mutual exclusion. In PODC, pages 119–131, 1990.
24. M. M. Jaghoori, M. Sirjani, M. R. Mousavi, E. Khamespanah, and A. Movaghar. Symmetry

and Partial Order Reduction Techniques in Model Checking Rebeca. Acta Inf., pages 33–66,
2010.

25. M. M. Jaghoori, M. Sirjani, M. R. Mousavi, and A. Movaghar. Efficient Symmetry Reduction
for an Actor-based model. In ICDCIT’05, pages 494–507, 2005.

26. D. Lehmann and M. Rabin. On the advantage of free choice: A symmetric and fully dis-
tributed solution to the dining philosophers problem (extended abstract). In Proc. 8th Annual
ACM Symposium on Principles of Programming Languages (POPL’81), pages 133–138,
1981.

27. A. W. Lin. Accelerating tree-automatic relations. In FSTTCS, pages 313–324, 2012.
28. A. W. Lin, T. K. Nguyen, P. Rümmer, and J. Sun. Regular symmetry patterns (technical

report). http://arxiv.org/abs/1510.08506 (cited in 2015).
29. A. P. Sistla, V. Gyuris, and E. A. Emerson. SMC: a Symmetry-Based Model Checker for

Verification of Safety and Liveness Properties. ACM Transactions on Software Engineering
and Methodology, pages 133–166, 2000.

30. C. Spermann and M. Leuschel. ProB Gets Nauty: Effective Symmetry Reduction for B and
Z Models. In TASE, pages 15–22, 2008.

31. T. Vojnar. Cut-offs and automata in formal verification of infinite-state systems, 2007. Ha-
bilitation Thesis, Faculty of Information Technology, Brno University of Technology.

32. T. Wahl and A. F. Donaldson. Replication and abstraction: Symmetry in automated formal
verification. Symmetry, 2:799–847, 2010.

33. S. J. Zhang, J. Sun, C. Sun, Y. Liu, J. Ma, and J. S. Dong. Constraint-based automatic
symmetry detection. In ASE, pages 15–25, 2013.

